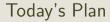
INF3580/4580 – Semantic Technologies – Spring 2017 Lecture 10: OWL, the Web Ontology Language

Leif Harald Karlsen

20th March 2017

UNIVERSITY OF Oslo • Oblig. 5: First deadline tomorrow (21.03).

- Oblig. 5: First deadline tomorrow (21.03).
- Oblig. 6: Will be published 03.04.



2 Description Logics

Outline

2 Description Logics

Introduction to OWL

• RDFS adds the concept of "classes" which are like types or sets of resources.

- RDFS adds the concept of "classes" which are like types or sets of resources.
- A predefined vocabulary allows statements about classes.

- RDFS adds the concept of "classes" which are like types or sets of resources.
- A predefined vocabulary allows statements about classes.
- Defined resources:

- RDFS adds the concept of "classes" which are like types or sets of resources.
- A predefined vocabulary allows statements about classes.
- Defined resources:
 - rdfs:Resource: The class of resources, everything,

- RDFS adds the concept of "classes" which are like types or sets of resources.
- A predefined vocabulary allows statements about classes.
- Defined resources:
 - rdfs:Resource: The class of resources, everything,
 - rdfs:Class: The class of classes,

- RDFS adds the concept of "classes" which are like types or sets of resources.
- A predefined vocabulary allows statements about classes.
- Defined resources:
 - rdfs:Resource: The class of resources, everything,
 - rdfs:Class: The class of classes,
 - rdf:Property: The class of properties (from rdf).

- RDFS adds the concept of "classes" which are like types or sets of resources.
- A predefined vocabulary allows statements about classes.
- Defined resources:
 - rdfs:Resource: The class of resources, everything,
 - rdfs:Class: The class of classes,
 - rdf:Property: The class of properties (from rdf).
- Defined properties:

- RDFS adds the concept of "classes" which are like types or sets of resources.
- A predefined vocabulary allows statements about classes.
- Defined resources:
 - rdfs:Resource: The class of resources, everything,
 - rdfs:Class: The class of classes,
 - rdf:Property: The class of properties (from rdf).
- Defined properties:
 - rdf:type: relates resources to classes they are members of.

- RDFS adds the concept of "classes" which are like types or sets of resources.
- A predefined vocabulary allows statements about classes.
- Defined resources:
 - rdfs:Resource: The class of resources, everything,
 - rdfs:Class: The class of classes,
 - rdf:Property: The class of properties (from rdf).
- Defined properties:
 - rdf:type: relates resources to classes they are members of.
 - rdfs:domain: The domain of a relation.

- RDFS adds the concept of "classes" which are like types or sets of resources.
- A predefined vocabulary allows statements about classes.
- Defined resources:
 - rdfs:Resource: The class of resources, everything,
 - rdfs:Class: The class of classes,
 - rdf:Property: The class of properties (from rdf).
- Defined properties:
 - rdf:type: relates resources to classes they are members of.
 - rdfs:domain: The domain of a relation.
 - rdfs:range: The range of a relation.

- RDFS adds the concept of "classes" which are like types or sets of resources.
- A predefined vocabulary allows statements about classes.
- Defined resources:
 - rdfs:Resource: The class of resources, everything,
 - rdfs:Class: The class of classes,
 - rdf:Property: The class of properties (from rdf).
- Defined properties:
 - rdf:type: relates resources to classes they are members of.
 - rdfs:domain: The domain of a relation.
 - rdfs:range: The range of a relation.
 - rdfs:subClassOf: Concept inclusion.

- RDFS adds the concept of "classes" which are like types or sets of resources.
- A predefined vocabulary allows statements about classes.
- Defined resources:
 - rdfs:Resource: The class of resources, everything,
 - rdfs:Class: The class of classes,
 - rdf:Property: The class of properties (from rdf).
- Defined properties:
 - rdf:type: relates resources to classes they are members of.
 - rdfs:domain: The domain of a relation.
 - rdfs:range: The range of a relation.
 - rdfs:subClassOf: Concept inclusion.
 - rdfs:subPropertyOf: Property inclusion.

• RDFS has formal semantics.

- RDFS has formal semantics.
- Entailment is a mathematically defined relationship between RDF(S) graphs. E.g.,

- RDFS has formal semantics.
- Entailment is a mathematically defined relationship between RDF(S) graphs. E.g.,
 - answers to SPARQL queries are well-defined, and

- RDFS has formal semantics.
- Entailment is a mathematically defined relationship between RDF(S) graphs. E.g.,
 - answers to SPARQL queries are well-defined, and
 - the interpretation of blank nodes is clear.

- RDFS has formal semantics.
- Entailment is a mathematically defined relationship between RDF(S) graphs. E.g.,
 - answers to SPARQL queries are well-defined, and
 - the interpretation of blank nodes is clear.
- The semantics allows for rules to reason about classes and properties and membership.

- RDFS has formal semantics.
- Entailment is a mathematically defined relationship between RDF(S) graphs. E.g.,
 - answers to SPARQL queries are well-defined, and
 - the interpretation of blank nodes is clear.
- The semantics allows for rules to reason about classes and properties and membership.
- Using RDFS entailment rules we can infer:

- RDFS has formal semantics.
- Entailment is a mathematically defined relationship between RDF(S) graphs. E.g.,
 - answers to SPARQL queries are well-defined, and
 - the interpretation of blank nodes is clear.
- The semantics allows for rules to reason about classes and properties and membership.
- Using RDFS entailment rules we can infer:
 - type propagation

- RDFS has formal semantics.
- Entailment is a mathematically defined relationship between RDF(S) graphs. E.g.,
 - answers to SPARQL queries are well-defined, and
 - the interpretation of blank nodes is clear.
- The semantics allows for rules to reason about classes and properties and membership.
- Using RDFS entailment rules we can infer:
 - type propagation
 - property inheritance, and

- RDFS has formal semantics.
- Entailment is a mathematically defined relationship between RDF(S) graphs. E.g.,
 - answers to SPARQL queries are well-defined, and
 - the interpretation of blank nodes is clear.
- The semantics allows for rules to reason about classes and properties and membership.
- Using RDFS entailment rules we can infer:
 - type propagation
 - property inheritance, and
 - domain and range reasoning.

Yet, it's inexpressive

• RDFS does not allow for complex definitions, other than multiple inheritance.

Yet, it's inexpressive

- RDFS does not allow for complex definitions, other than multiple inheritance.
- We cannot express negation in RDFS.

Yet, it's inexpressive

- RDFS does not allow for complex definitions, other than multiple inheritance.
- We cannot express negation in RDFS.
- Hence, because of OWA, all RDFS graphs are satisfiable.

Common modelling patterns cannot be expressed properly in RDFS:

X Every person has a mother.

- X Every person has a mother.
- X Penguins eat only fish. Horses eat only chocolate.

- **X** Every person has a mother.
- **×** Penguins eat only fish. Horses eat only chocolate.
- **X** Every nuclear family has two parents, at least two children and a dog.

- **X** Every person has a mother.
- **×** Penguins eat only fish. Horses eat only chocolate.
- X Every nuclear family has two parents, at least two children and a dog.
- X No smoker is a non-smoker (and vice versa).

- **X** Every person has a mother.
- **×** Penguins eat only fish. Horses eat only chocolate.
- X Every nuclear family has two parents, at least two children and a dog.
- X No smoker is a non-smoker (and vice versa).
- X Everybody loves Mary.

- **X** Every person has a mother.
- **×** Penguins eat only fish. Horses eat only chocolate.
- × Every nuclear family has two parents, at least two children and a dog.
- X No smoker is a non-smoker (and vice versa).
- X Everybody loves Mary.
- X Adam is not Eve (and vice versa).

- **X** Every person has a mother.
- X Penguins eat only fish. Horses eat only chocolate.
- × Every nuclear family has two parents, at least two children and a dog.
- X No smoker is a non-smoker (and vice versa).
- X Everybody loves Mary.
- X Adam is not Eve (and vice versa).
- × Everything is black or white.

- **X** Every person has a mother.
- X Penguins eat only fish. Horses eat only chocolate.
- × Every nuclear family has two parents, at least two children and a dog.
- X No smoker is a non-smoker (and vice versa).
- X Everybody loves Mary.
- X Adam is not Eve (and vice versa).
- × Everything is black or white.
- **X** There is no such thing as a free lunch.

- **X** Every person has a mother.
- X Penguins eat only fish. Horses eat only chocolate.
- X Every nuclear family has two parents, at least two children and a dog.
- X No smoker is a non-smoker (and vice versa).
- X Everybody loves Mary.
- X Adam is not Eve (and vice versa).
- × Everything is black or white.
- **X** There is no such thing as a free lunch.
- **X** Brothers of fathers are uncles.

- **X** Every person has a mother.
- X Penguins eat only fish. Horses eat only chocolate.
- × Every nuclear family has two parents, at least two children and a dog.
- X No smoker is a non-smoker (and vice versa).
- X Everybody loves Mary.
- X Adam is not Eve (and vice versa).
- × Everything is black or white.
- **X** There is no such thing as a free lunch.
- X Brothers of fathers are uncles.
- X My friend's friends are also my friends.

- **X** Every person has a mother.
- X Penguins eat only fish. Horses eat only chocolate.
- × Every nuclear family has two parents, at least two children and a dog.
- X No smoker is a non-smoker (and vice versa).
- X Everybody loves Mary.
- X Adam is not Eve (and vice versa).
- × Everything is black or white.
- **X** There is no such thing as a free lunch.
- X Brothers of fathers are uncles.
- X My friend's friends are also my friends.
- × If Homer is married to Marge, then Marge is married to Homer.

- **X** Every person has a mother.
- **X** Penguins eat only fish. Horses eat only chocolate.
- × Every nuclear family has two parents, at least two children and a dog.
- X No smoker is a non-smoker (and vice versa).
- X Everybody loves Mary.
- X Adam is not Eve (and vice versa).
- × Everything is black or white.
- **X** There is no such thing as a free lunch.
- **X** Brothers of fathers are uncles.
- X My friend's friends are also my friends.
- **X** If Homer is married to Marge, then Marge is married to Homer.
- X If Homer is a parent of Bart, then Bart is a child of Homer.

In the standardised RDFS semantics (not our simplified version):

• No clear ontology/data boundary

- No clear ontology/data boundary
 - No restrictions on the use of the built-ins.

- No clear ontology/data boundary
 - No restrictions on the use of the built-ins.
 - Can have relations between classes and relations:

:myCar	rdf:type	citroen:TwoCV	•
rdf:type	rdfs:domain	rdfs:Resource	

In the standardised RDFS semantics (not our simplified version):

- No clear ontology/data boundary
 - No restrictions on the use of the built-ins.
 - Can have relations between classes and relations:

:myCar	rdf:type	citroen:TwoCV	•
rdf:type	rdfs:domain	rdfs:Resource	

• Remember: in RDF, properties are resources,

- No clear ontology/data boundary
 - No restrictions on the use of the built-ins.
 - Can have relations between classes and relations:

:myCar	rdf:type	citroen:TwoCV	•
rdf:type	rdfs:domain	rdfs:Resource	

- Remember: in RDF, properties are resources,
- so they can be subject or object of triples.

- No clear ontology/data boundary
 - No restrictions on the use of the built-ins.
 - Can have relations between classes and relations:

:myCar	rdf:type	citroen:TwoCV	•
rdf:type	rdfs:domain	rdfs:Resource	

- Remember: in RDF, properties are resources,
- so they can be subject or object of triples.
- Well, in RDFS, classes are resources,

- No clear ontology/data boundary
 - No restrictions on the use of the built-ins.
 - Can have relations between classes and relations:

:myCar	rdf:type	citroen:TwoCV	
rdf:type	rdfs:domain	rdfs:Resource	

- Remember: in RDF, properties are resources,
- so they can be subject or object of triples.
- Well, in RDFS, classes are resources,
- so they can also be subject or object of triples.

- No clear ontology/data boundary
 - No restrictions on the use of the built-ins.
 - Can have relations between classes and relations:

:myCar	rdf:type	citroen:TwoCV	
rdf:type	rdfs:domain	rdfs:Resource	

- Remember: in RDF, properties are resources,
- so they can be subject or object of triples.
- Well, in RDFS, classes are resources,
- so they can also be subject or object of triples.
- The RDFS entailment rules are incomplete.

- No clear ontology/data boundary
 - No restrictions on the use of the built-ins.
 - Can have relations between classes and relations:

:myCar	rdf:type	citroen:TwoCV	•
rdf:type	rdfs:domain	rdfs:Resource	

- Remember: in RDF, properties are resources,
- so they can be subject or object of triples.
- Well, in RDFS, classes are resources,
- so they can also be subject or object of triples.
- The RDFS entailment rules are incomplete.
 - Can't derive all statements that are semantically valid.

Outline

1 Reminder: RDFS

2 Description Logics

Introduction to OWL

• Keep classes, properties, individuals and relationships apart.

- Keep classes, properties, individuals and relationships apart.
- "Data level" with individuals and relationships between them.

- Keep classes, properties, individuals and relationships apart.
- "Data level" with individuals and relationships between them.
- "Ontology level" with properties and classes.

- Keep classes, properties, individuals and relationships apart.
- "Data level" with individuals and relationships between them.
- "Ontology level" with properties and classes.
- Use a fixed vocabulary of built-ins for relations between classes and properties, and their members—and nothing else.

- Keep classes, properties, individuals and relationships apart.
- "Data level" with individuals and relationships between them.
- "Ontology level" with properties and classes.
- Use a fixed vocabulary of built-ins for relations between classes and properties, and their members—and nothing else.
- Interpret

- Keep classes, properties, individuals and relationships apart.
- "Data level" with individuals and relationships between them.
- "Ontology level" with properties and classes.
- Use a fixed vocabulary of built-ins for relations between classes and properties, and their members—and nothing else.
- Interpret
 - classes as sets of individuals, and

- Keep classes, properties, individuals and relationships apart.
- "Data level" with individuals and relationships between them.
- "Ontology level" with properties and classes.
- Use a fixed vocabulary of built-ins for relations between classes and properties, and their members—and nothing else.
- Interpret
 - classes as sets of individuals, and
 - properties as relations between individuals, i.e., sets of pairs

- Keep classes, properties, individuals and relationships apart.
- "Data level" with individuals and relationships between them.
- "Ontology level" with properties and classes.
- Use a fixed vocabulary of built-ins for relations between classes and properties, and their members—and nothing else.
- Interpret
 - classes as sets of individuals, and
 - properties as relations between individuals, i.e., sets of pairs
 - —which is what we do in our simplified semantics.

- Keep classes, properties, individuals and relationships apart.
- "Data level" with individuals and relationships between them.
- "Ontology level" with properties and classes.
- Use a fixed vocabulary of built-ins for relations between classes and properties, and their members—and nothing else.
- Interpret
 - classes as sets of individuals, and
 - properties as relations between individuals, i.e., sets of pairs
 - —which is what we do in our simplified semantics.
- A setting well-studied as *Description Logics*.

Vocabulary

Fix a set of *atomic concepts* $\{A_1, A_2, \dots\}$, *roles* $\{R_1, R_2, \dots\}$ and individuals $\{a_1, a_2, \dots\}$.

Vocabulary

Fix a set of *atomic concepts* $\{A_1, A_2, \dots\}$, *roles* $\{R_1, R_2, \dots\}$ and individuals $\{a_1, a_2, \dots\}$.

\mathcal{ALC} concept descriptions $C, D \rightarrow$ A_i (atomic concept) \top (universal concept) \bot (bottom concept)

Vocabulary

Fix a set of *atomic concepts* $\{A_1, A_2, \dots\}$, *roles* $\{R_1, R_2, \dots\}$ and individuals $\{a_1, a_2, \dots\}$.

\mathcal{ALC} concept descriptions	C, D ightarrow	A; ⊤ ⊥ ⊂ □ D ⊂ ⊔ D	 (atomic concept) (universal concept) (bottom concept) (negation) (intersection) (union)
--------------------------------------	-----------------	--------------------------------	--

Vocabulary

Fix a set of *atomic concepts* $\{A_1, A_2, \dots\}$, *roles* $\{R_1, R_2, \dots\}$ and individuals $\{a_1, a_2, \dots\}$.

\mathcal{ALC} concept descriptions	$C, D \rightarrow$	$A_i \\ \top \\ \bot \\ \neg C \\ C \sqcap D \\ C \sqcup D \\ \forall R_i.C$	<pre>(atomic concept) (universal concept) (bottom concept) (negation) (intersection) (union) (value restriction)</pre>
		$\exists R_i.C$	(existential restriction)

Vocabulary

Fix a set of *atomic concepts* $\{A_1, A_2, \ldots\}$, *roles* $\{R_1, R_2, \ldots\}$ and individuals $\{a_1, a_2, \ldots\}$.

${\cal ALC}$ concept descriptions			
	C, D ightarrow	$A_i \\ \top \\ \bot \\ \neg C \\ C \sqcap D \\ C \sqcup D \\ \forall R_i.C \\ \exists R_i.C \end{cases}$	<pre>(atomic concept) (universal concept) (bottom concept) (negation) (intersection) (union) (value restriction) (existential restriction)</pre>

Axioms

- $C \sqsubseteq D$ and $C \equiv D$ for concept descriptions D and C.
- C(a) and R(a, b) for concept description C, atomic role R and individuals a, b.

${\cal ALC}$ Examples

• $TwoCV \sqsubseteq Car$

- $TwoCV \sqsubseteq Car$
 - Any 2CV is a car.

- $TwoCV \sqsubseteq Car$
 - Any 2CV is a car.
- TwoCV(myCar)

- $TwoCV \sqsubseteq Car$
 - Any 2CV is a car.
- TwoCV(myCar)
 - myCar is a 2CV.

- $TwoCV \sqsubseteq Car$
 - Any 2CV is a car.
- TwoCV(myCar)
 - myCar is a 2CV.
- owns(martin, myCar)

- $TwoCV \sqsubseteq Car$
 - Any 2CV is a car.
- TwoCV(myCar)
 - myCar is a 2CV.
- owns(martin, myCar)
 - martin owns myCar.

- $TwoCV \sqsubseteq Car$
 - Any 2CV is a car.
- TwoCV(myCar)
 - myCar is a 2CV.
- owns(martin, myCar)
 - martin owns myCar.
- $TwoCV \sqsubseteq \forall driveAxle.FrontAxle$

- $TwoCV \sqsubseteq Car$
 - Any 2CV is a car.
- TwoCV(myCar)
 - myCar is a 2CV.
- owns(martin, myCar)
 - martin owns myCar.
- $TwoCV \sqsubseteq \forall driveAxle.FrontAxle$
 - All drive axles of 2CVs are front axles.

- $TwoCV \sqsubseteq Car$
 - Any 2CV is a car.
- TwoCV(myCar)
 - myCar is a 2CV.
- owns(martin, myCar)
 - martin owns myCar.
- $TwoCV \sqsubseteq \forall driveAxle.FrontAxle$
 - All drive axles of 2CVs are front axles.
- $FrontDrivenCar \equiv Car \sqcap \forall driveAxle.FrontAxle$

- $TwoCV \sqsubseteq Car$
 - Any 2CV is a car.
- TwoCV(myCar)
 - myCar is a 2CV.
- owns(martin, myCar)
 - martin owns myCar.
- $TwoCV \sqsubseteq \forall driveAxle.FrontAxle$
 - All drive axles of 2CVs are front axles.
- $FrontDrivenCar \equiv Car \sqcap \forall driveAxle.FrontAxle$
 - A front driven car is one where all drive axles are front axles.

- $TwoCV \sqsubseteq Car$
 - Any 2CV is a car.
- TwoCV(myCar)
 - myCar is a 2CV.
- owns(martin, myCar)
 - martin owns myCar.
- $TwoCV \sqsubseteq \forall driveAxle.FrontAxle$
 - All drive axles of 2CVs are front axles.
- $FrontDrivenCar \equiv Car \sqcap \forall driveAxle.FrontAxle$
 - A front driven car is one where all drive axles are front axles.
- *FrontAxle* \sqcap *RearAxle* $\sqsubseteq \bot$ (disjointness)

- $TwoCV \sqsubseteq Car$
 - Any 2CV is a car.
- TwoCV(myCar)
 - myCar is a 2CV.
- owns(martin, myCar)
 - martin owns myCar.
- $TwoCV \sqsubseteq \forall driveAxle.FrontAxle$
 - All drive axles of 2CVs are front axles.
- $FrontDrivenCar \equiv Car \sqcap \forall driveAxle.FrontAxle$
 - A front driven car is one where all drive axles are front axles.
- *FrontAxle* \sqcap *RearAxle* $\sqsubseteq \bot$ (disjointness)
 - Nothing is both a front axle and a rear axle.

- $TwoCV \sqsubseteq Car$
 - Any 2CV is a car.
- TwoCV(myCar)
 - myCar is a 2CV.
- owns(martin, myCar)
 - martin owns myCar.
- $TwoCV \sqsubseteq \forall driveAxle.FrontAxle$
 - All drive axles of 2CVs are front axles.
- $FrontDrivenCar \equiv Car \sqcap \forall driveAxle.FrontAxle$
 - A front driven car is one where all drive axles are front axles.
- *FrontAxle* \sqcap *RearAxle* $\sqsubseteq \bot$ (disjointness)
 - Nothing is both a front axle and a rear axle.
- FourWheelDrive $\equiv \exists driveAxle.FrontAxle \sqcap \exists driveAxle.RearAxle$

- $TwoCV \sqsubseteq Car$
 - Any 2CV is a car.
- TwoCV(myCar)
 - myCar is a 2CV.
- owns(martin, myCar)
 - martin owns myCar.
- $TwoCV \sqsubseteq \forall driveAxle.FrontAxle$
 - All drive axles of 2CVs are front axles.
- $FrontDrivenCar \equiv Car \sqcap \forall driveAxle.FrontAxle$
 - A front driven car is one where all drive axles are front axles.
- FrontAxle \sqcap RearAxle $\sqsubseteq \bot$ (disjointness)
 - Nothing is both a front axle and a rear axle.
- FourWheelDrive $\equiv \exists driveAxle.FrontAxle \sqcap \exists driveAxle.RearAxle$
 - A 4WD has at least one front drive axle and one rear drive axle.

Interpretation

An interpretation \mathcal{I} fixes a set $\Delta^{\mathcal{I}}$, the *domain*, $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$ for each atomic concept A, $R^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$ for each role R, and $a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$ for each individual a.

Interpretation

An interpretation \mathcal{I} fixes a set $\Delta^{\mathcal{I}}$, the *domain*, $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$ for each atomic concept A, $R^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$ for each role R, and $a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$ for each individual a.

Interpretation of concept descriptions

$$\begin{bmatrix} \mathcal{I} & = & \Delta^{\mathcal{I}} \\ \mathcal{I} & = & \emptyset \end{bmatrix}$$

Interpretation

An interpretation \mathcal{I} fixes a set $\Delta^{\mathcal{I}}$, the *domain*, $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$ for each atomic concept A, $R^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$ for each role R, and $a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$ for each individual a.

Interpretation of concept descriptions

$$\begin{array}{rcl} \top^{\mathcal{I}} &=& \Delta^{\mathcal{I}} \\ \perp^{\mathcal{I}} &=& \emptyset \\ (\neg C)^{\mathcal{I}} &=& \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}} \\ (C \sqcap D)^{\mathcal{I}} &=& C^{\mathcal{I}} \cap D^{\mathcal{I}} \\ (C \sqcup D)^{\mathcal{I}} &=& C^{\mathcal{I}} \cup D^{\mathcal{I}} \end{array}$$

Interpretation

An interpretation \mathcal{I} fixes a set $\Delta^{\mathcal{I}}$, the *domain*, $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$ for each atomic concept A, $R^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$ for each role R, and $a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$ for each individual a.

$\begin{array}{rcl} \top^{\mathcal{I}} & = & \Delta^{\mathcal{I}} \\ \bot^{\mathcal{I}} & = & \emptyset \\ (\neg C)^{\mathcal{I}} & = & \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}} \end{array}$	Interpretation of concept descriptio	S	
$\begin{array}{rcl} (C \sqcap D)^{\mathcal{I}} &=& C^{\mathcal{I}} \cap D^{\mathcal{I}} \\ (C \sqcup D)^{\mathcal{I}} &=& C^{\mathcal{I}} \cup D^{\mathcal{I}} \\ (\forall R.C)^{\mathcal{I}} &=& \{a \in \Delta^{\mathcal{I}} \mid \text{for all } b, \text{ if } \langle a, b \rangle \in R^{\mathcal{I}} \text{ then } b \in C^{\mathcal{I}} \} \\ (\exists R.C)^{\mathcal{I}} &=& \{a \in \Delta^{\mathcal{I}} \mid \text{there is a } b \text{ where } \langle a, b \rangle \in R^{\mathcal{I}} \text{ and } b \in C^{\mathcal{I}} \} \end{array}$	$ \begin{array}{c} \bot^{\mathcal{I}} \\ (\neg C)^{\mathcal{I}} \\ (C \sqcap D)^{\mathcal{I}} \\ (C \sqcup D)^{\mathcal{I}} \\ (\forall R. C)^{\mathcal{I}} \end{array} $	$= \begin{tabular}{ll} \hline & \\ & = & \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}} \\ & = & C^{\mathcal{I}} \cap D^{\mathcal{I}} \\ & = & C^{\mathcal{I}} \cup D^{\mathcal{I}} \\ & = & \{a \in \Delta^{\mathcal{I}} \mid \text{ for all } b, \text{ if } \langle a, b \rangle \in R^{\mathcal{I}} \text{ then } b \in C^{\mathcal{I}} \} \end{tabular}$	

Interpretation

An interpretation \mathcal{I} fixes a set $\Delta^{\mathcal{I}}$, the *domain*, $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$ for each atomic concept A, $R^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$ for each role R, and $a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$ for each individual a.

Interpretation of concept descriptions $\begin{array}{rcl} \top^{\mathcal{I}} &=& \Delta^{\mathcal{I}} \\ \perp^{\mathcal{I}} &=& \emptyset \\ (\neg C)^{\mathcal{I}} &=& \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}} \\ (C \sqcap D)^{\mathcal{I}} &=& C^{\mathcal{I}} \cap D^{\mathcal{I}} \\ (C \sqcup D)^{\mathcal{I}} &=& C^{\mathcal{I}} \cup D^{\mathcal{I}} \\ (R, C)^{\mathcal{I}} &=& \{a \in \Delta^{\mathcal{I}} \mid \text{ for all } b, \text{ if } \langle a, b \rangle \in R^{\mathcal{I}} \text{ then } b \in C^{\mathcal{I}} \} \\ (\exists R, C)^{\mathcal{I}} &=& \{a \in \Delta^{\mathcal{I}} \mid \text{ there is a } b \text{ where } \langle a, b \rangle \in R^{\mathcal{I}} \text{ and } b \in C^{\mathcal{I}} \} \end{array}$

Interpretation of Axioms

- $\mathcal{I} \models C \sqsubseteq D$ if $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ and $\mathcal{I} \models C \equiv D$ if $C^{\mathcal{I}} = D^{\mathcal{I}}$
- $\mathcal{I} \models C(a)$ if $a^{\mathcal{I}} \in C^{\mathcal{I}}$ and $\mathcal{I} \models R(a, b)$ if $\langle a^{\mathcal{I}}, b^{\mathcal{I}} \rangle \in R^{\mathcal{I}}$.

Negation

$$\mathcal{I} \vDash \mathcal{C} \equiv \neg \mathcal{D}$$

Negation

$$\mathcal{I} \vDash \mathcal{C} \equiv \neg \mathcal{D}$$

Negation

$$\mathcal{I} \vDash C \equiv \neg D \\ \Leftrightarrow C^{\mathcal{I}} = (\neg D)^{\mathcal{I}}$$

Negation

$$\begin{aligned} \mathcal{I} \vDash C &\equiv \neg D \\ \Leftrightarrow C^{\mathcal{I}} &= (\neg D)^{\mathcal{I}} \\ \Leftrightarrow C^{\mathcal{I}} &= (\Delta^{\mathcal{I}} \setminus D^{\mathcal{I}}) \end{aligned}$$

Negation

• The interpretation \mathcal{I} satisfies the axiom $C \equiv \neg D$:

$$\begin{aligned} \mathcal{I} \vDash C &\equiv \neg D \\ &\Leftrightarrow C^{\mathcal{I}} = (\neg D)^{\mathcal{I}} \\ &\Leftrightarrow C^{\mathcal{I}} = (\Delta^{\mathcal{I}} \setminus D^{\mathcal{I}}) \end{aligned}$$

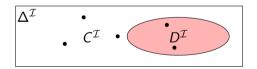
• "A *C* is not a *D*."

Negation

• The interpretation \mathcal{I} satisfies the axiom $C \equiv \neg D$:

$$egin{aligned} \mathcal{I} &Dash \ \mathcal{C} \equiv \neg D \ &\Leftrightarrow \mathcal{C}^{\mathcal{I}} = (\neg D)^{\mathcal{I}} \ &\Leftrightarrow \mathcal{C}^{\mathcal{I}} = (\Delta^{\mathcal{I}} \setminus D^{\mathcal{I}}) \end{aligned}$$

• "A *C* is not a *D*."

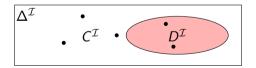


Negation

• The interpretation \mathcal{I} satisfies the axiom $C \equiv \neg D$:

$$egin{aligned} \mathcal{I} Dash \ \mathcal{C} &\equiv \neg D \ &\Leftrightarrow \mathcal{C}^{\mathcal{I}} = (\neg D)^{\mathcal{I}} \ &\Leftrightarrow \mathcal{C}^{\mathcal{I}} = (\Delta^{\mathcal{I}} \setminus D^{\mathcal{I}}) \end{aligned}$$

• "A *C* is not a *D*."



Example: EvenNo ≡ ¬OddNo, assuming the domain is N.
 "An even number is not an odd number."

• The interpretation \mathcal{I} satisfies the axiom $C \sqcap D \sqsubseteq \bot$:

 $\mathcal{I} \vDash \mathcal{C} \sqcap \mathcal{D} \sqsubseteq \bot$

• The interpretation \mathcal{I} satisfies the axiom $C \sqcap D \sqsubseteq \bot$:

 $\mathcal{I} \vDash \mathcal{C} \sqcap \mathcal{D} \sqsubseteq \bot$

```
 \mathcal{I} \vDash C \sqcap D \sqsubseteq \bot \\ \Leftrightarrow (C \sqcap D)^{\mathcal{I}} \subseteq \bot^{\mathcal{I}}
```

```
 \begin{aligned} \mathcal{I} \vDash \mathcal{C} \sqcap \mathcal{D} \sqsubseteq \bot \\ \Leftrightarrow (\mathcal{C} \sqcap \mathcal{D})^{\mathcal{I}} \subseteq \bot^{\mathcal{I}} \\ \Leftrightarrow \mathcal{C}^{\mathcal{I}} \cap \mathcal{D}^{\mathcal{I}} \subseteq \emptyset \end{aligned}
```

• The interpretation \mathcal{I} satisfies the axiom $C \sqcap D \sqsubseteq \bot$:

```
 \begin{aligned} \mathcal{I} \vDash \mathcal{C} \sqcap \mathcal{D} \sqsubseteq \bot \\ \Leftrightarrow (\mathcal{C} \sqcap \mathcal{D})^{\mathcal{I}} \subseteq \bot^{\mathcal{I}} \\ \Leftrightarrow \mathcal{C}^{\mathcal{I}} \cap \mathcal{D}^{\mathcal{I}} \subseteq \emptyset \end{aligned}
```

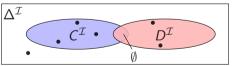
• "Nothing is both a C and a D."

```
 \begin{aligned} \mathcal{I} \vDash \mathcal{C} \sqcap \mathcal{D} \sqsubseteq \bot \\ \Leftrightarrow (\mathcal{C} \sqcap \mathcal{D})^{\mathcal{I}} \subseteq \bot^{\mathcal{I}} \\ \Leftrightarrow \mathcal{C}^{\mathcal{I}} \cap \mathcal{D}^{\mathcal{I}} \subseteq \emptyset \end{aligned}
```

- "Nothing is both a C and a D."
- Equivalent to $C \sqsubseteq \neg D$ (and $D \sqsubseteq \neg C$).

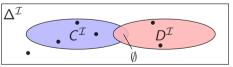
$$\begin{aligned} \mathcal{I} \vDash \mathcal{C} \sqcap \mathcal{D} \sqsubseteq \bot \\ \Leftrightarrow (\mathcal{C} \sqcap \mathcal{D})^{\mathcal{I}} \subseteq \bot^{\mathcal{I}} \\ \Leftrightarrow \mathcal{C}^{\mathcal{I}} \cap \mathcal{D}^{\mathcal{I}} \subseteq \emptyset \end{aligned}$$

- "Nothing is both a C and a D."
- Equivalent to $C \sqsubseteq \neg D$ (and $D \sqsubseteq \neg C$).



$$\begin{aligned} \mathcal{I} \vDash \mathcal{C} \sqcap \mathcal{D} \sqsubseteq \bot \\ \Leftrightarrow (\mathcal{C} \sqcap \mathcal{D})^{\mathcal{I}} \subseteq \bot^{\mathcal{I}} \\ \Leftrightarrow \mathcal{C}^{\mathcal{I}} \cap \mathcal{D}^{\mathcal{I}} \subseteq \emptyset \end{aligned}$$

- "Nothing is both a C and a D."
- Equivalent to $C \sqsubseteq \neg D$ (and $D \sqsubseteq \neg C$).



- Example: *FrontAxle* \sqcap *RearAxle* $\sqsubseteq \bot$.
 - "A FrontAxle is not a RearAxle, and vice versa."

• The interpretation \mathcal{I} satisfies the axiom $C \sqsubseteq \exists R.D$:

 $\mathcal{I} \vDash \mathcal{C} \sqsubseteq \exists R.D$

• The interpretation \mathcal{I} satisfies the axiom $C \sqsubseteq \exists R.D$:

 $\mathcal{I} \vDash \mathcal{C} \sqsubseteq \exists R.D$

• The interpretation \mathcal{I} satisfies the axiom $C \sqsubseteq \exists R.D$:

 $\mathcal{I} \vDash C \sqsubseteq \exists R.D \\ \Leftrightarrow C^{\mathcal{I}} \subseteq (\exists R.D)^{\mathcal{I}}$

• The interpretation \mathcal{I} satisfies the axiom $C \sqsubseteq \exists R.D$:

$$\begin{array}{c} \mathcal{I}\vDash C\sqsubseteq \exists R.D\\ \Leftrightarrow C^{\mathcal{I}}\subseteq (\exists R.D)^{\mathcal{I}}\\ \Leftrightarrow \end{array}$$

• The interpretation \mathcal{I} satisfies the axiom $C \sqsubseteq \exists R.D$:

$$\begin{aligned} \mathcal{I} \vDash C &\sqsubseteq \exists R.D \\ \Leftrightarrow \mathcal{C}^{\mathcal{I}} \subseteq (\exists R.D)^{\mathcal{I}} \\ \Leftrightarrow \mathcal{C}^{\mathcal{I}} \subseteq \{a \in \Delta^{\mathcal{I}} \mid \text{there is a } b \text{ where } \langle a, b \rangle \in R^{\mathcal{I}} \text{ and } b \in D^{\mathcal{I}} \} \end{aligned}$$

• The interpretation \mathcal{I} satisfies the axiom $C \sqsubseteq \exists R.D$:

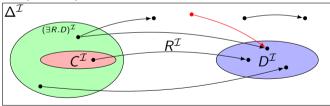
$$\begin{aligned} \mathcal{I} \vDash \mathcal{C} &\sqsubseteq \exists R.D \\ \Leftrightarrow \mathcal{C}^{\mathcal{I}} \subseteq (\exists R.D)^{\mathcal{I}} \\ \Leftrightarrow \mathcal{C}^{\mathcal{I}} \subseteq \{a \in \Delta^{\mathcal{I}} \mid \text{there is a } b \text{ where } \langle a, b \rangle \in R^{\mathcal{I}} \text{ and } b \in D^{\mathcal{I}} \} \end{aligned}$$

• "A C is R-related to (at least) a D."

• The interpretation \mathcal{I} satisfies the axiom $C \sqsubseteq \exists R.D$:

$$\begin{aligned} \mathcal{I} \vDash C &\sqsubseteq \exists R.D \\ \Leftrightarrow \mathcal{C}^{\mathcal{I}} &\subseteq (\exists R.D)^{\mathcal{I}} \\ \Leftrightarrow \mathcal{C}^{\mathcal{I}} &\subseteq \{a \in \Delta^{\mathcal{I}} \mid \text{there is a } b \text{ where } \langle a, b \rangle \in R^{\mathcal{I}} \text{ and } b \in D^{\mathcal{I}} \} \end{aligned}$$

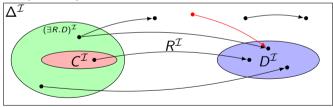
• "A C is R-related to (at least) a D."



• The interpretation \mathcal{I} satisfies the axiom $C \sqsubseteq \exists R.D$:

$$\begin{split} \mathcal{I} \vDash C &\sqsubseteq \exists R.D \\ \Leftrightarrow C^{\mathcal{I}} \subseteq (\exists R.D)^{\mathcal{I}} \\ \Leftrightarrow C^{\mathcal{I}} \subseteq \{a \in \Delta^{\mathcal{I}} \mid \text{there is a } b \text{ where } \langle a, b \rangle \in R^{\mathcal{I}} \text{ and } b \in D^{\mathcal{I}} \} \end{split}$$

• "A C is R-related to (at least) a D."



Example: Toyota ⊑ ∃driveAxle.FrontAxle.
 "A Toyota has a front axle as drive axle."

Universal restrictions

• The interpretation \mathcal{I} satisfies the axiom $C \sqsubseteq \forall R.D$:

 $\mathcal{I} \vDash \mathcal{C} \sqsubseteq \forall \mathcal{R}.\mathcal{D}$

• The interpretation \mathcal{I} satisfies the axiom $C \sqsubseteq \forall R.D$:

 $\mathcal{I} \vDash \mathcal{C} \sqsubseteq \forall \mathcal{R}.\mathcal{D}$

• The interpretation \mathcal{I} satisfies the axiom $C \sqsubseteq \forall R.D$:

 $\begin{aligned} \mathcal{I} \vDash C \sqsubseteq \forall R.D \\ \Leftrightarrow C^{\mathcal{I}} \subseteq (\forall R.D)^{\mathcal{I}} \end{aligned}$

• The interpretation \mathcal{I} satisfies the axiom $C \sqsubseteq \forall R.D$:

$$\mathcal{I} \vDash \mathcal{C} \sqsubseteq \forall R.D \\ \Leftrightarrow \mathcal{C}^{\mathcal{I}} \subseteq (\forall R.D)^{\mathcal{I}} \\ \Leftrightarrow$$

• The interpretation \mathcal{I} satisfies the axiom $C \sqsubseteq \forall R.D$:

$$\begin{split} \mathcal{I} &\vDash C \sqsubseteq \forall R.D \\ &\Leftrightarrow \mathcal{C}^{\mathcal{I}} \subseteq (\forall R.D)^{\mathcal{I}} \\ &\Leftrightarrow \mathcal{C}^{\mathcal{I}} \subseteq \{a \in \Delta^{\mathcal{I}} \mid \text{for all } b, \text{ if } \langle a, b \rangle \in R^{\mathcal{I}} \text{ then } b \in D^{\mathcal{I}} \} \end{split}$$

• The interpretation \mathcal{I} satisfies the axiom $C \sqsubseteq \forall R.D$:

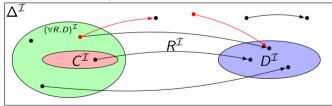
$$\begin{split} \mathcal{I} &\vDash C \sqsubseteq \forall R.D \\ &\Leftrightarrow \mathcal{C}^{\mathcal{I}} \subseteq (\forall R.D)^{\mathcal{I}} \\ &\Leftrightarrow \mathcal{C}^{\mathcal{I}} \subseteq \{a \in \Delta^{\mathcal{I}} \mid \text{for all } b, \text{ if } \langle a, b \rangle \in R^{\mathcal{I}} \text{ then } b \in D^{\mathcal{I}} \} \end{split}$$

• A C has R-relationships to D's only.

• The interpretation \mathcal{I} satisfies the axiom $C \sqsubseteq \forall R.D$:

$$\begin{split} \mathcal{I} &\vDash C \sqsubseteq \forall R.D \\ &\Leftrightarrow \mathcal{C}^{\mathcal{I}} \subseteq (\forall R.D)^{\mathcal{I}} \\ &\Leftrightarrow \mathcal{C}^{\mathcal{I}} \subseteq \{a \in \Delta^{\mathcal{I}} \mid \text{for all } b, \text{ if } \langle a, b \rangle \in R^{\mathcal{I}} \text{ then } b \in D^{\mathcal{I}} \} \end{split}$$

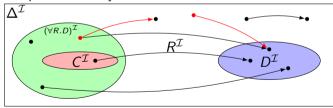
• A C has R-relationships to D's only.



• The interpretation \mathcal{I} satisfies the axiom $C \sqsubseteq \forall R.D$:

$$\begin{split} \mathcal{I} &\vDash C \sqsubseteq \forall R.D \\ &\Leftrightarrow \mathcal{C}^{\mathcal{I}} \subseteq (\forall R.D)^{\mathcal{I}} \\ &\Leftrightarrow \mathcal{C}^{\mathcal{I}} \subseteq \{a \in \Delta^{\mathcal{I}} \mid \text{for all } b, \text{ if } \langle a, b \rangle \in R^{\mathcal{I}} \text{ then } b \in D^{\mathcal{I}} \} \end{split}$$

• A C has R-relationships to D's only.



Example: Lotus ⊑ ∀driveAxle.RearAxle.
 "A Lotus has only rear axles as drive axles."

Example interpretation

Assume \mathcal{K} is the knowledge base with the axioms:

 $\begin{array}{l} \textit{Donkey} \sqsubseteq \textit{Animal} \sqcap \textit{Stubborn} \\ \textit{Horse} \equiv \textit{Animal} \sqcap \forall \textit{eats.Chocolate} \\ \textit{Mule} \equiv \exists \textit{hasParent.Horse} \sqcap \exists \textit{hasParent.Donkey} \\ \exists \textit{hasParent.Mule} \sqsubseteq \bot \end{array}$

Example interpretation

Assume \mathcal{K} is the knowledge base with the axioms:

 $Donkey \sqsubseteq Animal \sqcap Stubborn$ $Horse \equiv Animal \sqcap \forall eats. Chocolate$ $Mule \equiv \exists hasParent. Horse \sqcap \exists hasParent. Donkey$ $\exists hasParent. Mule \sqsubseteq \bot$

Horse(mary) Donkey(sven) hasParent(hannah, mary) hasParent(hannah, sven) eats(mary, carl)

• If role *R* has the range *C*,

- If role *R* has the range *C*,
- then anything one can reach by R is in C, or

- If role *R* has the range *C*,
- then anything one can reach by R is in C, or
- for any a and b, if $\langle a, b \rangle \in R^{\mathcal{I}}$, then $b \in C^{\mathcal{I}}$, or

- If role *R* has the range *C*,
- then anything one can reach by R is in C, or
- for any a and b, if $\langle a, b \rangle \in R^{\mathcal{I}}$, then $b \in C^{\mathcal{I}}$, or
- any *a* is in the interpretation of $\forall R.C$, or

- If role *R* has the range *C*,
- then anything one can reach by R is in C, or
- for any a and b, if $\langle a, b \rangle \in R^{\mathcal{I}}$, then $b \in C^{\mathcal{I}}$, or
- any a is in the interpretation of $\forall R.C$, or
- the axiom $\top \sqsubseteq \forall R.C$ holds.

- If role *R* has the range *C*,
- then anything one can reach by R is in C, or
- for any a and b, if $\langle a, b \rangle \in R^{\mathcal{I}}$, then $b \in C^{\mathcal{I}}$, or
- any a is in the interpretation of $\forall R.C$, or
- the axiom $\top \sqsubseteq \forall R.C$ holds.
- "Everything has *R*-relationships to *C*'s only."

- If role R has the range C,
- then anything one can reach by R is in C, or
- for any a and b, if $\langle a, b \rangle \in R^{\mathcal{I}}$, then $b \in C^{\mathcal{I}}$, or
- any a is in the interpretation of $\forall R.C$, or
- the axiom $\top \sqsubseteq \forall R.C$ holds.
- "Everything has *R*-relationships to *C*'s only."
- Ranges can be expressed with universal restrictions.

- If role R has the range C,
- then anything one can reach by R is in C, or
- for any a and b, if $\langle a, b \rangle \in R^{\mathcal{I}}$, then $b \in C^{\mathcal{I}}$, or
- any a is in the interpretation of $\forall R.C$, or
- the axiom $\top \sqsubseteq \forall R.C$ holds.
- "Everything has *R*-relationships to *C*'s only."
- Ranges can be expressed with universal restrictions.
- Example:

- If role R has the range C,
- then anything one can reach by R is in C, or
- for any a and b, if $\langle a, b \rangle \in R^{\mathcal{I}}$, then $b \in C^{\mathcal{I}}$, or
- any *a* is in the interpretation of $\forall R.C$, or
- the axiom $\top \sqsubseteq \forall R.C$ holds.
- "Everything has *R*-relationships to *C*'s only."
- Ranges can be expressed with universal restrictions.
- Example:
 - a drive axle is either a front or a rear axle, so

- If role R has the range C,
- then anything one can reach by R is in C, or
- for any a and b, if $\langle a, b \rangle \in R^{\mathcal{I}}$, then $b \in C^{\mathcal{I}}$, or
- any *a* is in the interpretation of $\forall R.C$, or
- the axiom $\top \sqsubseteq \forall R.C$ holds.
- "Everything has *R*-relationships to *C*'s only."
- Ranges can be expressed with universal restrictions.
- Example:
 - a drive axle is either a front or a rear axle, so
 - the range of *driveAxle* is *FrontAxle* \sqcup *RearAxle*.

- If role R has the range C,
- then anything one can reach by R is in C, or
- for any a and b, if $\langle a, b \rangle \in R^{\mathcal{I}}$, then $b \in C^{\mathcal{I}}$, or
- any *a* is in the interpretation of $\forall R.C$, or
- the axiom $\top \sqsubseteq \forall R.C$ holds.
- "Everything has *R*-relationships to *C*'s only."
- Ranges can be expressed with universal restrictions.
- Example:
 - a drive axle is either a front or a rear axle, so
 - the range of *driveAxle* is *FrontAxle* \sqcup *RearAxle*.
 - Axiom: $\top \sqsubseteq \forall driveAxle.(FrontAxle \sqcup RearAxle).$

• If role *R* has the *domain C*,

- If role *R* has the *domain C*,
- then anything from which one can go by R is in C, or

- If role R has the domain C,
- then anything from which one can go by R is in C, or
- for any a, if there is a b with $\langle a,b\rangle\in R^{\mathcal{I}}$, then $a\in C^{\mathcal{I}}$, or

- If role R has the domain C,
- then anything from which one can go by R is in C, or
- for any a, if there is a b with $\langle a,b\rangle\in R^{\mathcal{I}}$, then $a\in C^{\mathcal{I}}$, or
- any *a* in the interpretation of $\exists R.\top$ is in the interpretation of *C*, or

- If role R has the domain C,
- then anything from which one can go by R is in C, or
- for any a, if there is a b with $\langle a,b
 angle\in R^\mathcal{I}$, then $a\in C^\mathcal{I}$, or
- any *a* in the interpretation of $\exists R.\top$ is in the interpretation of *C*, or
- the axiom $\exists R.\top \sqsubseteq C$ holds.

- If role R has the domain C,
- then anything from which one can go by R is in C, or
- for any a, if there is a b with $\langle a,b\rangle\in R^{\mathcal{I}}$, then $a\in C^{\mathcal{I}}$, or
- any *a* in the interpretation of $\exists R.\top$ is in the interpretation of *C*, or
- the axiom $\exists R.\top \sqsubseteq C$ holds.
- "Everything which is *R*-related (to a thing) is a *C*."

- If role R has the domain C,
- then anything from which one can go by R is in C, or
- for any a, if there is a b with $\langle a,b\rangle\in R^{\mathcal{I}}$, then $a\in C^{\mathcal{I}}$, or
- any *a* in the interpretation of $\exists R.\top$ is in the interpretation of *C*, or
- the axiom $\exists R.\top \sqsubseteq C$ holds.
- "Everything which is *R*-related (to a thing) is a *C*."
- Domains can be expressed with existential restrictions.

- If role R has the domain C,
- then anything from which one can go by R is in C, or
- for any a, if there is a b with $\langle a,b\rangle\in R^{\mathcal{I}}$, then $a\in C^{\mathcal{I}}$, or
- any *a* in the interpretation of $\exists R.\top$ is in the interpretation of *C*, or
- the axiom $\exists R.\top \sqsubseteq C$ holds.
- "Everything which is *R*-related (to a thing) is a *C*."
- Domains can be expressed with existential restrictions.
- Example:

- If role R has the domain C,
- then anything from which one can go by R is in C, or
- for any a, if there is a b with $\langle a,b\rangle\in R^{\mathcal{I}}$, then $a\in C^{\mathcal{I}}$, or
- any a in the interpretation of $\exists R.\top$ is in the interpretation of C, or
- the axiom $\exists R.\top \sqsubseteq C$ holds.
- "Everything which is *R*-related (to a thing) is a *C*."
- Domains can be expressed with existential restrictions.
- Example:
 - a drive axle is something cars have, so

- If role R has the domain C,
- then anything from which one can go by R is in C, or
- for any a, if there is a b with $\langle a,b\rangle\in R^{\mathcal{I}}$, then $a\in C^{\mathcal{I}}$, or
- any a in the interpretation of $\exists R.\top$ is in the interpretation of C, or
- the axiom $\exists R.\top \sqsubseteq C$ holds.
- "Everything which is *R*-related (to a thing) is a *C*."
- Domains can be expressed with existential restrictions.
- Example:
 - a drive axle is something cars have, so
 - the domain of *driveAxle* is *Car*.

- If role R has the domain C,
- then anything from which one can go by R is in C, or
- for any a, if there is a b with $\langle a,b\rangle\in R^{\mathcal{I}}$, then $a\in C^{\mathcal{I}}$, or
- any a in the interpretation of $\exists R.\top$ is in the interpretation of C, or
- the axiom $\exists R.\top \sqsubseteq C$ holds.
- "Everything which is *R*-related (to a thing) is a *C*."
- Domains can be expressed with existential restrictions.
- Example:
 - a drive axle is something cars have, so
 - the domain of *driveAxle* is *Car*.
 - Axiom: $\exists driveAxle. \top \sqsubseteq Car$.

• We still express C(a), R(x, y), $C \sqsubseteq D$ like we did in RDFS,

- We still express C(a), R(x, y), $C \sqsubseteq D$ like we did in RDFS,
- but now we can express complex C's and D's.

- We still express C(a), R(x, y), $C \sqsubseteq D$ like we did in RDFS,
- but now we can express complex C's and D's.
- A concept can be defined by use of other concepts and roles.

- We still express C(a), R(x, y), $C \sqsubseteq D$ like we did in RDFS,
- but now we can express complex C's and D's.
- A concept can be defined by use of other concepts and roles.
- Examples:

- We still express C(a), R(x, y), $C \sqsubseteq D$ like we did in RDFS,
- but now we can express complex C's and D's.
- A concept can be defined by use of other concepts and roles.
- Examples:
 - Person $\sqsubseteq \exists hasMother. \top$ (or Person $\sqsubseteq \exists hasParent. Woman$)

- We still express C(a), R(x, y), $C \sqsubseteq D$ like we did in RDFS,
- but now we can express complex C's and D's.
- A concept can be defined by use of other concepts and roles.
- Examples:
 - Person $\sqsubseteq \exists hasMother. \top$ (or Person $\sqsubseteq \exists hasParent. Woman$)
 - Penguin $\sqsubseteq \forall eats.Fish$

- We still express C(a), R(x, y), $C \sqsubseteq D$ like we did in RDFS,
- but now we can express complex C's and D's.
- A concept can be defined by use of other concepts and roles.
- Examples:
 - Person $\sqsubseteq \exists hasMother. \top$ (or Person $\sqsubseteq \exists hasParent. Woman$)
 - Penguin $\sqsubseteq \forall eats.Fish$
 - NonSmoker $\sqsubseteq \neg$ Smoker (or NonSmoker \sqcap Smoker $\sqsubseteq \bot$)

- We still express C(a), R(x, y), $C \sqsubseteq D$ like we did in RDFS,
- but now we can express complex C's and D's.
- A concept can be defined by use of other concepts and roles.
- Examples:
 - Person $\sqsubseteq \exists hasMother. \top$ (or Person $\sqsubseteq \exists hasParent. Woman$)
 - Penguin $\sqsubseteq \forall eats.Fish$
 - NonSmoker $\sqsubseteq \neg$ Smoker (or NonSmoker \sqcap Smoker $\sqsubseteq \bot$)
 - $\top \sqsubseteq BlackThing \sqcup WhiteThing$

- We still express C(a), R(x, y), $C \sqsubseteq D$ like we did in RDFS,
- but now we can express complex C's and D's.
- A concept can be defined by use of other concepts and roles.
- Examples:
 - Person $\sqsubseteq \exists hasMother. \top$ (or Person $\sqsubseteq \exists hasParent. Woman$)
 - Penguin $\sqsubseteq \forall eats.Fish$
 - *NonSmoker* $\sqsubseteq \neg$ *Smoker* (or *NonSmoker* \sqcap *Smoker* $\sqsubseteq \bot$)
 - $\top \sqsubseteq BlackThing \sqcup WhiteThing$
 - FreeLunch $\sqsubseteq \bot$

So, what can we say with ALC?

✓ Every person has a mother.

- ✓ Every person has a mother.
- ✓ Penguins eat only fish. Horses eat only chocolate.

- ✓ Every person has a mother.
- ✓ Penguins eat only fish. Horses eat only chocolate.
- **X** Every nuclear family has two parents, at least two children and a dog.

- Every person has a mother.
- ✓ Penguins eat only fish. Horses eat only chocolate.
- **X** Every nuclear family has two parents, at least two children and a dog.
- ✓ No smoker is a non-smoker (and vice versa).

- Every person has a mother.
- ✓ Penguins eat only fish. Horses eat only chocolate.
- × Every nuclear family has two parents, at least two children and a dog.
- ✓ No smoker is a non-smoker (and vice versa).
- X Everybody loves Mary.

- Every person has a mother.
- ✓ Penguins eat only fish. Horses eat only chocolate.
- × Every nuclear family has two parents, at least two children and a dog.
- ✓ No smoker is a non-smoker (and vice versa).
- X Everybody loves Mary.
- X Adam is not Eve (and vice versa).

- Every person has a mother.
- ✓ Penguins eat only fish. Horses eat only chocolate.
- X Every nuclear family has two parents, at least two children and a dog.
- ✓ No smoker is a non-smoker (and vice versa).
- X Everybody loves Mary.
- X Adam is not Eve (and vice versa).
- Everything is black or white.

- Every person has a mother.
- ✓ Penguins eat only fish. Horses eat only chocolate.
- X Every nuclear family has two parents, at least two children and a dog.
- ✓ No smoker is a non-smoker (and vice versa).
- X Everybody loves Mary.
- X Adam is not Eve (and vice versa).
- Everything is black or white.
- \checkmark There is no such thing as a free lunch.

- Every person has a mother.
- ✓ Penguins eat only fish. Horses eat only chocolate.
- X Every nuclear family has two parents, at least two children and a dog.
- ✓ No smoker is a non-smoker (and vice versa).
- X Everybody loves Mary.
- X Adam is not Eve (and vice versa).
- Everything is black or white.
- \checkmark There is no such thing as a free lunch.
- **X** Brothers of fathers are uncles.

- Every person has a mother.
- Penguins eat only fish. Horses eat only chocolate.
- X Every nuclear family has two parents, at least two children and a dog.
- ✓ No smoker is a non-smoker (and vice versa).
- X Everybody loves Mary.
- X Adam is not Eve (and vice versa).
- Everything is black or white.
- ✓ There is no such thing as a free lunch.
- **X** Brothers of fathers are uncles.
- X My friend's friends are also my friends.

- Every person has a mother.
- ✓ Penguins eat only fish. Horses eat only chocolate.
- X Every nuclear family has two parents, at least two children and a dog.
- ✓ No smoker is a non-smoker (and vice versa).
- X Everybody loves Mary.
- X Adam is not Eve (and vice versa).
- Everything is black or white.
- ✓ There is no such thing as a free lunch.
- **X** Brothers of fathers are uncles.
- X My friend's friends are also my friends.
- X If Homer is married to Marge, then Marge is married to Homer.

- Every person has a mother.
- ✓ Penguins eat only fish. Horses eat only chocolate.
- X Every nuclear family has two parents, at least two children and a dog.
- ✓ No smoker is a non-smoker (and vice versa).
- X Everybody loves Mary.
- X Adam is not Eve (and vice versa).
- Everything is black or white.
- \checkmark There is no such thing as a free lunch.
- **X** Brothers of fathers are uncles.
- X My friend's friends are also my friends.
- **X** If Homer is married to Marge, then Marge is married to Homer.
- X If Homer is a parent of Bart, then Bart is a child of Homer.

• Historically, description logic axioms and assertions are put in *boxes*.

- Historically, description logic axioms and assertions are put in *boxes*.
- The TBox

- Historically, description logic axioms and assertions are put in *boxes*.
- The TBox
 - is for terminological knowledge,

- Historically, description logic axioms and assertions are put in *boxes*.
- The TBox
 - is for terminological knowledge,
 - is independent of any actual instance data, and

- Historically, description logic axioms and assertions are put in boxes.
- The TBox
 - is for terminological knowledge,
 - is independent of any actual instance data, and
 - for \mathcal{ALC} , it is a set of \sqsubseteq axioms and \equiv axioms.

- Historically, description logic axioms and assertions are put in boxes.
- The TBox
 - is for terminological knowledge,
 - is independent of any actual instance data, and
 - for \mathcal{ALC} , it is a set of \sqsubseteq axioms and \equiv axioms.
 - Example TBox axioms:

Little Boxes

• Historically, description logic axioms and assertions are put in boxes.

- is for terminological knowledge,
- is independent of any actual instance data, and
- for \mathcal{ALC} , it is a set of \sqsubseteq axioms and \equiv axioms.
- Example TBox axioms:
 - $TwoCV \sqsubseteq \forall driveAxle.FrontAxle$

Little Boxes

• Historically, description logic axioms and assertions are put in boxes.

- is for terminological knowledge,
- is independent of any actual instance data, and
- for \mathcal{ALC} , it is a set of \sqsubseteq axioms and \equiv axioms.
- Example TBox axioms:
 - $TwoCV \sqsubseteq \forall driveAxle.FrontAxle$
 - FrontDrivenCar \equiv Car $\sqcap \forall$ driveAxle.FrontAxle.

- Historically, description logic axioms and assertions are put in boxes.
- The TBox
 - is for terminological knowledge,
 - is independent of any actual instance data, and
 - for \mathcal{ALC} , it is a set of \sqsubseteq axioms and \equiv axioms.
 - Example TBox axioms:
 - $TwoCV \sqsubseteq \forall driveAxle.FrontAxle$
 - FrontDrivenCar \equiv Car $\sqcap \forall$ driveAxle.FrontAxle.
- The ABox

- Historically, description logic axioms and assertions are put in boxes.
- The TBox
 - is for terminological knowledge,
 - is independent of any actual instance data, and
 - for \mathcal{ALC} , it is a set of \sqsubseteq axioms and \equiv axioms.
 - Example TBox axioms:
 - $TwoCV \sqsubseteq \forall driveAxle.FrontAxle$
 - FrontDrivenCar \equiv Car $\sqcap \forall$ driveAxle.FrontAxle.
- The ABox
 - is for assertional knowledge,

- Historically, description logic axioms and assertions are put in boxes.
- The TBox
 - is for terminological knowledge,
 - is independent of any actual instance data, and
 - for \mathcal{ALC} , it is a set of \sqsubseteq axioms and \equiv axioms.
 - Example TBox axioms:
 - $TwoCV \sqsubseteq \forall driveAxle.FrontAxle$
 - FrontDrivenCar \equiv Car $\sqcap \forall$ driveAxle.FrontAxle.
- The ABox
 - is for assertional knowledge,
 - contains facts about concrete instances *a*, *b*, *c*,

Little Boxes

• Historically, description logic axioms and assertions are put in boxes.

- is for terminological knowledge,
- is independent of any actual instance data, and
- for \mathcal{ALC} , it is a set of \sqsubseteq axioms and \equiv axioms.
- Example TBox axioms:
 - $TwoCV \sqsubseteq \forall driveAxle.FrontAxle$
 - FrontDrivenCar \equiv Car $\sqcap \forall$ driveAxle.FrontAxle.
- The ABox
 - is for assertional knowledge,
 - contains facts about concrete instances *a*, *b*, *c*,
 - a set of concept membership assertions C(a),

Little Boxes

• Historically, description logic axioms and assertions are put in boxes.

- is for terminological knowledge,
- is independent of any actual instance data, and
- for \mathcal{ALC} , it is a set of \sqsubseteq axioms and \equiv axioms.
- Example TBox axioms:
 - $TwoCV \sqsubseteq \forall driveAxle.FrontAxle$
 - FrontDrivenCar \equiv Car $\sqcap \forall$ driveAxle.FrontAxle.
- The ABox
 - is for assertional knowledge,
 - contains facts about concrete instances *a*, *b*, *c*,
 - a set of concept membership assertions C(a),
 - and role assertions R(b, c).

• Historically, description logic axioms and assertions are put in boxes.

- is for terminological knowledge,
- is independent of any actual instance data, and
- for \mathcal{ALC} , it is a set of \sqsubseteq axioms and \equiv axioms.
- Example TBox axioms:
 - $TwoCV \sqsubseteq \forall driveAxle.FrontAxle$
 - FrontDrivenCar \equiv Car $\sqcap \forall$ driveAxle.FrontAxle.
- The ABox
 - is for assertional knowledge,
 - contains facts about concrete instances *a*, *b*, *c*,
 - a set of concept membership assertions C(a),
 - and role assertions R(b, c).
 - Example ABox axioms:

• Historically, description logic axioms and assertions are put in boxes.

- is for terminological knowledge,
- is independent of any actual instance data, and
- for \mathcal{ALC} , it is a set of \sqsubseteq axioms and \equiv axioms.
- Example TBox axioms:
 - $TwoCV \sqsubseteq \forall driveAxle.FrontAxle$
 - FrontDrivenCar \equiv Car $\sqcap \forall$ driveAxle.FrontAxle.
- The ABox
 - is for assertional knowledge,
 - contains facts about concrete instances *a*, *b*, *c*,
 - a set of concept membership assertions C(a),
 - and role assertions R(b, c).
 - Example ABox axioms:
 - driveAxle(myCar, axle)

• Historically, description logic axioms and assertions are put in boxes.

- is for terminological knowledge,
- is independent of any actual instance data, and
- for \mathcal{ALC} , it is a set of \sqsubseteq axioms and \equiv axioms.
- Example TBox axioms:
 - $TwoCV \sqsubseteq \forall driveAxle.FrontAxle$
 - FrontDrivenCar \equiv Car $\sqcap \forall$ driveAxle.FrontAxle.
- The ABox
 - is for assertional knowledge,
 - contains facts about concrete instances *a*, *b*, *c*,
 - a set of concept membership assertions C(a),
 - and role assertions R(b, c).
 - Example ABox axioms:
 - driveAxle(myCar, axle)
 - (FrontAxle \sqcup RearAxle)(axle).

Remainder: Entailment

A entails B, written $A \models B$, if

 $\mathcal{I} \models B$ for all interpretations where $\mathcal{I} \models A$.

Remainder: Entailment

A entails B, written $A \models B$, if

 $\mathcal{I} \models B$ for all interpretations where $\mathcal{I} \models A$.

• Many reasoning tasks use only the TBox:

Remainder: Entailment

A entails B, written $A \models B$, if

 $\mathcal{I} \models B$ for all interpretations where $\mathcal{I} \models A$.

- Many reasoning tasks use only the TBox:
- Concept unsatisfiability: Given C, does $\mathcal{T} \models C \sqsubseteq \bot$?

Remainder: Entailment

A entails B, written $A \models B$, if $\mathcal{I} \models B$ for all interpretations where $\mathcal{I} \models A$.

- Many reasoning tasks use only the TBox:
- Concept unsatisfiability: Given C, does $\mathcal{T} \models C \sqsubseteq \bot$?
- Concept subsumption: Given C and D, does $\mathcal{T} \models C \sqsubseteq D$?

Remainder: Entailment

A entails B, written $A \models B$, if $\mathcal{I} \models B$ for all interpretations where $\mathcal{I} \models A$.

- Many reasoning tasks use only the TBox:
- Concept unsatisfiability: Given C, does $\mathcal{T} \models C \sqsubseteq \bot$?
- Concept subsumption: Given C and D, does $\mathcal{T} \models C \sqsubseteq D$?
- Concept equivalence: Given C and D, does $\mathcal{T} \models C \equiv D$?

Remainder: Entailment

A entails B, written $A \models B$, if $\mathcal{I} \models B$ for all interpretations where $\mathcal{I} \models A$.

- Many reasoning tasks use only the TBox:
- Concept unsatisfiability: Given C, does $\mathcal{T} \models C \sqsubseteq \bot$?
- Concept subsumption: Given C and D, does $\mathcal{T} \models C \sqsubseteq D$?
- Concept equivalence: Given C and D, does $\mathcal{T} \models C \equiv D$?
- Concept disjointness: Given C and D, does $\mathcal{T} \models C \sqcap D \sqsubseteq \bot$?

• ABox consistency: Is there a model of $(\mathcal{T}, \mathcal{A})$, i.e., is there an interpretation \mathcal{I} such that $\mathcal{I} \models (\mathcal{T}, \mathcal{A})$?

- ABox consistency: Is there a model of $(\mathcal{T}, \mathcal{A})$, i.e., is there an interpretation \mathcal{I} such that $\mathcal{I} \models (\mathcal{T}, \mathcal{A})$?
- Concept membership: Given C and a, does $(\mathcal{T}, \mathcal{A}) \models C(a)$?

- ABox consistency: Is there a model of $(\mathcal{T}, \mathcal{A})$, i.e., is there an interpretation \mathcal{I} such that $\mathcal{I} \models (\mathcal{T}, \mathcal{A})$?
- Concept membership: Given C and a, does $(\mathcal{T}, \mathcal{A}) \models C(a)$?
- Retrieval: Given C, find all a such that $(\mathcal{T}, \mathcal{A}) \models C(a)$.

- ABox consistency: Is there a model of $(\mathcal{T}, \mathcal{A})$, i.e., is there an interpretation \mathcal{I} such that $\mathcal{I} \models (\mathcal{T}, \mathcal{A})$?
- Concept membership: Given C and a, does $(\mathcal{T}, \mathcal{A}) \models C(a)$?
- Retrieval: Given C, find all a such that $(\mathcal{T}, \mathcal{A}) \models C(a)$.
- Conjunctive Query Answering (SPARQL).

• There are description logics including axioms about

- There are description logics including axioms about
 - roles, e.g., hierarchy, transitivity

- There are description logics including axioms about
 - roles, e.g., hierarchy, transitivity
 - cardinality

- There are description logics including axioms about
 - roles, e.g., hierarchy, transitivity
 - cardinality
 - data types, e.g., numbers, strings

- There are description logics including axioms about
 - roles, e.g., hierarchy, transitivity
 - cardinality
 - data types, e.g., numbers, strings
 - individuals

- There are description logics including axioms about
 - roles, e.g., hierarchy, transitivity
 - cardinality
 - data types, e.g., numbers, strings
 - individuals
 - etc.

- There are description logics including axioms about
 - roles, e.g., hierarchy, transitivity
 - cardinality
 - data types, e.g., numbers, strings
 - individuals
 - etc.
- We'll see more in later lectures.

- There are description logics including axioms about
 - roles, e.g., hierarchy, transitivity
 - cardinality
 - data types, e.g., numbers, strings
 - individuals
 - etc.
- We'll see more in later lectures.
- The balance of expressivity and complexity is important.

- There are description logics including axioms about
 - roles, e.g., hierarchy, transitivity
 - cardinality
 - data types, e.g., numbers, strings
 - individuals
 - etc.
- We'll see more in later lectures.
- The balance of expressivity and complexity is important.
- Too much expressivity makes reasoning tasks

- There are description logics including axioms about
 - roles, e.g., hierarchy, transitivity
 - cardinality
 - data types, e.g., numbers, strings
 - individuals
 - etc.
- We'll see more in later lectures.
- The balance of expressivity and complexity is important.
- Too much expressivity makes reasoning tasks
 - first more expensive,

- There are description logics including axioms about
 - roles, e.g., hierarchy, transitivity
 - cardinality
 - data types, e.g., numbers, strings
 - individuals
 - etc.
- We'll see more in later lectures.
- The balance of expressivity and complexity is important.
- Too much expressivity makes reasoning tasks
 - first more expensive,
 - then undecidable.

- There are description logics including axioms about
 - roles, e.g., hierarchy, transitivity
 - cardinality
 - data types, e.g., numbers, strings
 - individuals
 - etc.
- We'll see more in later lectures.
- The balance of expressivity and complexity is important.
- Too much expressivity makes reasoning tasks
 - first more expensive,
 - then undecidable.
- Much research on how expressivity affects complexity/decidability.

Outline

1 Reminder: RDFS

2 Description Logics

OWL:

• Acronym for *The Web Ontology Language*.

- Acronym for The Web Ontology Language.
- Became a W3C recommendation in 2004.

- Acronym for The Web Ontology Language.
- Became a W3C recommendation in 2004.
- The undisputed standard ontology language.

- Acronym for The Web Ontology Language.
- Became a W3C recommendation in 2004.
- The undisputed standard ontology language.
- Superseded by OWL 2;

- Acronym for The Web Ontology Language.
- Became a W3C recommendation in 2004.
- The undisputed standard ontology language.
- Superseded by OWL 2;
 - a backwards compatible extension that adds new capabilities.

OWL:

- Acronym for The Web Ontology Language.
- Became a W3C recommendation in 2004.
- The undisputed standard ontology language.
- Superseded by OWL 2;

• Built on Description Logics.

- Acronym for The Web Ontology Language.
- Became a W3C recommendation in 2004.
- The undisputed standard ontology language.
- Superseded by OWL 2;

- a backwards compatible extension that adds new capabilities.
- Built on Description Logics.
- Combines DL expressiveness with RDF technology (e.g., URIs, namespaces).

- Acronym for The Web Ontology Language.
- Became a W3C recommendation in 2004.
- The undisputed standard ontology language.
- Superseded by OWL 2;

- a backwards compatible extension that adds new capabilities.
- Built on Description Logics.
- Combines DL expressiveness with RDF technology (e.g., URIs, namespaces).
- Extends RDFS with boolean operations, universal/existential restrictions and more.

• Reminder: RDF is an abstract construction, several concrete syntaxes: RDF/XML, Turtle,...

- Reminder: RDF is an abstract construction, several concrete syntaxes: RDF/XML, Turtle,...
- Same for OWL:

- Reminder: RDF is an abstract construction, several concrete syntaxes: RDF/XML, Turtle,...
- Same for OWL:
- Defined as set of things that can be said about classes, properties, instances.

- Reminder: RDF is an abstract construction, several concrete syntaxes: RDF/XML, Turtle,...
- Same for OWL:
- Defined as set of things that can be said about classes, properties, instances.
- DL symbols $(\Box, \sqcup, \exists, \forall)$ hard to find on keyboard.

- Reminder: RDF is an abstract construction, several concrete syntaxes: RDF/XML, Turtle,...
- Same for OWL:
- Defined as set of things that can be said about classes, properties, instances.
- DL symbols $(\Box, \sqcup, \exists, \forall)$ hard to find on keyboard.
- $\bullet~\mbox{OWL}/\mbox{RDF}$: Uses RDF to express OWL ontologies.

- Reminder: RDF is an abstract construction, several concrete syntaxes: RDF/XML, Turtle,...
- Same for OWL:
- Defined as set of things that can be said about classes, properties, instances.
- DL symbols $(\Box, \sqcup, \exists, \forall)$ hard to find on keyboard.
- $\bullet~\mbox{OWL}/\mbox{RDF}$: Uses RDF to express OWL ontologies.
 - Then use any of the RDF serializations.

- Reminder: RDF is an abstract construction, several concrete syntaxes: RDF/XML, Turtle,...
- Same for OWL:
- Defined as set of things that can be said about classes, properties, instances.
- DL symbols $(\Box, \sqcup, \exists, \forall)$ hard to find on keyboard.
- $\bullet~\mbox{OWL}/\mbox{RDF}$: Uses RDF to express OWL ontologies.
 - Then use any of the RDF serializations.
- OWL/XML: a non-RDF XML format.

- Reminder: RDF is an abstract construction, several concrete syntaxes: RDF/XML, Turtle,...
- Same for OWL:
- Defined as set of things that can be said about classes, properties, instances.
- DL symbols $(\Box, \sqcup, \exists, \forall)$ hard to find on keyboard.
- $\bullet~\mbox{OWL}/\mbox{RDF}$: Uses RDF to express OWL ontologies.
 - Then use any of the RDF serializations.
- OWL/XML: a non-RDF XML format.
- Functional OWL syntax: simple, used in definition.

- Reminder: RDF is an abstract construction, several concrete syntaxes: RDF/XML, Turtle,...
- Same for OWL:
- Defined as set of things that can be said about classes, properties, instances.
- DL symbols $(\Box, \sqcup, \exists, \forall)$ hard to find on keyboard.
- $\bullet~\mbox{OWL}/\mbox{RDF}$: Uses RDF to express OWL ontologies.
 - Then use any of the RDF serializations.
- OWL/XML: a non-RDF XML format.
- Functional OWL syntax: simple, used in definition.
- Manchester OWL syntax: close to DL, but text, used in some tools.

• New: owl:Ontology, owl:Class, owl:Thing, properties (next slide), restrictions (owl:allValuesFrom, owl:unionOf, ...), annotations (owl:versionInfo, ...).

- New: owl:Ontology, owl:Class, owl:Thing, properties (next slide), restrictions (owl:allValuesFrom, owl:unionOf, ...), annotations (owl:versionInfo, ...).
- From RDF: rdf:type, rdf:Property

- New: owl:Ontology, owl:Class, owl:Thing, properties (next slide), restrictions (owl:allValuesFrom, owl:unionOf, ...), annotations (owl:versionInfo, ...).
- From RDF: rdf:type, rdf:Property
- From RDFS: rdfs:Class, rdfs:subClassOf, rdfs:subPropertyOf, rdfs:domain, rdfs:range, rdfs:label, rdfs:comment, ...

- New: owl:Ontology, owl:Class, owl:Thing, properties (next slide), restrictions (owl:allValuesFrom, owl:unionOf, ...), annotations (owl:versionInfo, ...).
- From RDF: rdf:type, rdf:Property
- From RDFS: rdfs:Class, rdfs:subClassOf, rdfs:subPropertyOf, rdfs:domain, rdfs:range, rdfs:label, rdfs:comment, ...
- (XSD datatypes: xsd:string, ...)

Three kinds of *mutually disjoint* properties in OWL:

owl:DatatypeProperty

- owl:DatatypeProperty
 - link individuals to data values, e.g., xsd:string.

- owl:DatatypeProperty
 - link individuals to data values, e.g., xsd:string.
 - Examples: :hasAge, :hasSurname.

- owl:DatatypeProperty
 - link individuals to data values, e.g., xsd:string.
 - Examples: :hasAge, :hasSurname.
- owl:ObjectProperty

- owl:DatatypeProperty
 - link individuals to data values, e.g., xsd:string.
 - Examples: :hasAge, :hasSurname.
- owl:ObjectProperty
 - link individuals to individuals.

- owl:DatatypeProperty
 - link individuals to data values, e.g., xsd:string.
 - Examples: :hasAge, :hasSurname.
- ② owl:ObjectProperty
 - link individuals to individuals.
 - Example: :hasFather, :driveAxle.

- owl:DatatypeProperty
 - link individuals to data values, e.g., xsd:string.
 - Examples: :hasAge, :hasSurname.
- ② owl:ObjectProperty
 - link individuals to individuals.
 - Example: :hasFather, :driveAxle.
- ③ owl:AnnotationProperty

- owl:DatatypeProperty
 - link individuals to data values, e.g., xsd:string.
 - Examples: :hasAge, :hasSurname.
- ② owl:ObjectProperty
 - link individuals to individuals.
 - Example: :hasFather, :driveAxle.
- ③ owl:AnnotationProperty
 - has no logical implication, ignored by reasoners.

- owl:DatatypeProperty
 - link individuals to data values, e.g., xsd:string.
 - Examples: :hasAge, :hasSurname.
- ② owl:ObjectProperty
 - link individuals to individuals.
 - Example: :hasFather, :driveAxle.
- ③ owl:AnnotationProperty
 - has no logical implication, ignored by reasoners.
 - anything can be annotated.

- owl:DatatypeProperty
 - link individuals to data values, e.g., xsd:string.
 - Examples: :hasAge, :hasSurname.
- ② owl:ObjectProperty
 - link individuals to individuals.
 - Example: :hasFather, :driveAxle.
- owl:AnnotationProperty
 - has no logical implication, ignored by reasoners.
 - anything can be annotated.
 - Examples: rdfs:label, dc:creator.

Example: Universal Restrictions in OWL/RDF

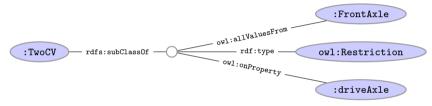
• $TwoCV \sqsubseteq \forall driveAxle.FrontAxle$

Example: Universal Restrictions in OWL/RDF

:driveAxle

Example: Universal Restrictions in OWL/RDF

• $TwoCV \sqsubseteq \forall driveAxle.FrontAxle$



• In Turtle syntax:

Example: Universal Restrictions in Other Formats

• $TwoCV \sqsubseteq \forall driveAxle.FrontAxle$

Example: Universal Restrictions in Other Formats

- $TwoCV \sqsubseteq \forall driveAxle.FrontAxle$
- In OWL/XML syntax:

```
<SubClassOf>

<Class URI=":TwoCV"/>

<ObjectAllValuesFrom>

<Class URI=":driveAxle"/>

<Class URI=":FrontAxle"/>

</ObjectAllValuesFrom>

</SubClassOf>
```

Example: Universal Restrictions in Other Formats

- $TwoCV \sqsubseteq \forall driveAxle.FrontAxle$
- In OWL/XML syntax:

```
<SubClassOf>

<Class URI=":TwoCV"/>

<ObjectAllValuesFrom>

<Class URI=":FrontAxle"/>

</ObjectAllValuesFrom>

</SubClassOf>
```

• In OWL Functional syntax:

SubClassOf(TwoCV ObjectAllValuesFrom(driveAxle FrontAxle))

• Used in Protégé for concept descriptions.

- Used in Protégé for concept descriptions.
- Also has a syntax for axioms, less used.

- Used in Protégé for concept descriptions.
- Also has a syntax for axioms, less used.
- Correspondence to DL constructs:

DL	Manchester
$C \sqcap D$	C and D
$C \sqcup D$	C or D
$\neg C$	not C
$\forall R.C$	R only C
$\exists R.C$	R some C

- Used in Protégé for concept descriptions.
- Also has a syntax for axioms, less used.
- Correspondence to DL constructs:

DL	Manchester
$C \sqcap D$	C and D
$C \sqcup D$	C or D
$\neg C$	not C
$\forall R.C$	R only C
$\exists R.C$	R some C

• Examples:

DL	Manchester
FrontAxle 🗆 RearAxle	FrontAxle or RearAxle
∀driveAxle.FrontAxle	driveAxle only FrontAxle
∃driveAxle.RearAxle	driveAxle some RearAxle

Demo: Using Protégé

- Create a Car class.
- Create an Axle class.
- Create FrontAxle and RearAxle as subclasses.
- Make the axle classes disjoint.
- Add a driveAxle object property.
- Add domain Car and range Axle.
- Add 2CV, subclass of Car.
- Add superclass driveAxle only FrontAxle.
- Add Lotus, subclass of Car.
- Add superclass driveAxle only RearAxle.
- Add LandRover, subclass of Car.
- Add superclass driveAxle some FrontAxle.
- Add superclass driveAxle some RearAxle.
- Add 4WD as subclass of Thing.
- Make equivalent to driveAxle some RearAxle and driveAxle some FrontAxle.
- Classify.
- Show inferred class hierarchy: Car \sqsupseteq 4WD \sqsupset LandRover.
- Tell story of 2CV Sahara, which is a 2CV with two motors, one front, one back.
- Add Sahara as subclass of 2CV.
- Add 4WD as superclass of Sahara.
- Classify.
- Show that Sahara is equivalent to bottom.
- Explain why. In particular, disjointness of front and rear axles.

• Protégé presents ontologies almost like an OO modelling tool.

- Protégé presents ontologies almost like an OO modelling tool.
- Everything can be mapped to DL axioms!

- Protégé presents ontologies almost like an OO modelling tool.
- Everything can be mapped to DL axioms!
- We have seen how domain and range become ex./univ. restrictions.

- Protégé presents ontologies almost like an OO modelling tool.
- Everything can be mapped to DL axioms!
- We have seen how domain and range become ex./univ. restrictions.
- C and D disjoint: $C \sqsubseteq \neg D$.

- Protégé presents ontologies almost like an OO modelling tool.
- Everything can be mapped to DL axioms!
- We have seen how domain and range become ex./univ. restrictions.
- C and D disjoint: $C \sqsubseteq \neg D$.
- Many ways of saying the same thing in OWL, more in Protégé.

- Protégé presents ontologies almost like an OO modelling tool.
- Everything can be mapped to DL axioms!
- We have seen how domain and range become ex./univ. restrictions.
- C and D disjoint: $C \sqsubseteq \neg D$.
- Many ways of saying the same thing in OWL, more in Protégé.
- Reasoning (e.g., Classification) maps everything to DL first.

• Can use usual Jena API to build OWL/RDF ontologies.

- Can use usual Jena API to build OWL/RDF ontologies.
- Cumbersome and error prone!

- Can use usual Jena API to build OWL/RDF ontologies.
- Cumbersome and error prone!
- Jena class OntModel provides convenience methods to create OWL/RDF ontologies, e.g.,

```
car.addSuperClass(r);
```

- Can use usual Jena API to build OWL/RDF ontologies.
- Cumbersome and error prone!
- \bullet Jena class <code>OntModel</code> provides convenience methods to create <code>OWL/RDF</code> ontologies, e.g.,

car.addSuperClass(r);

• Can be combined with inferencing mechanisms from lecture 7.

- Can use usual Jena API to build OWL/RDF ontologies.
- Cumbersome and error prone!
- Jena class OntModel provides convenience methods to create OWL/RDF ontologies, e.g.,

car.addSuperClass(r);

- Can be combined with inferencing mechanisms from lecture 7.
 - See class OntModelSpec.

• OWL in Jena means OWL expressed as RDF.

- OWL in Jena means OWL expressed as RDF.
- Still somewhat cumbersome, tied to OWL/RDF peculiarities.

- OWL in Jena means OWL expressed as RDF.
- Still somewhat cumbersome, tied to OWL/RDF peculiarities.
- For pure ontology programming, consider OWL API:

http://owlapi.sourceforge.net/

- OWL in Jena means OWL expressed as RDF.
- Still somewhat cumbersome, tied to OWL/RDF peculiarities.
- For pure ontology programming, consider OWL API:

http://owlapi.sourceforge.net/

• Works on the level of concept descriptions and axioms.

- OWL in Jena means OWL expressed as RDF.
- Still somewhat cumbersome, tied to OWL/RDF peculiarities.
- For pure ontology programming, consider OWL API:

http://owlapi.sourceforge.net/

- Works on the level of concept descriptions and axioms.
- Can parse and write all mentioned OWL formats, and then some.

More about OWL and OWL 2:

• Individuals:

- Individuals:
 - $\bullet = \mathsf{and} \neq \mathsf{, and}$

- Individuals:
 - \bullet = and \neq , and
 - for class and property definition.

- Individuals:
 - = and \neq , and
 - for class and property definition.
- Properties:

- Individuals:
 - = and \neq , and
 - for class and property definition.
- Properties:
 - cardinality,

- Individuals:
 - = and \neq , and
 - for class and property definition.
- Properties:
 - cardinality,
 - transitive, inverse, symmetric, functional properties, and

- Individuals:
 - $\bullet = \mathsf{and} \neq \mathsf{, and}$
 - for class and property definition.
- Properties:
 - cardinality,
 - transitive, inverse, symmetric, functional properties, and
 - property chains.

- Individuals:
 - $\bullet = \mathsf{and} \neq \mathsf{, and}$
 - for class and property definition.
- Properties:
 - cardinality,
 - transitive, inverse, symmetric, functional properties, and
 - property chains.
- Datatypes.

- Individuals:
 - $\bullet = \mathsf{and} \neq \mathsf{, and}$
 - for class and property definition.
- Properties:
 - cardinality,
 - transitive, inverse, symmetric, functional properties, and
 - property chains.
- Datatypes.
- Work through some modelling problems.