
INF3580/4580 – Semantic Technologies – Spring 2017
Lecture 11: OWL 2

Leif Harald Karlsen

27th March 2017

Department of
Informatics

University of
Oslo



Reminder: ALC

Outline

1 Reminder: ALC

2 Important assumptions

3 OWL 2
Axioms and assertions using individuals
Restrictions on roles
Modelling problems
Roles
Datatypes

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 2 / 38



Reminder: ALC

The ALC Description Logic

Vocabulary

Fix a set of atomic concepts {A1,A2, . . . }, roles {R1,R2, . . . } and individuals {a1, a2, . . . }.

ALC concept descriptions

C ,D → Ai | (atomic concept)
> | (universal concept)
⊥ | (bottom concept)
¬C | (negation)
C u D | (intersection)
C t D | (union)
∀Ri .C | (value restriction)
∃Ri .C | (existential restriction)

Axioms

C v D and C ≡ D for concept descriptions D and C .

C(a) and R(a, b) for concept description C , atomic role R and individuals a, b.

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 3 / 38



Reminder: ALC

The ALC Description Logic

Vocabulary

Fix a set of atomic concepts {A1,A2, . . . }, roles {R1,R2, . . . } and individuals {a1, a2, . . . }.

ALC concept descriptions

C ,D → Ai | (atomic concept)
> | (universal concept)
⊥ | (bottom concept)

¬C | (negation)
C u D | (intersection)
C t D | (union)
∀Ri .C | (value restriction)
∃Ri .C | (existential restriction)

Axioms

C v D and C ≡ D for concept descriptions D and C .

C(a) and R(a, b) for concept description C , atomic role R and individuals a, b.

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 3 / 38



Reminder: ALC

The ALC Description Logic

Vocabulary

Fix a set of atomic concepts {A1,A2, . . . }, roles {R1,R2, . . . } and individuals {a1, a2, . . . }.

ALC concept descriptions

C ,D → Ai | (atomic concept)
> | (universal concept)
⊥ | (bottom concept)
¬C | (negation)
C u D | (intersection)
C t D | (union)

∀Ri .C | (value restriction)
∃Ri .C | (existential restriction)

Axioms

C v D and C ≡ D for concept descriptions D and C .

C(a) and R(a, b) for concept description C , atomic role R and individuals a, b.

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 3 / 38



Reminder: ALC

The ALC Description Logic

Vocabulary

Fix a set of atomic concepts {A1,A2, . . . }, roles {R1,R2, . . . } and individuals {a1, a2, . . . }.

ALC concept descriptions

C ,D → Ai | (atomic concept)
> | (universal concept)
⊥ | (bottom concept)
¬C | (negation)
C u D | (intersection)
C t D | (union)
∀Ri .C | (value restriction)
∃Ri .C | (existential restriction)

Axioms

C v D and C ≡ D for concept descriptions D and C .

C(a) and R(a, b) for concept description C , atomic role R and individuals a, b.

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 3 / 38



Reminder: ALC

The ALC Description Logic

Vocabulary

Fix a set of atomic concepts {A1,A2, . . . }, roles {R1,R2, . . . } and individuals {a1, a2, . . . }.

ALC concept descriptions

C ,D → Ai | (atomic concept)
> | (universal concept)
⊥ | (bottom concept)
¬C | (negation)
C u D | (intersection)
C t D | (union)
∀Ri .C | (value restriction)
∃Ri .C | (existential restriction)

Axioms

C v D and C ≡ D for concept descriptions D and C .

C(a) and R(a, b) for concept description C , atomic role R and individuals a, b.

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 3 / 38



Reminder: ALC

ALC Semantics

Interpretation

An interpretation I fixes a set ∆I , the domain, AI ⊆ ∆I for each atomic concept A, RI ⊆ ∆I ×∆I for each role R,
and aI ∈ ∆I for each individual a.

Interpretation of concept descriptions

>I = ∆I

⊥I = ∅
(¬C)I = ∆I \ CI

(C u D)I = CI ∩ DI

(C t D)I = CI ∪ DI

(∀R.C)I = {a ∈ ∆I | for all b, if 〈a, b〉 ∈ RI then b ∈ CI}
(∃R.C)I = {a ∈ ∆I | there is a b where 〈a, b〉 ∈ RI and b ∈ CI}

Interpretation of Axioms

I |= C v D if CI ⊆ DI and I |= C ≡ D if CI = DI

I |= C(a) if aI ∈ CI and I |= R(a, b) if 〈aI , bI〉 ∈ RI .

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 4 / 38



Reminder: ALC

ALC Semantics

Interpretation

An interpretation I fixes a set ∆I , the domain, AI ⊆ ∆I for each atomic concept A, RI ⊆ ∆I ×∆I for each role R,
and aI ∈ ∆I for each individual a.

Interpretation of concept descriptions

>I = ∆I

⊥I = ∅

(¬C)I = ∆I \ CI

(C u D)I = CI ∩ DI

(C t D)I = CI ∪ DI

(∀R.C)I = {a ∈ ∆I | for all b, if 〈a, b〉 ∈ RI then b ∈ CI}
(∃R.C)I = {a ∈ ∆I | there is a b where 〈a, b〉 ∈ RI and b ∈ CI}

Interpretation of Axioms

I |= C v D if CI ⊆ DI and I |= C ≡ D if CI = DI

I |= C(a) if aI ∈ CI and I |= R(a, b) if 〈aI , bI〉 ∈ RI .

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 4 / 38



Reminder: ALC

ALC Semantics

Interpretation

An interpretation I fixes a set ∆I , the domain, AI ⊆ ∆I for each atomic concept A, RI ⊆ ∆I ×∆I for each role R,
and aI ∈ ∆I for each individual a.

Interpretation of concept descriptions

>I = ∆I

⊥I = ∅
(¬C)I = ∆I \ CI

(C u D)I = CI ∩ DI

(C t D)I = CI ∪ DI

(∀R.C)I = {a ∈ ∆I | for all b, if 〈a, b〉 ∈ RI then b ∈ CI}
(∃R.C)I = {a ∈ ∆I | there is a b where 〈a, b〉 ∈ RI and b ∈ CI}

Interpretation of Axioms

I |= C v D if CI ⊆ DI and I |= C ≡ D if CI = DI

I |= C(a) if aI ∈ CI and I |= R(a, b) if 〈aI , bI〉 ∈ RI .

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 4 / 38



Reminder: ALC

ALC Semantics

Interpretation

An interpretation I fixes a set ∆I , the domain, AI ⊆ ∆I for each atomic concept A, RI ⊆ ∆I ×∆I for each role R,
and aI ∈ ∆I for each individual a.

Interpretation of concept descriptions

>I = ∆I

⊥I = ∅
(¬C)I = ∆I \ CI

(C u D)I = CI ∩ DI

(C t D)I = CI ∪ DI

(∀R.C)I = {a ∈ ∆I | for all b, if 〈a, b〉 ∈ RI then b ∈ CI}
(∃R.C)I = {a ∈ ∆I | there is a b where 〈a, b〉 ∈ RI and b ∈ CI}

Interpretation of Axioms

I |= C v D if CI ⊆ DI and I |= C ≡ D if CI = DI

I |= C(a) if aI ∈ CI and I |= R(a, b) if 〈aI , bI〉 ∈ RI .

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 4 / 38



Reminder: ALC

ALC Semantics

Interpretation

An interpretation I fixes a set ∆I , the domain, AI ⊆ ∆I for each atomic concept A, RI ⊆ ∆I ×∆I for each role R,
and aI ∈ ∆I for each individual a.

Interpretation of concept descriptions

>I = ∆I

⊥I = ∅
(¬C)I = ∆I \ CI

(C u D)I = CI ∩ DI

(C t D)I = CI ∪ DI

(∀R.C)I = {a ∈ ∆I | for all b, if 〈a, b〉 ∈ RI then b ∈ CI}
(∃R.C)I = {a ∈ ∆I | there is a b where 〈a, b〉 ∈ RI and b ∈ CI}

Interpretation of Axioms

I |= C v D if CI ⊆ DI and I |= C ≡ D if CI = DI

I |= C(a) if aI ∈ CI and I |= R(a, b) if 〈aI , bI〉 ∈ RI .

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 4 / 38



Reminder: ALC

ALC Examples

Let K be the following set of axioms:

Penguin v Animal u ∀eats.Fish Fish v Animal

Penguin u Fish v ⊥ Animal v ∃eats.>
Penguin(a) eats(a, b)

Let I be an interpretation such that

∆I = >I = {tweety , terry , carl}, ⊥I = ∅, aI = tweety , bI = terry
PenguinI = {aI

} = {tweety}
eatsI = {〈aI , bI〉,

〈bI , carl〉}

= {〈tweety , terry〉, 〈terry , carl〉}

FishI = {bI

} = {terry}

AnimalI = {aI , bI} = {tweety , terry}

Now I � K.

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 5 / 38



Reminder: ALC

ALC Examples

Let K be the following set of axioms:

Penguin v Animal u ∀eats.Fish Fish v Animal

Penguin u Fish v ⊥ Animal v ∃eats.>
Penguin(a) eats(a, b)

Let I be an interpretation such that

∆I = >I = {tweety , terry , carl}, ⊥I = ∅, aI = tweety , bI = terry

PenguinI = {aI

} = {tweety}
eatsI = {〈aI , bI〉,

〈bI , carl〉}

= {〈tweety , terry〉, 〈terry , carl〉}

FishI = {bI

} = {terry}

AnimalI = {aI , bI} = {tweety , terry}

Now I � K.

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 5 / 38



Reminder: ALC

ALC Examples

Let K be the following set of axioms:

Penguin v Animal u ∀eats.Fish Fish v Animal

Penguin u Fish v ⊥ Animal v ∃eats.>
Penguin(a) eats(a, b)

Let I be an interpretation such that

∆I = >I = {tweety , terry , carl}, ⊥I = ∅, aI = tweety , bI = terry
PenguinI = {aI

} = {tweety}
eatsI = {〈aI , bI〉,

〈bI , carl〉}

= {〈tweety , terry〉, 〈terry , carl〉}

FishI = {bI

} = {terry}

AnimalI = {aI , bI} = {tweety , terry}

Now I � K.

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 5 / 38



Reminder: ALC

ALC Examples

Let K be the following set of axioms:

Penguin v Animal u ∀eats.Fish Fish v Animal

Penguin u Fish v ⊥ Animal v ∃eats.>
Penguin(a) eats(a, b)

Let I be an interpretation such that

∆I = >I = {tweety , terry , carl}, ⊥I = ∅, aI = tweety , bI = terry
PenguinI = {aI

} = {tweety}

eatsI = {〈aI , bI〉,

〈bI , carl〉}

= {〈tweety , terry〉, 〈terry , carl〉}

FishI = {bI

} = {terry}
AnimalI = {aI , bI} = {tweety , terry}

Now I � K.

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 5 / 38



Reminder: ALC

ALC Examples

Let K be the following set of axioms:

Penguin v Animal u ∀eats.Fish Fish v Animal

Penguin u Fish v ⊥ Animal v ∃eats.>
Penguin(a) eats(a, b)

Let I be an interpretation such that

∆I = >I = {tweety , terry , carl}, ⊥I = ∅, aI = tweety , bI = terry
PenguinI = {aI

} = {tweety}

eatsI = {〈aI , bI〉,

〈bI , carl〉}

= {〈tweety , terry〉, 〈terry , carl〉}

FishI = {bI

} = {terry}
AnimalI = {aI , bI} = {tweety , terry}

Now I � K.

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 5 / 38



Reminder: ALC

ALC Examples

Let K be the following set of axioms:

Penguin v Animal u ∀eats.Fish Fish v Animal

Penguin u Fish v ⊥ Animal v ∃eats.>
Penguin(a) eats(a, b)

Let I be an interpretation such that

∆I = >I = {tweety , terry , carl}, ⊥I = ∅, aI = tweety , bI = terry
PenguinI = {aI

} = {tweety}

eatsI = {〈aI , bI〉,

〈bI , carl〉}

= {〈tweety , terry〉, 〈terry , carl〉}

FishI = {bI

} = {terry}

AnimalI = {aI , bI

} = {tweety , terry}

Now I � K.

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 5 / 38



Reminder: ALC

ALC Examples

Let K be the following set of axioms:

Penguin v Animal u ∀eats.Fish Fish v Animal

Penguin u Fish v ⊥ Animal v ∃eats.>
Penguin(a) eats(a, b)

Let I be an interpretation such that

∆I = >I = {tweety , terry , carl}, ⊥I = ∅, aI = tweety , bI = terry
PenguinI = {aI

} = {tweety}

eatsI = {〈aI , bI〉,〈bI , carl〉}

= {〈tweety , terry〉, 〈terry , carl〉}

FishI = {bI

} = {terry}

AnimalI = {aI , bI

} = {tweety , terry}

Now I � K.

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 5 / 38



Reminder: ALC

ALC Examples

Let K be the following set of axioms:

Penguin v Animal u ∀eats.Fish Fish v Animal

Penguin u Fish v ⊥ Animal v ∃eats.>
Penguin(a) eats(a, b)

Let I be an interpretation such that

∆I = >I = {tweety , terry , carl}, ⊥I = ∅, aI = tweety , bI = terry
PenguinI = {aI

} = {tweety}

eatsI = {〈aI , bI〉,〈bI , carl〉} = {〈tweety , terry〉, 〈terry , carl〉}
FishI = {bI

} = {terry}

AnimalI = {aI , bI

} = {tweety , terry}

Now I � K.

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 5 / 38



Reminder: ALC

ALC Examples

Let K be the following set of axioms:

Penguin v Animal u ∀eats.Fish Fish v Animal

Penguin u Fish v ⊥ Animal v ∃eats.>
Penguin(a) eats(a, b)

Let I be an interpretation such that

∆I = >I = {tweety , terry , carl}, ⊥I = ∅, aI = tweety , bI = terry
PenguinI = {aI} = {tweety}
eatsI = {〈aI , bI〉,〈bI , carl〉} = {〈tweety , terry〉, 〈terry , carl〉}
FishI = {bI} = {terry}
AnimalI = {aI , bI

} = {tweety , terry}

Now I � K.

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 5 / 38



Reminder: ALC

ALC Examples

Let K be the following set of axioms:

Penguin v Animal u ∀eats.Fish Fish v Animal

Penguin u Fish v ⊥ Animal v ∃eats.>
Penguin(a) eats(a, b)

Let I be an interpretation such that

∆I = >I = {tweety , terry , carl}, ⊥I = ∅, aI = tweety , bI = terry
PenguinI = {aI} = {tweety}
eatsI = {〈aI , bI〉,〈bI , carl〉} = {〈tweety , terry〉, 〈terry , carl〉}
FishI = {bI} = {terry}
AnimalI = {aI , bI} = {tweety , terry}

Now I � K.

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 5 / 38



Reminder: ALC

ALC Examples

Let K be the following set of axioms:

Penguin v Animal u ∀eats.Fish Fish v Animal

Penguin u Fish v ⊥ Animal v ∃eats.>
Penguin(a) eats(a, b)

Let I be an interpretation such that

∆I = >I = {tweety , terry , carl}, ⊥I = ∅, aI = tweety , bI = terry
PenguinI = {aI} = {tweety}
eatsI = {〈aI , bI〉,〈bI , carl〉} = {〈tweety , terry〉, 〈terry , carl〉}
FishI = {bI} = {terry}
AnimalI = {aI , bI} = {tweety , terry}

Now I � K.

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 5 / 38



Reminder: ALC

ALC Examples

Let K be the following set of axioms:

Penguin v Animal u ∀eats.Fish Fish v Animal

Penguin u Fish v ⊥ Animal v ∃eats.>
Penguin(a) eats(a, b)

Let J be an interpretation such that

∆J = >J = {tweety}, ⊥J = ∅, aJ = tweety , bJ = tweety

AnimalJ = {aJ , bJ } = {tweety},
PenguinJ = {aJ } = {tweety},
FishJ = {bJ } = {tweety}
eatsJ = {〈aJ , bJ 〉, 〈bJ , aJ 〉} = {〈tweety , tweety〉}

Now J 2 K since J 2 Penguin u Fish v ⊥.

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 6 / 38



Reminder: ALC

ALC Examples

Let K be the following set of axioms:

Penguin v Animal u ∀eats.Fish Fish v Animal

Penguin u Fish v ⊥ Animal v ∃eats.>
Penguin(a) eats(a, b)

Let J be an interpretation such that

∆J = >J = {tweety}, ⊥J = ∅, aJ = tweety , bJ = tweety

AnimalJ = {aJ , bJ } = {tweety},
PenguinJ = {aJ } = {tweety},
FishJ = {bJ } = {tweety}
eatsJ = {〈aJ , bJ 〉, 〈bJ , aJ 〉} = {〈tweety , tweety〉}

Now J 2 K since J 2 Penguin u Fish v ⊥.

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 6 / 38



Reminder: ALC

ALC Examples

Let K be the following set of axioms:

Penguin v Animal u ∀eats.Fish Fish v Animal

Penguin u Fish v ⊥ Animal v ∃eats.>
Penguin(a) eats(a, b)

Let J be an interpretation such that

∆J = >J = {tweety}, ⊥J = ∅, aJ = tweety , bJ = tweety

AnimalJ = {aJ , bJ } = {tweety},
PenguinJ = {aJ } = {tweety},
FishJ = {bJ } = {tweety}
eatsJ = {〈aJ , bJ 〉, 〈bJ , aJ 〉} = {〈tweety , tweety〉}

Now J 2 K since J 2 Penguin u Fish v ⊥.
INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 6 / 38



Reminder: ALC

Modelling patterns

So, what can we say with ALC?

3 Every person has a mother.

3 Penguins eats only fish. Horses eats only chocolate.

7 Every nuclear family has two parents, at least two children and a dog.

3 No smoker is a non-smoker (and vice versa).

7 Everybody loves Mary.

7 Adam is not Eve (and vice versa).

3 Everything is black or white.

3 There is no such thing as a free lunch.

7 Brothers of fathers are uncles.

7 My friend’s friends are also my friends.

7 If Homer is married to Marge, then Marge is married to Homer.

7 If Homer is a parent of Bart, then Bart is a child of Homer.

Today we’ll learn how to say more.
INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 7 / 38



Important assumptions

Outline

1 Reminder: ALC

2 Important assumptions

3 OWL 2
Axioms and assertions using individuals
Restrictions on roles
Modelling problems
Roles
Datatypes

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 8 / 38



Important assumptions

World assumptions

Closed World Assumption (CWA)

Open World Assumption (OWA)

CWA:

Complete knowledge.

Any statement that is not known to be true is false. (∗)
Typical semantics for database systems.

OWA:

Potential incomplete knowledge.

(∗) does not hold.

Typical semantics for logic-based systems.

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 9 / 38



Important assumptions

Name assumptions

Unique name assumption (UNA)

Non-unique name assumption (NUNA)

Under any assumption, equal names (read: individual URIs, DB constants) always denote
the same “thing” (obviously).

E.g., cannot have aI 6= aI .

Under UNA, different names always denote different things.

E.g., aI 6= bI .
common in relational databases.

Under NUNA, different names need not denote different things.

Can have , aI = bI , or
dbpedia:OsloI = geo:34521I .

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 10 / 38



OWL 2

Outline

1 Reminder: ALC

2 Important assumptions

3 OWL 2
Axioms and assertions using individuals
Restrictions on roles
Modelling problems
Roles
Datatypes

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 11 / 38



OWL 2

SHOIN (D) and OWL 2

OWL 2 is based on the DL SHOIN (D):

S for ALC1 plus role transitivity,
H for roles hierarchies,
O for closed classes,
I for inverse roles,
N for cardinality restrictions, and
D for datatypes.

So, today we’ll see:

new concept and role builders,
new TBox axioms,
new ABox axioms,
new RBox axioms, and
datatypes.

1Attributive Concept Language with Complements
INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 12 / 38



OWL 2

SHOIN (D) and OWL 2

OWL 2 is based on the DL SHOIN (D):

S for ALC1 plus role transitivity,
H for roles hierarchies,
O for closed classes,
I for inverse roles,
N for cardinality restrictions, and
D for datatypes.

So, today we’ll see:

new concept and role builders,
new TBox axioms,
new ABox axioms,
new RBox axioms, and
datatypes.

1Attributive Concept Language with Complements
INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 12 / 38



OWL 2 Axioms and assertions using individuals

Individual identity

New ABox axioms.

Express equality and non-equality between individuals.

Syntax:
DL: a = b, a 6= b;
RDF/OWL: :a owl:sameAs :b, :a owl:differentFrom :b,
Manchester: SameAs, DifferentFrom.

Semantics:
I |= a = b iff aI = bI

I |= a 6= b iff aI 6= bI

Examples:
sim:Bart owl:sameAs dbpedia:Bart_Simpson,
sim:Bart owl:differentFrom sim:Homer.

Remember:
Non unique name assumption (NUNA) in Sem. Web,
must sometimes use = and 6= to get expected results.

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 13 / 38



OWL 2 Axioms and assertions using individuals

Individual identity

New ABox axioms.

Express equality and non-equality between individuals.
Syntax:

DL: a = b, a 6= b;
RDF/OWL: :a owl:sameAs :b, :a owl:differentFrom :b,
Manchester: SameAs, DifferentFrom.

Semantics:
I |= a = b iff aI = bI

I |= a 6= b iff aI 6= bI

Examples:
sim:Bart owl:sameAs dbpedia:Bart_Simpson,
sim:Bart owl:differentFrom sim:Homer.

Remember:
Non unique name assumption (NUNA) in Sem. Web,
must sometimes use = and 6= to get expected results.

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 13 / 38



OWL 2 Axioms and assertions using individuals

Individual identity

New ABox axioms.

Express equality and non-equality between individuals.
Syntax:

DL: a = b, a 6= b;
RDF/OWL: :a owl:sameAs :b, :a owl:differentFrom :b,
Manchester: SameAs, DifferentFrom.

Semantics:
I |= a = b iff aI = bI

I |= a 6= b iff aI 6= bI

Examples:
sim:Bart owl:sameAs dbpedia:Bart_Simpson,
sim:Bart owl:differentFrom sim:Homer.

Remember:
Non unique name assumption (NUNA) in Sem. Web,
must sometimes use = and 6= to get expected results.

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 13 / 38



OWL 2 Axioms and assertions using individuals

Individual identity

New ABox axioms.

Express equality and non-equality between individuals.
Syntax:

DL: a = b, a 6= b;
RDF/OWL: :a owl:sameAs :b, :a owl:differentFrom :b,
Manchester: SameAs, DifferentFrom.

Semantics:
I |= a = b iff aI = bI

I |= a 6= b iff aI 6= bI

Examples:
sim:Bart owl:sameAs dbpedia:Bart_Simpson,
sim:Bart owl:differentFrom sim:Homer.

Remember:
Non unique name assumption (NUNA) in Sem. Web,
must sometimes use = and 6= to get expected results.

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 13 / 38



OWL 2 Axioms and assertions using individuals

Individual identity

New ABox axioms.

Express equality and non-equality between individuals.
Syntax:

DL: a = b, a 6= b;
RDF/OWL: :a owl:sameAs :b, :a owl:differentFrom :b,
Manchester: SameAs, DifferentFrom.

Semantics:
I |= a = b iff aI = bI

I |= a 6= b iff aI 6= bI

Examples:
sim:Bart owl:sameAs dbpedia:Bart_Simpson,
sim:Bart owl:differentFrom sim:Homer.

Remember:
Non unique name assumption (NUNA) in Sem. Web,
must sometimes use = and 6= to get expected results.

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 13 / 38



OWL 2 Axioms and assertions using individuals

Creating concepts using individuals

New concept builder.

Create (anonymous) concepts by explicitly listing all members.

Called closed classes in OWL.

Syntax:
DL: {a, b, . . .}
RDF/OWL: owl:oneOf + rdf:List++
Manchester: {a, b, ...}

Example:
SimpsonFamily ≡ {Homer ,Marge,Bart, Lisa,Maggie}
:SimpsonFamily owl:equivalentClass [owl:oneOf (:Homer :Marge :Bart :Lisa :Maggie)] .

Note:
The individuals does not necessarily represent different objects,
we still need = and 6= to say that members are the same/different.
“Closed classes of data values” are datatypes.

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 14 / 38



OWL 2 Axioms and assertions using individuals

Creating concepts using individuals

New concept builder.

Create (anonymous) concepts by explicitly listing all members.

Called closed classes in OWL.

Syntax:
DL: {a, b, . . .}
RDF/OWL: owl:oneOf + rdf:List++
Manchester: {a, b, ...}

Example:
SimpsonFamily ≡ {Homer ,Marge,Bart, Lisa,Maggie}
:SimpsonFamily owl:equivalentClass [owl:oneOf (:Homer :Marge :Bart :Lisa :Maggie)] .

Note:
The individuals does not necessarily represent different objects,
we still need = and 6= to say that members are the same/different.
“Closed classes of data values” are datatypes.

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 14 / 38



OWL 2 Axioms and assertions using individuals

Creating concepts using individuals

New concept builder.

Create (anonymous) concepts by explicitly listing all members.

Called closed classes in OWL.

Syntax:
DL: {a, b, . . .}
RDF/OWL: owl:oneOf + rdf:List++
Manchester: {a, b, ...}

Example:
SimpsonFamily ≡ {Homer ,Marge,Bart, Lisa,Maggie}
:SimpsonFamily owl:equivalentClass [owl:oneOf (:Homer :Marge :Bart :Lisa :Maggie)] .

Note:
The individuals does not necessarily represent different objects,
we still need = and 6= to say that members are the same/different.
“Closed classes of data values” are datatypes.

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 14 / 38



OWL 2 Axioms and assertions using individuals

Creating concepts using individuals

New concept builder.

Create (anonymous) concepts by explicitly listing all members.

Called closed classes in OWL.

Syntax:
DL: {a, b, . . .}
RDF/OWL: owl:oneOf + rdf:List++
Manchester: {a, b, ...}

Example:
SimpsonFamily ≡ {Homer ,Marge,Bart, Lisa,Maggie}
:SimpsonFamily owl:equivalentClass [owl:oneOf (:Homer :Marge :Bart :Lisa :Maggie)] .

Note:
The individuals does not necessarily represent different objects,
we still need = and 6= to say that members are the same/different.
“Closed classes of data values” are datatypes.

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 14 / 38



OWL 2 Axioms and assertions using individuals

Creating concepts using individuals

New concept builder.

Create (anonymous) concepts by explicitly listing all members.

Called closed classes in OWL.

Syntax:
DL: {a, b, . . .}
RDF/OWL: owl:oneOf + rdf:List++
Manchester: {a, b, ...}

Example:
SimpsonFamily ≡ {Homer ,Marge,Bart, Lisa,Maggie}
:SimpsonFamily owl:equivalentClass [owl:oneOf (:Homer :Marge :Bart :Lisa :Maggie)] .

Note:
The individuals does not necessarily represent different objects,
we still need = and 6= to say that members are the same/different.
“Closed classes of data values” are datatypes.

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 14 / 38



OWL 2 Axioms and assertions using individuals

Creating concepts using individuals

New concept builder.

Create (anonymous) concepts by explicitly listing all members.

Called closed classes in OWL.

Syntax:
DL: {a, b, . . .}
RDF/OWL: owl:oneOf + rdf:List++
Manchester: {a, b, ...}

Example:
SimpsonFamily ≡ {Homer ,Marge,Bart, Lisa,Maggie}
:SimpsonFamily owl:equivalentClass [owl:oneOf (:Homer :Marge :Bart :Lisa :Maggie)] .

Note:
The individuals does not necessarily represent different objects,
we still need = and 6= to say that members are the same/different.
“Closed classes of data values” are datatypes.

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 14 / 38



OWL 2 Axioms and assertions using individuals

Axioms involving individuals: Negative Property Assertions

New ABox axiom.

Syntax:

DL: ¬R(a, b),
RDF/OWL: owl:NegativePropertyAssertion (Class of assertions/triples)
Manchester: a not R b.

Semantics:

I |= ¬R(a, b) iff 〈aI , bI〉 6∈ RI ,

Notes:

Works both for object properties and datatype properties.

Examples:

:Bart not :hasFather :NedFlanders

:Bart not :hasAge "2"^^xsd:int

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 15 / 38



OWL 2 Axioms and assertions using individuals

Axioms involving individuals: Negative Property Assertions

New ABox axiom.

Syntax:

DL: ¬R(a, b),
RDF/OWL: owl:NegativePropertyAssertion (Class of assertions/triples)
Manchester: a not R b.

Semantics:

I |= ¬R(a, b) iff 〈aI , bI〉 6∈ RI ,

Notes:

Works both for object properties and datatype properties.

Examples:

:Bart not :hasFather :NedFlanders

:Bart not :hasAge "2"^^xsd:int

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 15 / 38



OWL 2 Axioms and assertions using individuals

Axioms involving individuals: Negative Property Assertions

New ABox axiom.

Syntax:

DL: ¬R(a, b),
RDF/OWL: owl:NegativePropertyAssertion (Class of assertions/triples)
Manchester: a not R b.

Semantics:

I |= ¬R(a, b) iff 〈aI , bI〉 6∈ RI ,

Notes:

Works both for object properties and datatype properties.

Examples:

:Bart not :hasFather :NedFlanders

:Bart not :hasAge "2"^^xsd:int

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 15 / 38



OWL 2 Axioms and assertions using individuals

Axioms involving individuals: Negative Property Assertions

New ABox axiom.

Syntax:

DL: ¬R(a, b),
RDF/OWL: owl:NegativePropertyAssertion (Class of assertions/triples)
Manchester: a not R b.

Semantics:

I |= ¬R(a, b) iff 〈aI , bI〉 6∈ RI ,

Notes:

Works both for object properties and datatype properties.

Examples:

:Bart not :hasFather :NedFlanders

:Bart not :hasAge "2"^^xsd:int

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 15 / 38



OWL 2 Restrictions on roles

Recap of existential and universal restrictions

Existential restrictions

have the form ∃R.D,
typically used to connect classes,
C v ∃R.D: A C is R-related to (at least) some D:

Example: A person has a female parent: Person v ∃hasParent.Woman.

Note that C -objects can be R-related to other things:

A person may have other parents who are not women—but there must be one who’s a woman.

Universal restrictions

have the form ∀R.D,
restrict the things a type of object can be connected to,
C v ∀R.D : C is R-related to D’s only:

Example: A horse eats only chocolate: Horse v ∀eats.Chocolate.

Note that C -objects may not be R-related to anything at all:

A horse does not have to eat anything—but if it does it must be chocolate.

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 16 / 38



OWL 2 Restrictions on roles

Recap of existential and universal restrictions

Existential restrictions

have the form ∃R.D,
typically used to connect classes,
C v ∃R.D: A C is R-related to (at least) some D:

Example: A person has a female parent: Person v ∃hasParent.Woman.

Note that C -objects can be R-related to other things:

A person may have other parents who are not women—but there must be one who’s a woman.

Universal restrictions

have the form ∀R.D,
restrict the things a type of object can be connected to,
C v ∀R.D : C is R-related to D’s only:

Example: A horse eats only chocolate: Horse v ∀eats.Chocolate.

Note that C -objects may not be R-related to anything at all:

A horse does not have to eat anything—but if it does it must be chocolate.

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 16 / 38



OWL 2 Restrictions on roles

Cardinality restrictions

New concept builder.

Syntax:

DL: ≤n R.D and ≥n R.D (and =n R.D).
RDF/OWL: owl:minCardinality, owl:maxCardinality, owl:cardinality.
Manchester: min, max, exactly.

Semantics:

(≤n R.D)I = {a ∈ ∆I : |{b : 〈a, b〉 ∈ RI ∧ b ∈ DI}| ≤ n}
(≥n R.D)I = {a ∈ ∆I : |{b : 〈a, b〉 ∈ RI ∧ b ∈ DI}| ≥ n}

Restricts the number of relations a type of object can/must have.

TBox axioms read:
C v �nR.D: ”A C is R-related to n number of D’s.”

≤: at most
≥: at least
=: exactly

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 17 / 38



OWL 2 Restrictions on roles

Cardinality restrictions

New concept builder.

Syntax:

DL: ≤n R.D and ≥n R.D (and =n R.D).
RDF/OWL: owl:minCardinality, owl:maxCardinality, owl:cardinality.
Manchester: min, max, exactly.

Semantics:

(≤n R.D)I = {a ∈ ∆I : |{b : 〈a, b〉 ∈ RI ∧ b ∈ DI}| ≤ n}
(≥n R.D)I = {a ∈ ∆I : |{b : 〈a, b〉 ∈ RI ∧ b ∈ DI}| ≥ n}

Restricts the number of relations a type of object can/must have.

TBox axioms read:
C v �nR.D: ”A C is R-related to n number of D’s.”

≤: at most
≥: at least
=: exactly

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 17 / 38



OWL 2 Restrictions on roles

Cardinality restrictions

New concept builder.

Syntax:

DL: ≤n R.D and ≥n R.D (and =n R.D).
RDF/OWL: owl:minCardinality, owl:maxCardinality, owl:cardinality.
Manchester: min, max, exactly.

Semantics:

(≤n R.D)I = {a ∈ ∆I : |{b : 〈a, b〉 ∈ RI ∧ b ∈ DI}| ≤ n}
(≥n R.D)I = {a ∈ ∆I : |{b : 〈a, b〉 ∈ RI ∧ b ∈ DI}| ≥ n}

Restricts the number of relations a type of object can/must have.

TBox axioms read:
C v �nR.D: ”A C is R-related to n number of D’s.”

≤: at most
≥: at least
=: exactly

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 17 / 38



OWL 2 Restrictions on roles

Example cardinality restriction

Car v ≤2 driveAxle.>
“A car has at most two drive axles.”

RangeRover v =1 driveAxle.FrontAxle u =1 driveAxle.RearAxle

“A Range Rover has one front axle as drive axle and one rear axle as drive axle”.

Human v =2 hasBiologicalParent.>
“A human has two biological parents.”

Mammal v =1 hasParent.Female u =1 hasParent.Male

“A mammal has one parent that is a female and one parent that is a male.”

≥2 owns.Houses t ≥5 own.Car v Rich

“Everyone who owns more than two houses or five cars is rich.”

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 18 / 38



OWL 2 Restrictions on roles

Example cardinality restriction

Car v ≤2 driveAxle.>
“A car has at most two drive axles.”

RangeRover v =1 driveAxle.FrontAxle u =1 driveAxle.RearAxle

“A Range Rover has one front axle as drive axle and one rear axle as drive axle”.

Human v =2 hasBiologicalParent.>
“A human has two biological parents.”

Mammal v =1 hasParent.Female u =1 hasParent.Male

“A mammal has one parent that is a female and one parent that is a male.”

≥2 owns.Houses t ≥5 own.Car v Rich

“Everyone who owns more than two houses or five cars is rich.”

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 18 / 38



OWL 2 Restrictions on roles

Example cardinality restriction

Car v ≤2 driveAxle.>
“A car has at most two drive axles.”

RangeRover v =1 driveAxle.FrontAxle u =1 driveAxle.RearAxle

“A Range Rover has one front axle as drive axle and one rear axle as drive axle”.

Human v =2 hasBiologicalParent.>
“A human has two biological parents.”

Mammal v =1 hasParent.Female u =1 hasParent.Male

“A mammal has one parent that is a female and one parent that is a male.”

≥2 owns.Houses t ≥5 own.Car v Rich

“Everyone who owns more than two houses or five cars is rich.”

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 18 / 38



OWL 2 Restrictions on roles

Example cardinality restriction

Car v ≤2 driveAxle.>
“A car has at most two drive axles.”

RangeRover v =1 driveAxle.FrontAxle u =1 driveAxle.RearAxle

“A Range Rover has one front axle as drive axle and one rear axle as drive axle”.

Human v =2 hasBiologicalParent.>
“A human has two biological parents.”

Mammal v =1 hasParent.Female u =1 hasParent.Male

“A mammal has one parent that is a female and one parent that is a male.”

≥2 owns.Houses t ≥5 own.Car v Rich

“Everyone who owns more than two houses or five cars is rich.”

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 18 / 38



OWL 2 Restrictions on roles

Example cardinality restriction

Car v ≤2 driveAxle.>
“A car has at most two drive axles.”

RangeRover v =1 driveAxle.FrontAxle u =1 driveAxle.RearAxle

“A Range Rover has one front axle as drive axle and one rear axle as drive axle”.

Human v =2 hasBiologicalParent.>
“A human has two biological parents.”

Mammal v =1 hasParent.Female u =1 hasParent.Male

“A mammal has one parent that is a female and one parent that is a male.”

≥2 owns.Houses t ≥5 own.Car v Rich

“Everyone who owns more than two houses or five cars is rich.”

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 18 / 38



OWL 2 Restrictions on roles

One more value restriction

Restrictions of the form ∀R.D, ∃R.D, ≤n R.D, ≥n R.D are called qualified when D is not
>.

We can also qualify with a closed class.

Syntax:

RDF/OWL: hasValue,
DL, Manchester: just use: {. . .}.

Example:

Bieberette ≡ Girl u ∃loves.{J.Bieber}
> v ∃loves.{Mary}
Norwegian ≡ Person u ∃citizenOf .{Norway}

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 19 / 38



OWL 2 Restrictions on roles

One more value restriction

Restrictions of the form ∀R.D, ∃R.D, ≤n R.D, ≥n R.D are called qualified when D is not
>.

We can also qualify with a closed class.

Syntax:

RDF/OWL: hasValue,
DL, Manchester: just use: {. . .}.

Example:

Bieberette ≡ Girl u ∃loves.{J.Bieber}
> v ∃loves.{Mary}
Norwegian ≡ Person u ∃citizenOf .{Norway}

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 19 / 38



OWL 2 Restrictions on roles

One more value restriction

Restrictions of the form ∀R.D, ∃R.D, ≤n R.D, ≥n R.D are called qualified when D is not
>.

We can also qualify with a closed class.

Syntax:

RDF/OWL: hasValue,
DL, Manchester: just use: {. . .}.

Example:

Bieberette ≡ Girl u ∃loves.{J.Bieber}
> v ∃loves.{Mary}
Norwegian ≡ Person u ∃citizenOf .{Norway}

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 19 / 38



OWL 2 Restrictions on roles

Self restriction

New construct builder.

Local reflexivity restriction. Restricts to objects which are related to themselves.

Syntax:

DL: ∃R.Self
RDF/OWL: owl:hasSelf,
Manchester: Self

Semantics:

(∃R.Self )I = {x ∈ ∆I | 〈x , x〉 ∈ RI}
Examples:

AutoregulatingProcess v ∃regulate.Self
∃hasBoss.Self v SelfEmployed

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 20 / 38



OWL 2 Restrictions on roles

Self restriction

New construct builder.

Local reflexivity restriction. Restricts to objects which are related to themselves.

Syntax:

DL: ∃R.Self
RDF/OWL: owl:hasSelf,
Manchester: Self

Semantics:

(∃R.Self )I = {x ∈ ∆I | 〈x , x〉 ∈ RI}

Examples:

AutoregulatingProcess v ∃regulate.Self
∃hasBoss.Self v SelfEmployed

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 20 / 38



OWL 2 Restrictions on roles

Self restriction

New construct builder.

Local reflexivity restriction. Restricts to objects which are related to themselves.

Syntax:

DL: ∃R.Self
RDF/OWL: owl:hasSelf,
Manchester: Self

Semantics:

(∃R.Self )I = {x ∈ ∆I | 〈x , x〉 ∈ RI}
Examples:

AutoregulatingProcess v ∃regulate.Self
∃hasBoss.Self v SelfEmployed

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 20 / 38



OWL 2 Modelling problems

Restrictions, non-unique names and open worlds

>

Ensemble

ChamberEnsemble Orchestra

≤1 firstViolin

Restrictions + the OWA and the NUNA can be tricky, consider:

TBox:

Orchestra v Ensemble

ChamberEnsemble v Ensemble

ChamberEnsemble v ≤1 firstViolin.>

ABox:

Ensemble(oslo)

firstViolin(oslo, skolem)

firstViolin(oslo, lie)

Orchestras and Chamber ensembles are Ensembles.

Chamber ensembles have only one instrument on each voice,

in particular, only one first violin.

oslo has two first violins; is oslo an Orchestra?

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 21 / 38



OWL 2 Modelling problems

Restrictions, non-unique names and open worlds

>

Ensemble

ChamberEnsemble Orchestra

≤1 firstViolin

Restrictions + the OWA and the NUNA can be tricky, consider:

TBox:

Orchestra v Ensemble

ChamberEnsemble v Ensemble

ChamberEnsemble v ≤1 firstViolin.>
ABox:

Ensemble(oslo)

firstViolin(oslo, skolem)

firstViolin(oslo, lie)

Orchestras and Chamber ensembles are Ensembles.

Chamber ensembles have only one instrument on each voice,

in particular, only one first violin.

oslo has two first violins; is oslo an Orchestra?

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 21 / 38



OWL 2 Modelling problems

Restrictions, non-unique names and open worlds

>

Ensemble

ChamberEnsemble Orchestra

≤1 firstViolin

Restrictions + the OWA and the NUNA can be tricky, consider:

TBox:

Orchestra v Ensemble

ChamberEnsemble v Ensemble

ChamberEnsemble v ≤1 firstViolin.>
ABox:

Ensemble(oslo)

firstViolin(oslo, skolem)

firstViolin(oslo, lie)

Orchestras and Chamber ensembles are Ensembles.

Chamber ensembles have only one instrument on each voice,

in particular, only one first violin.

oslo has two first violins; is oslo an Orchestra?

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 21 / 38



OWL 2 Modelling problems

Restrictions, non-unique names and open worlds

>

Ensemble

ChamberEnsemble Orchestra

≤1 firstViolin

Restrictions + the OWA and the NUNA can be tricky, consider:

TBox:

Orchestra v Ensemble

ChamberEnsemble v Ensemble

ChamberEnsemble v ≤1 firstViolin.>
ABox:

Ensemble(oslo)

firstViolin(oslo, skolem)

firstViolin(oslo, lie)

Orchestras and Chamber ensembles are Ensembles.

Chamber ensembles have only one instrument on each voice,

in particular, only one first violin.

oslo has two first violins; is oslo an Orchestra?

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 21 / 38



OWL 2 Modelling problems

Unexpected (non-)results

It does not follow from TBox + ABox that oslo is an Orchestra:

An ensemble need neither be an orchestra nor a chamber ensemble, its “just” an
ensemble.
Add “covering axiom” Ensemble v Orchestra t ChamberEnsemble:

An ensemble is an orchestra or a chamber ensemble.

It still does not follow that oslo is an Orchestra:

This is due to the NUNA.

We cannot assume that skolem and lie are distinct.

The statement skolem owl:differentFrom lie, i.e., skolem 6= lie, makes oslo an
orchestra.

If we remove firstViolin(oslo, lie), is oslo a ChamberEnsemble?

it does not follow that oslo is a ChamberEnsemble.

This is due to the OWA:

oslo may have other first violinists.

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 22 / 38



OWL 2 Modelling problems

Unexpected (non-)results

It does not follow from TBox + ABox that oslo is an Orchestra:

An ensemble need neither be an orchestra nor a chamber ensemble, its “just” an
ensemble.
Add “covering axiom” Ensemble v Orchestra t ChamberEnsemble:

An ensemble is an orchestra or a chamber ensemble.

It still does not follow that oslo is an Orchestra:

This is due to the NUNA.

We cannot assume that skolem and lie are distinct.

The statement skolem owl:differentFrom lie, i.e., skolem 6= lie, makes oslo an
orchestra.

If we remove firstViolin(oslo, lie), is oslo a ChamberEnsemble?

it does not follow that oslo is a ChamberEnsemble.

This is due to the OWA:

oslo may have other first violinists.

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 22 / 38



OWL 2 Modelling problems

Unexpected (non-)results

It does not follow from TBox + ABox that oslo is an Orchestra:

An ensemble need neither be an orchestra nor a chamber ensemble, its “just” an
ensemble.
Add “covering axiom” Ensemble v Orchestra t ChamberEnsemble:

An ensemble is an orchestra or a chamber ensemble.

It still does not follow that oslo is an Orchestra:

This is due to the NUNA.

We cannot assume that skolem and lie are distinct.

The statement skolem owl:differentFrom lie, i.e., skolem 6= lie, makes oslo an
orchestra.

If we remove firstViolin(oslo, lie), is oslo a ChamberEnsemble?

it does not follow that oslo is a ChamberEnsemble.

This is due to the OWA:

oslo may have other first violinists.

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 22 / 38



OWL 2 Modelling problems

Unexpected (non-)results

It does not follow from TBox + ABox that oslo is an Orchestra:

An ensemble need neither be an orchestra nor a chamber ensemble, its “just” an
ensemble.
Add “covering axiom” Ensemble v Orchestra t ChamberEnsemble:

An ensemble is an orchestra or a chamber ensemble.

It still does not follow that oslo is an Orchestra:

This is due to the NUNA.

We cannot assume that skolem and lie are distinct.

The statement skolem owl:differentFrom lie, i.e., skolem 6= lie, makes oslo an
orchestra.

If we remove firstViolin(oslo, lie), is oslo a ChamberEnsemble?

it does not follow that oslo is a ChamberEnsemble.

This is due to the OWA:

oslo may have other first violinists.
INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 22 / 38



OWL 2 Modelling problems

Protégé demo of previous slide

Make class Ensemble.

Make subclass Orchestra.

Make subclass ChamberEnsemble.

Make object property firstViolin.

Make firstViolin max 1 superclass of ChamberEnsemble.

Make an Ensemble oslo

Make a Thing skolem

Make a Thing lie

Add firstViolin skolem to oslo

Add firstViolin lie to oslo

Classify! Nothing happens.

Add covering axiom: Orchestra or ChamberEnsemble superclass of Ensemble.

Classify! Nothing happens.

skolem is different from lie

Classify! Bingo! oslo is an Orchestra!

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 23 / 38



OWL 2 Roles

Role characteristics and relationships (RBox)

Vocabulary

Given the roles {R1,R2, . . . }

Role descriptions

R,S → Ri | (atomic role)
>role | (universal role)
⊥role | (bottom role)
¬R | (complement role)
R− | (inverse role)
R u S | (role intersection)
R ◦ S | (role chain)

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 24 / 38



OWL 2 Roles

Role characteristics and relationships (RBox)

Vocabulary

Given the roles {R1,R2, . . . }

Role descriptions

R, S → Ri | (atomic role)
>role | (universal role)
⊥role | (bottom role)

¬R | (complement role)
R− | (inverse role)
R u S | (role intersection)
R ◦ S | (role chain)

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 24 / 38



OWL 2 Roles

Role characteristics and relationships (RBox)

Vocabulary

Given the roles {R1,R2, . . . }

Role descriptions

R, S → Ri | (atomic role)
>role | (universal role)
⊥role | (bottom role)
¬R | (complement role)
R− | (inverse role)
R u S | (role intersection)
R ◦ S | (role chain)

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 24 / 38



OWL 2 Roles

Rbox (cont.)

Role axioms: Let R and S be roles, then we can assert

subsumption: R v S (RI ⊆ SI),
equivalence: R ≡ S (RI = SI),
disjointness: R u S v ⊥role (RI ∩ SI ⊆ ∅),
key: R is a key for concept C .

A role can have the characteristics (axioms):

reflexive, irreflexive,
symmetric, asymmetric,
transitive, or/and2

functional, inverse functional.

2Restrictions apply
INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 25 / 38



OWL 2 Roles

Rbox (cont.)

Role axioms: Let R and S be roles, then we can assert

subsumption: R v S (RI ⊆ SI),
equivalence: R ≡ S (RI = SI),
disjointness: R u S v ⊥role (RI ∩ SI ⊆ ∅),
key: R is a key for concept C .

A role can have the characteristics (axioms):

reflexive, irreflexive,
symmetric, asymmetric,
transitive, or/and2

functional, inverse functional.

2Restrictions apply
INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 25 / 38



OWL 2 Roles

New roles

The universal role, and the empty role—for both object roles and data roles.

Syntax:

(DL: U (universal object role), D (universal data value role))
RDF/OWL, Manchester: owl:topObjectProperty, owl:topDataProperty,
owl:bottomObjectProperty, owl:bottomDataProperty

Semantics:

UI = ∆I ×∆I

DI = ∆I × Λ

Reads:

all pairs of individuals are connected by owl:topObjectProperty,
no individuals are connected by owl:bottomObjectProperty.
all possible individuals are connected with all literals by owl:topDataProperty,
no individual is connected by owl:bottomDataProperty to a literal.

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 26 / 38



OWL 2 Roles

New roles

The universal role, and the empty role—for both object roles and data roles.

Syntax:

(DL: U (universal object role), D (universal data value role))
RDF/OWL, Manchester: owl:topObjectProperty, owl:topDataProperty,
owl:bottomObjectProperty, owl:bottomDataProperty

Semantics:

UI = ∆I ×∆I

DI = ∆I × Λ

Reads:

all pairs of individuals are connected by owl:topObjectProperty,
no individuals are connected by owl:bottomObjectProperty.
all possible individuals are connected with all literals by owl:topDataProperty,
no individual is connected by owl:bottomDataProperty to a literal.

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 26 / 38



OWL 2 Roles

New roles

The universal role, and the empty role—for both object roles and data roles.

Syntax:

(DL: U (universal object role), D (universal data value role))
RDF/OWL, Manchester: owl:topObjectProperty, owl:topDataProperty,
owl:bottomObjectProperty, owl:bottomDataProperty

Semantics:

UI = ∆I ×∆I

DI = ∆I × Λ

Reads:

all pairs of individuals are connected by owl:topObjectProperty,
no individuals are connected by owl:bottomObjectProperty.
all possible individuals are connected with all literals by owl:topDataProperty,
no individual is connected by owl:bottomDataProperty to a literal.

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 26 / 38



OWL 2 Roles

Corresponding mathematical properties and operations

If R and S are binary relations on X then

(R−)I = {〈aI , bI〉 | 〈bI , aI〉 ∈ RI}

(R ◦ S)I = {〈aI , cI〉 | 〈aI , bI〉 ∈ RI , 〈bI , cI〉 ∈ SI}

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 27 / 38



OWL 2 Roles

Corresponding mathematical properties and operations

If R and S are binary relations on X then

(R−)I = {〈aI , bI〉 | 〈bI , aI〉 ∈ RI}
(R ◦ S)I = {〈aI , cI〉 | 〈aI , bI〉 ∈ RI , 〈bI , cI〉 ∈ SI}

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 27 / 38



OWL 2 Roles

Role chaining and inverses illustrated

R S

R ◦ S

T T−

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 28 / 38



OWL 2 Roles

Role chaining and inverses illustrated

R S R ◦ S

T T−

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 28 / 38



OWL 2 Roles

Role chaining and inverses illustrated

R S R ◦ S

T

T−

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 28 / 38



OWL 2 Roles

Role chaining and inverses illustrated

R S R ◦ S

T T−

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 28 / 38



OWL 2 Roles

Common properties of roles

A relation R over a set X (R ⊆ X × X ) is

Reflexive: if 〈a, a〉 ∈ R for all a ∈ X (X v ∃R.Self )

Irreflexive: if 〈a, a〉 6∈ R for all a ∈ X (X v ¬∃R.Self )
Symmetric: if 〈a, b〉 ∈ R implies 〈b, a〉 ∈ R (R− v R)
Asymmetric: if 〈a, b〉 ∈ R implies 〈b, a〉 /∈ R (R− v ¬R)
Transitive: if 〈a, b〉, 〈b, c〉 ∈ R implies 〈a, c〉 ∈ R (R ◦ R v R)
Functional: if 〈a, b〉, 〈a, c〉 ∈ R implies b = c (> v ≤1 R.>)
Inverse functional: if 〈a, b〉, 〈c , b〉 ∈ R implies a = c (> v ≤1 R−.>)

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 29 / 38



OWL 2 Roles

Common properties of roles

A relation R over a set X (R ⊆ X × X ) is

Reflexive: if 〈a, a〉 ∈ R for all a ∈ X (X v ∃R.Self )
Irreflexive: if 〈a, a〉 6∈ R for all a ∈ X (X v ¬∃R.Self )

Symmetric: if 〈a, b〉 ∈ R implies 〈b, a〉 ∈ R (R− v R)
Asymmetric: if 〈a, b〉 ∈ R implies 〈b, a〉 /∈ R (R− v ¬R)
Transitive: if 〈a, b〉, 〈b, c〉 ∈ R implies 〈a, c〉 ∈ R (R ◦ R v R)
Functional: if 〈a, b〉, 〈a, c〉 ∈ R implies b = c (> v ≤1 R.>)
Inverse functional: if 〈a, b〉, 〈c , b〉 ∈ R implies a = c (> v ≤1 R−.>)

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 29 / 38



OWL 2 Roles

Common properties of roles

A relation R over a set X (R ⊆ X × X ) is

Reflexive: if 〈a, a〉 ∈ R for all a ∈ X (X v ∃R.Self )
Irreflexive: if 〈a, a〉 6∈ R for all a ∈ X (X v ¬∃R.Self )
Symmetric: if 〈a, b〉 ∈ R implies 〈b, a〉 ∈ R (R− v R)

Asymmetric: if 〈a, b〉 ∈ R implies 〈b, a〉 /∈ R (R− v ¬R)
Transitive: if 〈a, b〉, 〈b, c〉 ∈ R implies 〈a, c〉 ∈ R (R ◦ R v R)
Functional: if 〈a, b〉, 〈a, c〉 ∈ R implies b = c (> v ≤1 R.>)
Inverse functional: if 〈a, b〉, 〈c , b〉 ∈ R implies a = c (> v ≤1 R−.>)

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 29 / 38



OWL 2 Roles

Common properties of roles

A relation R over a set X (R ⊆ X × X ) is

Reflexive: if 〈a, a〉 ∈ R for all a ∈ X (X v ∃R.Self )
Irreflexive: if 〈a, a〉 6∈ R for all a ∈ X (X v ¬∃R.Self )
Symmetric: if 〈a, b〉 ∈ R implies 〈b, a〉 ∈ R (R− v R)
Asymmetric: if 〈a, b〉 ∈ R implies 〈b, a〉 /∈ R (R− v ¬R)

Transitive: if 〈a, b〉, 〈b, c〉 ∈ R implies 〈a, c〉 ∈ R (R ◦ R v R)
Functional: if 〈a, b〉, 〈a, c〉 ∈ R implies b = c (> v ≤1 R.>)
Inverse functional: if 〈a, b〉, 〈c , b〉 ∈ R implies a = c (> v ≤1 R−.>)

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 29 / 38



OWL 2 Roles

Common properties of roles

A relation R over a set X (R ⊆ X × X ) is

Reflexive: if 〈a, a〉 ∈ R for all a ∈ X (X v ∃R.Self )
Irreflexive: if 〈a, a〉 6∈ R for all a ∈ X (X v ¬∃R.Self )
Symmetric: if 〈a, b〉 ∈ R implies 〈b, a〉 ∈ R (R− v R)
Asymmetric: if 〈a, b〉 ∈ R implies 〈b, a〉 /∈ R (R− v ¬R)
Transitive: if 〈a, b〉, 〈b, c〉 ∈ R implies 〈a, c〉 ∈ R (R ◦ R v R)

Functional: if 〈a, b〉, 〈a, c〉 ∈ R implies b = c (> v ≤1 R.>)
Inverse functional: if 〈a, b〉, 〈c , b〉 ∈ R implies a = c (> v ≤1 R−.>)

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 29 / 38



OWL 2 Roles

Common properties of roles

A relation R over a set X (R ⊆ X × X ) is

Reflexive: if 〈a, a〉 ∈ R for all a ∈ X (X v ∃R.Self )
Irreflexive: if 〈a, a〉 6∈ R for all a ∈ X (X v ¬∃R.Self )
Symmetric: if 〈a, b〉 ∈ R implies 〈b, a〉 ∈ R (R− v R)
Asymmetric: if 〈a, b〉 ∈ R implies 〈b, a〉 /∈ R (R− v ¬R)
Transitive: if 〈a, b〉, 〈b, c〉 ∈ R implies 〈a, c〉 ∈ R (R ◦ R v R)
Functional: if 〈a, b〉, 〈a, c〉 ∈ R implies b = c (> v ≤1 R.>)

Inverse functional: if 〈a, b〉, 〈c , b〉 ∈ R implies a = c (> v ≤1 R−.>)

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 29 / 38



OWL 2 Roles

Common properties of roles

A relation R over a set X (R ⊆ X × X ) is

Reflexive: if 〈a, a〉 ∈ R for all a ∈ X (X v ∃R.Self )
Irreflexive: if 〈a, a〉 6∈ R for all a ∈ X (X v ¬∃R.Self )
Symmetric: if 〈a, b〉 ∈ R implies 〈b, a〉 ∈ R (R− v R)
Asymmetric: if 〈a, b〉 ∈ R implies 〈b, a〉 /∈ R (R− v ¬R)
Transitive: if 〈a, b〉, 〈b, c〉 ∈ R implies 〈a, c〉 ∈ R (R ◦ R v R)
Functional: if 〈a, b〉, 〈a, c〉 ∈ R implies b = c (> v ≤1 R.>)
Inverse functional: if 〈a, b〉, 〈c , b〉 ∈ R implies a = c (> v ≤1 R−.>)

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 29 / 38



OWL 2 Roles

Properties in OWL

Remember: three kinds of mutually disjoint properties in OWL:
1 owl:DatatypeProperty

link individuals to data values, e.g., xsd:string.
Examples: :hasAge, :hasSurname.

2 owl:ObjectProperty

link individuals to individuals.
Example: :hasFather, :driveAxle.

3 owl:AnnotationProperty

has no logical implication, ignored by reasoners.
Examples: rdfs:label, dc:creator.

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 30 / 38



OWL 2 Roles

Characteristics of OWL properties

Object properties link individuals to individuals, so all characteristics and operations are
defined for them.

Datatype properties link individuals to data values, so they cannot be

reflexive—or they would not be datatype properties,
transitive—since no property takes data values in 1. position,
symmetric—as above,
inverses—as above,
inverse functional—for computational reasons,
part of chains—as above,
so, what remains is: functionality,
(and subsumption, equivalence and disjointness).

(Annotation properties have no logical implication, so nothing can be said about them.)

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 31 / 38



OWL 2 Roles

Characteristics of OWL properties

Object properties link individuals to individuals, so all characteristics and operations are
defined for them.

Datatype properties link individuals to data values, so they cannot be

reflexive—or they would not be datatype properties,

transitive—since no property takes data values in 1. position,
symmetric—as above,
inverses—as above,
inverse functional—for computational reasons,
part of chains—as above,
so, what remains is: functionality,
(and subsumption, equivalence and disjointness).

(Annotation properties have no logical implication, so nothing can be said about them.)

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 31 / 38



OWL 2 Roles

Characteristics of OWL properties

Object properties link individuals to individuals, so all characteristics and operations are
defined for them.

Datatype properties link individuals to data values, so they cannot be

reflexive—or they would not be datatype properties,
transitive—since no property takes data values in 1. position,

symmetric—as above,
inverses—as above,
inverse functional—for computational reasons,
part of chains—as above,
so, what remains is: functionality,
(and subsumption, equivalence and disjointness).

(Annotation properties have no logical implication, so nothing can be said about them.)

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 31 / 38



OWL 2 Roles

Characteristics of OWL properties

Object properties link individuals to individuals, so all characteristics and operations are
defined for them.

Datatype properties link individuals to data values, so they cannot be

reflexive—or they would not be datatype properties,
transitive—since no property takes data values in 1. position,
symmetric—as above,

inverses—as above,
inverse functional—for computational reasons,
part of chains—as above,
so, what remains is: functionality,
(and subsumption, equivalence and disjointness).

(Annotation properties have no logical implication, so nothing can be said about them.)

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 31 / 38



OWL 2 Roles

Characteristics of OWL properties

Object properties link individuals to individuals, so all characteristics and operations are
defined for them.

Datatype properties link individuals to data values, so they cannot be

reflexive—or they would not be datatype properties,
transitive—since no property takes data values in 1. position,
symmetric—as above,
inverses—as above,

inverse functional—for computational reasons,
part of chains—as above,
so, what remains is: functionality,
(and subsumption, equivalence and disjointness).

(Annotation properties have no logical implication, so nothing can be said about them.)

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 31 / 38



OWL 2 Roles

Characteristics of OWL properties

Object properties link individuals to individuals, so all characteristics and operations are
defined for them.

Datatype properties link individuals to data values, so they cannot be

reflexive—or they would not be datatype properties,
transitive—since no property takes data values in 1. position,
symmetric—as above,
inverses—as above,
inverse functional—for computational reasons,

part of chains—as above,
so, what remains is: functionality,
(and subsumption, equivalence and disjointness).

(Annotation properties have no logical implication, so nothing can be said about them.)

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 31 / 38



OWL 2 Roles

Characteristics of OWL properties

Object properties link individuals to individuals, so all characteristics and operations are
defined for them.

Datatype properties link individuals to data values, so they cannot be

reflexive—or they would not be datatype properties,
transitive—since no property takes data values in 1. position,
symmetric—as above,
inverses—as above,
inverse functional—for computational reasons,
part of chains—as above,

so, what remains is: functionality,
(and subsumption, equivalence and disjointness).

(Annotation properties have no logical implication, so nothing can be said about them.)

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 31 / 38



OWL 2 Roles

Characteristics of OWL properties

Object properties link individuals to individuals, so all characteristics and operations are
defined for them.

Datatype properties link individuals to data values, so they cannot be

reflexive—or they would not be datatype properties,
transitive—since no property takes data values in 1. position,
symmetric—as above,
inverses—as above,
inverse functional—for computational reasons,
part of chains—as above,
so, what remains is: functionality,

(and subsumption, equivalence and disjointness).

(Annotation properties have no logical implication, so nothing can be said about them.)

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 31 / 38



OWL 2 Roles

Characteristics of OWL properties

Object properties link individuals to individuals, so all characteristics and operations are
defined for them.

Datatype properties link individuals to data values, so they cannot be

reflexive—or they would not be datatype properties,
transitive—since no property takes data values in 1. position,
symmetric—as above,
inverses—as above,
inverse functional—for computational reasons,
part of chains—as above,
so, what remains is: functionality,
(and subsumption, equivalence and disjointness).

(Annotation properties have no logical implication, so nothing can be said about them.)

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 31 / 38



OWL 2 Roles

Characteristics of OWL properties

Object properties link individuals to individuals, so all characteristics and operations are
defined for them.

Datatype properties link individuals to data values, so they cannot be

reflexive—or they would not be datatype properties,
transitive—since no property takes data values in 1. position,
symmetric—as above,
inverses—as above,
inverse functional—for computational reasons,
part of chains—as above,
so, what remains is: functionality,
(and subsumption, equivalence and disjointness).

(Annotation properties have no logical implication, so nothing can be said about them.)

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 31 / 38



OWL 2 Roles

Characteristics of OWL properties

Object properties link individuals to individuals, so all characteristics and operations are
defined for them.

Datatype properties link individuals to data values, so they cannot be

reflexive—or they would not be datatype properties,
transitive—since no property takes data values in 1. position,
symmetric—as above,
inverses—as above,
inverse functional—for computational reasons,
part of chains—as above,
so, what remains is: functionality,
(and subsumption, equivalence and disjointness).

(Annotation properties have no logical implication, so nothing can be said about them.)

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 31 / 38



OWL 2 Roles

Some relations from ordinary language

Symmetric relations:

hasSibling
differentFrom

Non-symmetric relations:

hasBrother

Asymmetric relations:

olderThan
memberOf

Transitive relations:

olderThan
hasSibling

Functional relations:

hasBiologicalMother

Inverse functional relations:

gaveBirthTo

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 32 / 38



OWL 2 Roles

Some relations from ordinary language

Symmetric relations:
hasSibling

differentFrom

Non-symmetric relations:

hasBrother

Asymmetric relations:

olderThan
memberOf

Transitive relations:

olderThan
hasSibling

Functional relations:

hasBiologicalMother

Inverse functional relations:

gaveBirthTo

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 32 / 38



OWL 2 Roles

Some relations from ordinary language

Symmetric relations:
hasSibling
differentFrom

Non-symmetric relations:

hasBrother

Asymmetric relations:

olderThan
memberOf

Transitive relations:

olderThan
hasSibling

Functional relations:

hasBiologicalMother

Inverse functional relations:

gaveBirthTo

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 32 / 38



OWL 2 Roles

Some relations from ordinary language

Symmetric relations:
hasSibling
differentFrom

Non-symmetric relations:

hasBrother

Asymmetric relations:

olderThan
memberOf

Transitive relations:

olderThan
hasSibling

Functional relations:

hasBiologicalMother

Inverse functional relations:

gaveBirthTo

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 32 / 38



OWL 2 Roles

Some relations from ordinary language

Symmetric relations:
hasSibling
differentFrom

Non-symmetric relations:
hasBrother

Asymmetric relations:

olderThan
memberOf

Transitive relations:

olderThan
hasSibling

Functional relations:

hasBiologicalMother

Inverse functional relations:

gaveBirthTo

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 32 / 38



OWL 2 Roles

Some relations from ordinary language

Symmetric relations:
hasSibling
differentFrom

Non-symmetric relations:
hasBrother

Asymmetric relations:

olderThan
memberOf

Transitive relations:

olderThan
hasSibling

Functional relations:

hasBiologicalMother

Inverse functional relations:

gaveBirthTo

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 32 / 38



OWL 2 Roles

Some relations from ordinary language

Symmetric relations:
hasSibling
differentFrom

Non-symmetric relations:
hasBrother

Asymmetric relations:
olderThan

memberOf

Transitive relations:

olderThan
hasSibling

Functional relations:

hasBiologicalMother

Inverse functional relations:

gaveBirthTo

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 32 / 38



OWL 2 Roles

Some relations from ordinary language

Symmetric relations:
hasSibling
differentFrom

Non-symmetric relations:
hasBrother

Asymmetric relations:
olderThan
memberOf

Transitive relations:

olderThan
hasSibling

Functional relations:

hasBiologicalMother

Inverse functional relations:

gaveBirthTo

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 32 / 38



OWL 2 Roles

Some relations from ordinary language

Symmetric relations:
hasSibling
differentFrom

Non-symmetric relations:
hasBrother

Asymmetric relations:
olderThan
memberOf

Transitive relations:

olderThan
hasSibling

Functional relations:

hasBiologicalMother

Inverse functional relations:

gaveBirthTo

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 32 / 38



OWL 2 Roles

Some relations from ordinary language

Symmetric relations:
hasSibling
differentFrom

Non-symmetric relations:
hasBrother

Asymmetric relations:
olderThan
memberOf

Transitive relations:
olderThan

hasSibling

Functional relations:

hasBiologicalMother

Inverse functional relations:

gaveBirthTo

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 32 / 38



OWL 2 Roles

Some relations from ordinary language

Symmetric relations:
hasSibling
differentFrom

Non-symmetric relations:
hasBrother

Asymmetric relations:
olderThan
memberOf

Transitive relations:
olderThan
hasSibling

Functional relations:

hasBiologicalMother

Inverse functional relations:

gaveBirthTo

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 32 / 38



OWL 2 Roles

Some relations from ordinary language

Symmetric relations:
hasSibling
differentFrom

Non-symmetric relations:
hasBrother

Asymmetric relations:
olderThan
memberOf

Transitive relations:
olderThan
hasSibling

Functional relations:

hasBiologicalMother

Inverse functional relations:

gaveBirthTo

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 32 / 38



OWL 2 Roles

Some relations from ordinary language

Symmetric relations:
hasSibling
differentFrom

Non-symmetric relations:
hasBrother

Asymmetric relations:
olderThan
memberOf

Transitive relations:
olderThan
hasSibling

Functional relations:
hasBiologicalMother

Inverse functional relations:

gaveBirthTo

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 32 / 38



OWL 2 Roles

Some relations from ordinary language

Symmetric relations:
hasSibling
differentFrom

Non-symmetric relations:
hasBrother

Asymmetric relations:
olderThan
memberOf

Transitive relations:
olderThan
hasSibling

Functional relations:
hasBiologicalMother

Inverse functional relations:

gaveBirthTo

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 32 / 38



OWL 2 Roles

Some relations from ordinary language

Symmetric relations:
hasSibling
differentFrom

Non-symmetric relations:
hasBrother

Asymmetric relations:
olderThan
memberOf

Transitive relations:
olderThan
hasSibling

Functional relations:
hasBiologicalMother

Inverse functional relations:
gaveBirthTo

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 32 / 38



OWL 2 Roles

Examples inverses and chains

Some inverses:

hasParent ≡ hasChild−

hasBiologicalMother ≡ gaveBirthTo−

olderThan ≡ youngerThan−

Some role chains:

hasParent ◦ hasParent v hasGrandParent

hasAncestor ◦ hasAncestor v hasAncestor

hasParent ◦ hasBrother v hasUncle

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 33 / 38



OWL 2 Roles

Examples inverses and chains

Some inverses:

hasParent ≡ hasChild−

hasBiologicalMother ≡ gaveBirthTo−

olderThan ≡ youngerThan−

Some role chains:

hasParent ◦ hasParent v hasGrandParent

hasAncestor ◦ hasAncestor v hasAncestor

hasParent ◦ hasBrother v hasUncle

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 33 / 38



OWL 2 Roles

Quirks

Role modelling in OWL 2 can get excessively complicated.

For instance:

transitive roles cannot be irreflexive or asymmetric,

role inclusions are not allowed to cycle, i.e. not

hasParent ◦ hasHusband v hasFather

hasFather v hasParent.

transitive roles R and S cannot be declared disjoint

Note:

these restrictions can be hard to keep track of
the reason they exist are computational, not logical

Fortunately:

There are also simple patterns
that are quite useful.

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 34 / 38



OWL 2 Roles

Quirks

Role modelling in OWL 2 can get excessively complicated.

For instance:

transitive roles cannot be irreflexive or asymmetric,
role inclusions are not allowed to cycle, i.e. not

hasParent ◦ hasHusband v hasFather

hasFather v hasParent.

transitive roles R and S cannot be declared disjoint

Note:

these restrictions can be hard to keep track of
the reason they exist are computational, not logical

Fortunately:

There are also simple patterns
that are quite useful.

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 34 / 38



OWL 2 Roles

Quirks

Role modelling in OWL 2 can get excessively complicated.

For instance:

transitive roles cannot be irreflexive or asymmetric,
role inclusions are not allowed to cycle, i.e. not

hasParent ◦ hasHusband v hasFather

hasFather v hasParent.

transitive roles R and S cannot be declared disjoint

Note:

these restrictions can be hard to keep track of
the reason they exist are computational, not logical

Fortunately:

There are also simple patterns
that are quite useful.

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 34 / 38



OWL 2 Roles

Quirks

Role modelling in OWL 2 can get excessively complicated.

For instance:

transitive roles cannot be irreflexive or asymmetric,
role inclusions are not allowed to cycle, i.e. not

hasParent ◦ hasHusband v hasFather

hasFather v hasParent.

transitive roles R and S cannot be declared disjoint

Note:

these restrictions can be hard to keep track of
the reason they exist are computational, not logical

Fortunately:

There are also simple patterns
that are quite useful.

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 34 / 38



OWL 2 Roles

Quirks

Role modelling in OWL 2 can get excessively complicated.

For instance:

transitive roles cannot be irreflexive or asymmetric,
role inclusions are not allowed to cycle, i.e. not

hasParent ◦ hasHusband v hasFather

hasFather v hasParent.

transitive roles R and S cannot be declared disjoint

Note:

these restrictions can be hard to keep track of
the reason they exist are computational, not logical

Fortunately:

There are also simple patterns
that are quite useful.

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 34 / 38



OWL 2 Datatypes

Creating datatypes

Many predefined datatypes are available in OWL:

all common XSD datatypes: xsd:string, xsd:int, ...
a few from RDF: rdf:PlainLiteral,
and a few of their own: owl:real and owl:rational.

New datatypes can be defined by boolean operations: ¬, u, t:

owl:datatypeComplementOf, owl:intersectionOf, owl:unionOf.

Datatypes may be restricted with constraining facets, borrowed from XML Schema.

For numeric datatypes: xsd:minInclusive, xsd:maxInclusive
For string datatypes: xsd:minLenght, xsd:maxLenght, xsd:pattern.

Example:

Teenager is equivalent to: (Manchester)
Person and (age some positiveInteger[>= 13, <= 19])

“A teenager is a person of age 13 to 19.”

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 35 / 38



OWL 2 Datatypes

Creating datatypes

Many predefined datatypes are available in OWL:

all common XSD datatypes: xsd:string, xsd:int, ...
a few from RDF: rdf:PlainLiteral,
and a few of their own: owl:real and owl:rational.

New datatypes can be defined by boolean operations: ¬, u, t:

owl:datatypeComplementOf, owl:intersectionOf, owl:unionOf.

Datatypes may be restricted with constraining facets, borrowed from XML Schema.

For numeric datatypes: xsd:minInclusive, xsd:maxInclusive
For string datatypes: xsd:minLenght, xsd:maxLenght, xsd:pattern.

Example:

Teenager is equivalent to: (Manchester)
Person and (age some positiveInteger[>= 13, <= 19])

“A teenager is a person of age 13 to 19.”

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 35 / 38



OWL 2 Datatypes

Creating datatypes

Many predefined datatypes are available in OWL:

all common XSD datatypes: xsd:string, xsd:int, ...
a few from RDF: rdf:PlainLiteral,
and a few of their own: owl:real and owl:rational.

New datatypes can be defined by boolean operations: ¬, u, t:

owl:datatypeComplementOf, owl:intersectionOf, owl:unionOf.

Datatypes may be restricted with constraining facets, borrowed from XML Schema.

For numeric datatypes: xsd:minInclusive, xsd:maxInclusive
For string datatypes: xsd:minLenght, xsd:maxLenght, xsd:pattern.

Example:

Teenager is equivalent to: (Manchester)
Person and (age some positiveInteger[>= 13, <= 19])

“A teenager is a person of age 13 to 19.”

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 35 / 38



OWL 2 Datatypes

Creating datatypes

Many predefined datatypes are available in OWL:

all common XSD datatypes: xsd:string, xsd:int, ...
a few from RDF: rdf:PlainLiteral,
and a few of their own: owl:real and owl:rational.

New datatypes can be defined by boolean operations: ¬, u, t:

owl:datatypeComplementOf, owl:intersectionOf, owl:unionOf.

Datatypes may be restricted with constraining facets, borrowed from XML Schema.

For numeric datatypes: xsd:minInclusive, xsd:maxInclusive
For string datatypes: xsd:minLenght, xsd:maxLenght, xsd:pattern.

Example:

Teenager is equivalent to: (Manchester)
Person and (age some positiveInteger[>= 13, <= 19])

“A teenager is a person of age 13 to 19.”

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 35 / 38



OWL 2 Datatypes

Modelling patterns

So, what can we say now?

3 A person has a mother.

3 A penguin eats only fish. A horse eats only chocolate.

3 A nuclear family has two parents, at least two children and a dog.

(NuclearFam v =2 hasMember .Parent u ≥2 hasMember .Child u ∃hasMember .Dog)

3 A smoker is not a non-smoker (and vice versa).

3 Everybody loves Mary. (> v ∃loves.{mary} or Person v ∃loves.{mary})

3 Adam is not Eve (and vice versa). (adam 6= eve)

3 Everything is black or white.

3 The brother of my father is my uncle. (hasFather ◦ hasBrother v hasUncle)

3 My friend’s friends are also my friends. (hasFriend ◦ hasFriend v hasFriend)

3 If Homer is married to Marge, then Marge is married to Homer. (marriedTo− v marriedTo)

3 If Homer is a parent of Bart, then Bart is a child of Homer. (parentOf − v childOf )

... and more!

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 36 / 38



OWL 2 Datatypes

Modelling patterns

So, what can we say now?

3 A person has a mother.

3 A penguin eats only fish. A horse eats only chocolate.

3 A nuclear family has two parents, at least two children and a dog.
(NuclearFam v =2 hasMember .Parent u ≥2 hasMember .Child u ∃hasMember .Dog)

3 A smoker is not a non-smoker (and vice versa).

3 Everybody loves Mary. (> v ∃loves.{mary} or Person v ∃loves.{mary})

3 Adam is not Eve (and vice versa). (adam 6= eve)

3 Everything is black or white.

3 The brother of my father is my uncle. (hasFather ◦ hasBrother v hasUncle)

3 My friend’s friends are also my friends. (hasFriend ◦ hasFriend v hasFriend)

3 If Homer is married to Marge, then Marge is married to Homer. (marriedTo− v marriedTo)

3 If Homer is a parent of Bart, then Bart is a child of Homer. (parentOf − v childOf )

... and more!

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 36 / 38



OWL 2 Datatypes

Modelling patterns

So, what can we say now?

3 A person has a mother.

3 A penguin eats only fish. A horse eats only chocolate.

3 A nuclear family has two parents, at least two children and a dog.
(NuclearFam v =2 hasMember .Parent u ≥2 hasMember .Child u ∃hasMember .Dog)

3 A smoker is not a non-smoker (and vice versa).

3 Everybody loves Mary. (> v ∃loves.{mary} or Person v ∃loves.{mary})

3 Adam is not Eve (and vice versa). (adam 6= eve)

3 Everything is black or white.

3 The brother of my father is my uncle. (hasFather ◦ hasBrother v hasUncle)

3 My friend’s friends are also my friends. (hasFriend ◦ hasFriend v hasFriend)

3 If Homer is married to Marge, then Marge is married to Homer. (marriedTo− v marriedTo)

3 If Homer is a parent of Bart, then Bart is a child of Homer. (parentOf − v childOf )

... and more!

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 36 / 38



OWL 2 Datatypes

Modelling patterns

So, what can we say now?

3 A person has a mother.

3 A penguin eats only fish. A horse eats only chocolate.

3 A nuclear family has two parents, at least two children and a dog.
(NuclearFam v =2 hasMember .Parent u ≥2 hasMember .Child u ∃hasMember .Dog)

3 A smoker is not a non-smoker (and vice versa).

3 Everybody loves Mary.

(> v ∃loves.{mary} or Person v ∃loves.{mary})

3 Adam is not Eve (and vice versa). (adam 6= eve)

3 Everything is black or white.

3 The brother of my father is my uncle. (hasFather ◦ hasBrother v hasUncle)

3 My friend’s friends are also my friends. (hasFriend ◦ hasFriend v hasFriend)

3 If Homer is married to Marge, then Marge is married to Homer. (marriedTo− v marriedTo)

3 If Homer is a parent of Bart, then Bart is a child of Homer. (parentOf − v childOf )

... and more!

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 36 / 38



OWL 2 Datatypes

Modelling patterns

So, what can we say now?

3 A person has a mother.

3 A penguin eats only fish. A horse eats only chocolate.

3 A nuclear family has two parents, at least two children and a dog.
(NuclearFam v =2 hasMember .Parent u ≥2 hasMember .Child u ∃hasMember .Dog)

3 A smoker is not a non-smoker (and vice versa).

3 Everybody loves Mary. (> v ∃loves.{mary} or Person v ∃loves.{mary})

3 Adam is not Eve (and vice versa). (adam 6= eve)

3 Everything is black or white.

3 The brother of my father is my uncle. (hasFather ◦ hasBrother v hasUncle)

3 My friend’s friends are also my friends. (hasFriend ◦ hasFriend v hasFriend)

3 If Homer is married to Marge, then Marge is married to Homer. (marriedTo− v marriedTo)

3 If Homer is a parent of Bart, then Bart is a child of Homer. (parentOf − v childOf )

... and more!

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 36 / 38



OWL 2 Datatypes

Modelling patterns

So, what can we say now?

3 A person has a mother.

3 A penguin eats only fish. A horse eats only chocolate.

3 A nuclear family has two parents, at least two children and a dog.
(NuclearFam v =2 hasMember .Parent u ≥2 hasMember .Child u ∃hasMember .Dog)

3 A smoker is not a non-smoker (and vice versa).

3 Everybody loves Mary. (> v ∃loves.{mary} or Person v ∃loves.{mary})

3 Adam is not Eve (and vice versa).

(adam 6= eve)

3 Everything is black or white.

3 The brother of my father is my uncle. (hasFather ◦ hasBrother v hasUncle)

3 My friend’s friends are also my friends. (hasFriend ◦ hasFriend v hasFriend)

3 If Homer is married to Marge, then Marge is married to Homer. (marriedTo− v marriedTo)

3 If Homer is a parent of Bart, then Bart is a child of Homer. (parentOf − v childOf )

... and more!

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 36 / 38



OWL 2 Datatypes

Modelling patterns

So, what can we say now?

3 A person has a mother.

3 A penguin eats only fish. A horse eats only chocolate.

3 A nuclear family has two parents, at least two children and a dog.
(NuclearFam v =2 hasMember .Parent u ≥2 hasMember .Child u ∃hasMember .Dog)

3 A smoker is not a non-smoker (and vice versa).

3 Everybody loves Mary. (> v ∃loves.{mary} or Person v ∃loves.{mary})

3 Adam is not Eve (and vice versa). (adam 6= eve)

3 Everything is black or white.

3 The brother of my father is my uncle. (hasFather ◦ hasBrother v hasUncle)

3 My friend’s friends are also my friends. (hasFriend ◦ hasFriend v hasFriend)

3 If Homer is married to Marge, then Marge is married to Homer. (marriedTo− v marriedTo)

3 If Homer is a parent of Bart, then Bart is a child of Homer. (parentOf − v childOf )

... and more!

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 36 / 38



OWL 2 Datatypes

Modelling patterns

So, what can we say now?

3 A person has a mother.

3 A penguin eats only fish. A horse eats only chocolate.

3 A nuclear family has two parents, at least two children and a dog.
(NuclearFam v =2 hasMember .Parent u ≥2 hasMember .Child u ∃hasMember .Dog)

3 A smoker is not a non-smoker (and vice versa).

3 Everybody loves Mary. (> v ∃loves.{mary} or Person v ∃loves.{mary})

3 Adam is not Eve (and vice versa). (adam 6= eve)

3 Everything is black or white.

3 The brother of my father is my uncle. (hasFather ◦ hasBrother v hasUncle)

3 My friend’s friends are also my friends. (hasFriend ◦ hasFriend v hasFriend)

3 If Homer is married to Marge, then Marge is married to Homer. (marriedTo− v marriedTo)

3 If Homer is a parent of Bart, then Bart is a child of Homer. (parentOf − v childOf )

... and more!

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 36 / 38



OWL 2 Datatypes

Modelling patterns

So, what can we say now?

3 A person has a mother.

3 A penguin eats only fish. A horse eats only chocolate.

3 A nuclear family has two parents, at least two children and a dog.
(NuclearFam v =2 hasMember .Parent u ≥2 hasMember .Child u ∃hasMember .Dog)

3 A smoker is not a non-smoker (and vice versa).

3 Everybody loves Mary. (> v ∃loves.{mary} or Person v ∃loves.{mary})

3 Adam is not Eve (and vice versa). (adam 6= eve)

3 Everything is black or white.

3 The brother of my father is my uncle.

(hasFather ◦ hasBrother v hasUncle)

3 My friend’s friends are also my friends. (hasFriend ◦ hasFriend v hasFriend)

3 If Homer is married to Marge, then Marge is married to Homer. (marriedTo− v marriedTo)

3 If Homer is a parent of Bart, then Bart is a child of Homer. (parentOf − v childOf )

... and more!

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 36 / 38



OWL 2 Datatypes

Modelling patterns

So, what can we say now?

3 A person has a mother.

3 A penguin eats only fish. A horse eats only chocolate.

3 A nuclear family has two parents, at least two children and a dog.
(NuclearFam v =2 hasMember .Parent u ≥2 hasMember .Child u ∃hasMember .Dog)

3 A smoker is not a non-smoker (and vice versa).

3 Everybody loves Mary. (> v ∃loves.{mary} or Person v ∃loves.{mary})

3 Adam is not Eve (and vice versa). (adam 6= eve)

3 Everything is black or white.

3 The brother of my father is my uncle. (hasFather ◦ hasBrother v hasUncle)

3 My friend’s friends are also my friends. (hasFriend ◦ hasFriend v hasFriend)

3 If Homer is married to Marge, then Marge is married to Homer. (marriedTo− v marriedTo)

3 If Homer is a parent of Bart, then Bart is a child of Homer. (parentOf − v childOf )

... and more!

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 36 / 38



OWL 2 Datatypes

Modelling patterns

So, what can we say now?

3 A person has a mother.

3 A penguin eats only fish. A horse eats only chocolate.

3 A nuclear family has two parents, at least two children and a dog.
(NuclearFam v =2 hasMember .Parent u ≥2 hasMember .Child u ∃hasMember .Dog)

3 A smoker is not a non-smoker (and vice versa).

3 Everybody loves Mary. (> v ∃loves.{mary} or Person v ∃loves.{mary})

3 Adam is not Eve (and vice versa). (adam 6= eve)

3 Everything is black or white.

3 The brother of my father is my uncle. (hasFather ◦ hasBrother v hasUncle)

3 My friend’s friends are also my friends.

(hasFriend ◦ hasFriend v hasFriend)

3 If Homer is married to Marge, then Marge is married to Homer. (marriedTo− v marriedTo)

3 If Homer is a parent of Bart, then Bart is a child of Homer. (parentOf − v childOf )

... and more!

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 36 / 38



OWL 2 Datatypes

Modelling patterns

So, what can we say now?

3 A person has a mother.

3 A penguin eats only fish. A horse eats only chocolate.

3 A nuclear family has two parents, at least two children and a dog.
(NuclearFam v =2 hasMember .Parent u ≥2 hasMember .Child u ∃hasMember .Dog)

3 A smoker is not a non-smoker (and vice versa).

3 Everybody loves Mary. (> v ∃loves.{mary} or Person v ∃loves.{mary})

3 Adam is not Eve (and vice versa). (adam 6= eve)

3 Everything is black or white.

3 The brother of my father is my uncle. (hasFather ◦ hasBrother v hasUncle)

3 My friend’s friends are also my friends. (hasFriend ◦ hasFriend v hasFriend)

3 If Homer is married to Marge, then Marge is married to Homer. (marriedTo− v marriedTo)

3 If Homer is a parent of Bart, then Bart is a child of Homer. (parentOf − v childOf )

... and more!

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 36 / 38



OWL 2 Datatypes

Modelling patterns

So, what can we say now?

3 A person has a mother.

3 A penguin eats only fish. A horse eats only chocolate.

3 A nuclear family has two parents, at least two children and a dog.
(NuclearFam v =2 hasMember .Parent u ≥2 hasMember .Child u ∃hasMember .Dog)

3 A smoker is not a non-smoker (and vice versa).

3 Everybody loves Mary. (> v ∃loves.{mary} or Person v ∃loves.{mary})

3 Adam is not Eve (and vice versa). (adam 6= eve)

3 Everything is black or white.

3 The brother of my father is my uncle. (hasFather ◦ hasBrother v hasUncle)

3 My friend’s friends are also my friends. (hasFriend ◦ hasFriend v hasFriend)

3 If Homer is married to Marge, then Marge is married to Homer.

(marriedTo− v marriedTo)

3 If Homer is a parent of Bart, then Bart is a child of Homer. (parentOf − v childOf )

... and more!

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 36 / 38



OWL 2 Datatypes

Modelling patterns

So, what can we say now?

3 A person has a mother.

3 A penguin eats only fish. A horse eats only chocolate.

3 A nuclear family has two parents, at least two children and a dog.
(NuclearFam v =2 hasMember .Parent u ≥2 hasMember .Child u ∃hasMember .Dog)

3 A smoker is not a non-smoker (and vice versa).

3 Everybody loves Mary. (> v ∃loves.{mary} or Person v ∃loves.{mary})

3 Adam is not Eve (and vice versa). (adam 6= eve)

3 Everything is black or white.

3 The brother of my father is my uncle. (hasFather ◦ hasBrother v hasUncle)

3 My friend’s friends are also my friends. (hasFriend ◦ hasFriend v hasFriend)

3 If Homer is married to Marge, then Marge is married to Homer. (marriedTo− v marriedTo)

3 If Homer is a parent of Bart, then Bart is a child of Homer. (parentOf − v childOf )

... and more!

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 36 / 38



OWL 2 Datatypes

Modelling patterns

So, what can we say now?

3 A person has a mother.

3 A penguin eats only fish. A horse eats only chocolate.

3 A nuclear family has two parents, at least two children and a dog.
(NuclearFam v =2 hasMember .Parent u ≥2 hasMember .Child u ∃hasMember .Dog)

3 A smoker is not a non-smoker (and vice versa).

3 Everybody loves Mary. (> v ∃loves.{mary} or Person v ∃loves.{mary})

3 Adam is not Eve (and vice versa). (adam 6= eve)

3 Everything is black or white.

3 The brother of my father is my uncle. (hasFather ◦ hasBrother v hasUncle)

3 My friend’s friends are also my friends. (hasFriend ◦ hasFriend v hasFriend)

3 If Homer is married to Marge, then Marge is married to Homer. (marriedTo− v marriedTo)

3 If Homer is a parent of Bart, then Bart is a child of Homer.

(parentOf − v childOf )

... and more!

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 36 / 38



OWL 2 Datatypes

Modelling patterns

So, what can we say now?

3 A person has a mother.

3 A penguin eats only fish. A horse eats only chocolate.

3 A nuclear family has two parents, at least two children and a dog.
(NuclearFam v =2 hasMember .Parent u ≥2 hasMember .Child u ∃hasMember .Dog)

3 A smoker is not a non-smoker (and vice versa).

3 Everybody loves Mary. (> v ∃loves.{mary} or Person v ∃loves.{mary})

3 Adam is not Eve (and vice versa). (adam 6= eve)

3 Everything is black or white.

3 The brother of my father is my uncle. (hasFather ◦ hasBrother v hasUncle)

3 My friend’s friends are also my friends. (hasFriend ◦ hasFriend v hasFriend)

3 If Homer is married to Marge, then Marge is married to Homer. (marriedTo− v marriedTo)

3 If Homer is a parent of Bart, then Bart is a child of Homer. (parentOf − v childOf )

... and more!

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 36 / 38



OWL 2 Datatypes

Modelling patterns

So, what can we say now?

3 A person has a mother.

3 A penguin eats only fish. A horse eats only chocolate.

3 A nuclear family has two parents, at least two children and a dog.
(NuclearFam v =2 hasMember .Parent u ≥2 hasMember .Child u ∃hasMember .Dog)

3 A smoker is not a non-smoker (and vice versa).

3 Everybody loves Mary. (> v ∃loves.{mary} or Person v ∃loves.{mary})

3 Adam is not Eve (and vice versa). (adam 6= eve)

3 Everything is black or white.

3 The brother of my father is my uncle. (hasFather ◦ hasBrother v hasUncle)

3 My friend’s friends are also my friends. (hasFriend ◦ hasFriend v hasFriend)

3 If Homer is married to Marge, then Marge is married to Homer. (marriedTo− v marriedTo)

3 If Homer is a parent of Bart, then Bart is a child of Homer. (parentOf − v childOf )

... and more!
INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 36 / 38



OWL 2 Datatypes

DL: Family of languages

http://www.cs.man.ac.uk/~ezolin/dl/

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 37 / 38

http://www.cs.man.ac.uk/~ezolin/dl/


OWL 2 Datatypes

Next week

More modelling with OWL/OWL 2.

What cannot be expressed in OWL/OWL 2?

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 38 / 38


	Reminder: ALC
	Important assumptions
	OWL 2
	Axioms and assertions using individuals
	Restrictions on roles
	Modelling problems
	Roles
	Datatypes


