INF3580/4580 – Semantic Technologies – Spring 2017

Lecture 11: OWL 2

Leif Harald Karlsen

27th March 2017

DEPARTMENT OF INFORMATICS

University of Oslo

Outline

- \blacksquare Reminder: \mathcal{ALC}
- 2 Important assumptions
- 3 OWL 2
 - Axioms and assertions using individuals
 - Restrictions on roles
 - Modelling problems
 - Roles
 - Datatypes

Vocabulary

Fix a set of atomic concepts $\{A_1, A_2, \ldots\}$, roles $\{R_1, R_2, \ldots\}$ and individuals $\{a_1, a_2, \ldots\}$.

Vocabulary

Fix a set of atomic concepts $\{A_1, A_2, \ldots\}$, roles $\{R_1, R_2, \ldots\}$ and individuals $\{a_1, a_2, \ldots\}$.

\mathcal{ALC} concept descriptions

$$C,D
ightarrow egin{array}{cccc} A_i & | & (ext{atomic concept}) \ & & & | & (ext{universal concept}) \ & & & & | & (ext{bottom concept}) \end{array}$$

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 3 / 38

Vocabulary

Fix a set of atomic concepts $\{A_1, A_2, \ldots\}$, roles $\{R_1, R_2, \ldots\}$ and individuals $\{a_1, a_2, \ldots\}$.

\mathcal{ALC} concept descriptions

```
C,D 
ightarrow egin{array}{c|ccc} A_i & & & (atomic concept) \\ \hline \top & & (universal concept) \\ \hline \bot & & (bottom concept) \\ \hline \neg C & & (negation) \\ \hline C \sqcap D & & (intersection) \\ \hline C \sqcup D & & (union) \\ \hline \end{array}
```

Vocabulary

Fix a set of atomic concepts $\{A_1, A_2, \ldots\}$, roles $\{R_1, R_2, \ldots\}$ and individuals $\{a_1, a_2, \ldots\}$.

\mathcal{ALC} concept descriptions

```
C,D 
ightarrow A_i | (atomic concept)

T | (universal concept)

\bot | (bottom concept)

\neg C | (negation)

C \sqcap D | (intersection)

C \sqcup D | (union)

\forall R_i.C | (value restriction)

\exists R_i.C | (existential restriction)
```

Vocabulary

Fix a set of atomic concepts $\{A_1, A_2, \ldots\}$, roles $\{R_1, R_2, \ldots\}$ and individuals $\{a_1, a_2, \ldots\}$.

ALC concept descriptions

$$C,D
ightarrow A_i$$
 | (atomic concept)
 T | (universal concept)
 \bot | (bottom concept)
 $\neg C$ | (negation)
 $C \sqcap D$ | (intersection)
 $C \sqcup D$ | (union)
 $\forall R_i, C$ | (value restriction)
 $\exists R_i, C$ | (existential restriction)

Axioms

- $C \sqsubseteq D$ and $C \equiv D$ for concept descriptions D and C.
- C(a) and R(a,b) for concept description C, atomic role R and individuals a,b.

Interpretation

An interpretation \mathcal{I} fixes a set $\Delta^{\mathcal{I}}$, the *domain*, $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$ for each atomic concept A, $R^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$ for each role R, and $a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$ for each individual a.

Interpretation

An interpretation \mathcal{I} fixes a set $\Delta^{\mathcal{I}}$, the *domain*, $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$ for each atomic concept A, $R^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$ for each role R, and $a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$ for each individual a.

Interpretation of concept descriptions

$$\begin{array}{ccc}
\top^{\mathcal{I}} & = & \Delta^{\mathcal{I}} \\
\bot^{\mathcal{I}} & = & \emptyset
\end{array}$$

Interpretation

An interpretation \mathcal{I} fixes a set $\Delta^{\mathcal{I}}$, the *domain*, $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$ for each atomic concept A, $R^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$ for each role R, and $a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$ for each individual a.

Interpretation of concept descriptions

$$\begin{array}{rcl}
\mathsf{T}^{\mathcal{I}} & = & \Delta^{\mathcal{I}} \\
\mathsf{L}^{\mathcal{I}} & = & \emptyset \\
(\neg C)^{\mathcal{I}} & = & \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}} \\
(C \sqcap D)^{\mathcal{I}} & = & C^{\mathcal{I}} \cap D^{\mathcal{I}} \\
(C \sqcup D)^{\mathcal{I}} & = & C^{\mathcal{I}} \cup D^{\mathcal{I}}
\end{array}$$

Interpretation

An interpretation \mathcal{I} fixes a set $\Delta^{\mathcal{I}}$, the *domain*, $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$ for each atomic concept A, $R^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$ for each role R, and $a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$ for each individual a.

Interpretation of concept descriptions

```
\begin{array}{rcl} \top^{\mathcal{I}} & = & \Delta^{\mathcal{I}} \\ \bot^{\mathcal{I}} & = & \emptyset \\ (\neg C)^{\mathcal{I}} & = & \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}} \\ (C \sqcap D)^{\mathcal{I}} & = & C^{\mathcal{I}} \cap D^{\mathcal{I}} \\ (C \sqcup D)^{\mathcal{I}} & = & C^{\mathcal{I}} \cup D^{\mathcal{I}} \\ (\forall R.C)^{\mathcal{I}} & = & \{a \in \Delta^{\mathcal{I}} \mid \text{for all } b, \text{ if } \langle a,b \rangle \in R^{\mathcal{I}} \text{ then } b \in C^{\mathcal{I}} \} \\ (\exists R.C)^{\mathcal{I}} & = & \{a \in \Delta^{\mathcal{I}} \mid \text{there is a } b \text{ where } \langle a,b \rangle \in R^{\mathcal{I}} \text{ and } b \in C^{\mathcal{I}} \} \end{array}
```

Interpretation

An interpretation \mathcal{I} fixes a set $\Delta^{\mathcal{I}}$, the *domain*, $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$ for each atomic concept A, $R^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$ for each role R, and $a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$ for each individual a.

Interpretation of concept descriptions

```
\begin{array}{rcl} \top^{\mathcal{I}} & = & \Delta^{\mathcal{I}} \\ \bot^{\mathcal{I}} & = & \emptyset \\ (\neg C)^{\mathcal{I}} & = & \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}} \\ (C \sqcap D)^{\mathcal{I}} & = & C^{\mathcal{I}} \cap D^{\mathcal{I}} \\ (C \sqcup D)^{\mathcal{I}} & = & C^{\mathcal{I}} \cup D^{\mathcal{I}} \\ (\forall R.C)^{\mathcal{I}} & = & \{a \in \Delta^{\mathcal{I}} \mid \text{ for all } b, \text{ if } \langle a,b \rangle \in R^{\mathcal{I}} \text{ then } b \in C^{\mathcal{I}} \} \\ (\exists R.C)^{\mathcal{I}} & = & \{a \in \Delta^{\mathcal{I}} \mid \text{ there is a } b \text{ where } \langle a,b \rangle \in R^{\mathcal{I}} \text{ and } b \in C^{\mathcal{I}} \} \end{array}
```

Interpretation of Axioms

- $\mathcal{I} \models C \sqsubseteq D$ if $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ and $\mathcal{I} \models C \equiv D$ if $C^{\mathcal{I}} = D^{\mathcal{I}}$
- $\mathcal{I} \models C(a)$ if $a^{\mathcal{I}} \in C^{\mathcal{I}}$ and $\mathcal{I} \models R(a,b)$ if $\langle a^{\mathcal{I}}, b^{\mathcal{I}} \rangle \in R^{\mathcal{I}}$.

Let K be the following set of axioms:

$$Penguin \sqsubseteq Animal \sqcap \forall eats.Fish$$

 $Penguin \sqcap Fish \sqsubseteq \bot$
 $Penguin(a)$

 $Fish \sqsubseteq Animal$ $Animal \sqsubseteq \exists eats. \top$ eats(a, b)

Let \mathcal{K} be the following set of axioms:

$$Penguin \sqsubseteq Animal \sqcap \forall eats.Fish$$

 $Penguin \sqcap Fish \sqsubseteq \bot$
 $Penguin(a)$

$$Fish \sqsubseteq Animal$$
 $Animal \sqsubseteq \exists eats. \top$
 $eats(a, b)$

$$\Delta^{\mathcal{I}} = \top^{\mathcal{I}} = \{ \textit{tweety}, \textit{terry}, \textit{carl} \}, \quad \bot^{\mathcal{I}} = \emptyset, \quad \textit{a}^{\mathcal{I}} = \textit{tweety}, \quad \textit{b}^{\mathcal{I}} = \textit{terry}$$

Let \mathcal{K} be the following set of axioms:

$$Penguin \sqsubseteq Animal \sqcap \forall eats.Fish$$

 $Penguin \sqcap Fish \sqsubseteq \bot$
 $Penguin(a)$

$$Fish \sqsubseteq Animal$$

 $Animal \sqsubseteq \exists eats. \top$
 $eats(a, b)$

$$\Delta^{\mathcal{I}} = \top^{\mathcal{I}} = \{\textit{tweety}, \textit{terry}, \textit{carl}\}, \quad \bot^{\mathcal{I}} = \emptyset, \quad \textit{a}^{\mathcal{I}} = \textit{tweety}, \quad \textit{b}^{\mathcal{I}} = \textit{terry} \\ \textit{Penguin}^{\mathcal{I}} = \{\textit{a}^{\mathcal{I}} \\$$

Let \mathcal{K} be the following set of axioms:

Penguin
$$\sqsubseteq$$
 Animal \sqcap \forall eats. FishFish \sqsubseteq AnimalPenguin \sqcap Fish \sqsubseteq \bot Animal \sqsubseteq \exists eats. \top Penguin(a)eats(a, b)

$$\Delta^{\mathcal{I}} = \top^{\mathcal{I}} = \{ \text{tweety}, \text{terry}, \text{carl} \}, \quad \perp^{\mathcal{I}} = \emptyset, \quad \text{a}^{\mathcal{I}} = \text{tweety}, \quad \text{b}^{\mathcal{I}} = \text{terry}$$
 $Penguin^{\mathcal{I}} = \{ \text{a}^{\mathcal{I}} \}$
 $eats^{\mathcal{I}} = \{ \langle \text{a}^{\mathcal{I}}, \text{b}^{\mathcal{I}} \rangle, \}$

Let \mathcal{K} be the following set of axioms:

Penguin
$$\sqsubseteq$$
 Animal \sqcap \forall eats. FishFish \sqsubseteq AnimalPenguin \sqcap Fish \sqsubseteq \bot Animal \sqsubseteq \exists eats. \top Penguin(a)eats(a, b)

$$\begin{array}{ll} \Delta^{\mathcal{I}} = \top^{\mathcal{I}} = \{\textit{tweety}, \textit{terry}, \textit{carl}\}, & \bot^{\mathcal{I}} = \emptyset, & \textit{a}^{\mathcal{I}} = \textit{tweety}, & \textit{b}^{\mathcal{I}} = \textit{terry} \\ \textit{Penguin}^{\mathcal{I}} = \{\textit{a}^{\mathcal{I}} \\ \textit{eats}^{\mathcal{I}} = \{\langle \textit{a}^{\mathcal{I}}, \textit{b}^{\mathcal{I}} \rangle, \\ \textit{Fish}^{\mathcal{I}} = \{\textit{b}^{\mathcal{I}} \end{array} \right.$$

Let \mathcal{K} be the following set of axioms:

Penguin
$$\sqsubseteq$$
 Animal \sqcap \forall eats. FishFish \sqsubseteq AnimalPenguin \sqcap Fish \sqsubseteq \bot Animal \sqsubseteq \exists eats. \top Penguin(a)eats(a, b)

$$\begin{array}{ll} \Delta^{\mathcal{I}} = \top^{\mathcal{I}} = \{\textit{tweety}, \textit{terry}, \textit{carl}\}, & \bot^{\mathcal{I}} = \emptyset, & \textit{a}^{\mathcal{I}} = \textit{tweety}, & \textit{b}^{\mathcal{I}} = \textit{terry} \\ \textit{Penguin}^{\mathcal{I}} = \{\textit{a}^{\mathcal{I}} \\ \textit{eats}^{\mathcal{I}} = \{\langle \textit{a}^{\mathcal{I}}, \textit{b}^{\mathcal{I}} \rangle, \\ \textit{Fish}^{\mathcal{I}} = \{\textit{b}^{\mathcal{I}} \\ \textit{Animal}^{\mathcal{I}} = \{\textit{a}^{\mathcal{I}}, \textit{b}^{\mathcal{I}} \\ \end{array} \right.$$

Let \mathcal{K} be the following set of axioms:

Penguin
$$\sqsubseteq$$
 Animal \sqcap \forall eats. FishFish \sqsubseteq AnimalPenguin \sqcap Fish $\sqsubseteq \bot$ Animal $\sqsubseteq \exists$ eats. \top Penguin(a)eats(a, b)

$$\begin{array}{ll} \Delta^{\mathcal{I}} = \top^{\mathcal{I}} = \{\textit{tweety}, \textit{terry}, \textit{carl}\}, & \bot^{\mathcal{I}} = \emptyset, & \textit{a}^{\mathcal{I}} = \textit{tweety}, & \textit{b}^{\mathcal{I}} = \textit{terry} \\ \textit{Penguin}^{\mathcal{I}} = \{\textit{a}^{\mathcal{I}} \\ \textit{eats}^{\mathcal{I}} = \{\langle \textit{a}^{\mathcal{I}}, \textit{b}^{\mathcal{I}} \rangle, \langle \textit{b}^{\mathcal{I}}, \textit{carl} \rangle\} \\ \textit{Fish}^{\mathcal{I}} = \{\textit{b}^{\mathcal{I}} \\ \textit{Animal}^{\mathcal{I}} = \{\textit{a}^{\mathcal{I}}, \textit{b}^{\mathcal{I}} \\ \end{array} \right.$$

Let \mathcal{K} be the following set of axioms:

Penguin
$$\sqsubseteq$$
 Animal \sqcap \forall eats. FishFish \sqsubseteq AnimalPenguin \sqcap Fish $\sqsubseteq \bot$ Animal $\sqsubseteq \exists$ eats. \top Penguin(a)eats(a, b)

$$\begin{array}{ll} \Delta^{\mathcal{I}} = \top^{\mathcal{I}} = \{\textit{tweety}, \textit{terry}, \textit{carl}\}, & \bot^{\mathcal{I}} = \emptyset, & \textit{a}^{\mathcal{I}} = \textit{tweety}, & \textit{b}^{\mathcal{I}} = \textit{terry} \\ \textit{Penguin}^{\mathcal{I}} = \{\textit{a}^{\mathcal{I}} \\ \textit{eats}^{\mathcal{I}} = \{\langle \textit{a}^{\mathcal{I}}, \textit{b}^{\mathcal{I}} \rangle, \langle \textit{b}^{\mathcal{I}}, \textit{carl} \rangle\} = \{\langle \textit{tweety}, \textit{terry} \rangle, \langle \textit{terry}, \textit{carl} \rangle\} \\ \textit{Fish}^{\mathcal{I}} = \{\textit{b}^{\mathcal{I}} \\ \textit{Animal}^{\mathcal{I}} = \{\textit{a}^{\mathcal{I}}, \textit{b}^{\mathcal{I}} \\ \end{array}$$

Let \mathcal{K} be the following set of axioms:

Penguin
$$\sqsubseteq$$
 Animal \sqcap \forall eats. FishFish \sqsubseteq AnimalPenguin \sqcap Fish $\sqsubseteq \bot$ Animal $\sqsubseteq \exists$ eats. \top Penguin(a)eats(a, b)

$$\begin{split} &\Delta^{\mathcal{I}} = \top^{\mathcal{I}} = \{\textit{tweety}, \textit{terry}, \textit{carl}\}, \quad \bot^{\mathcal{I}} = \emptyset, \quad \textit{a}^{\mathcal{I}} = \textit{tweety}, \quad \textit{b}^{\mathcal{I}} = \textit{terry} \\ &\textit{Penguin}^{\mathcal{I}} = \{\textit{a}^{\mathcal{I}}\} = \{\textit{tweety}\} \\ &\textit{eats}^{\mathcal{I}} = \{\langle \textit{a}^{\mathcal{I}}, \textit{b}^{\mathcal{I}}\rangle, \langle \textit{b}^{\mathcal{I}}, \textit{carl}\rangle\} = \{\langle \textit{tweety}, \textit{terry}\rangle, \langle \textit{terry}, \textit{carl}\rangle\} \\ &\textit{Fish}^{\mathcal{I}} = \{\textit{b}^{\mathcal{I}}\} = \{\textit{terry}\} \\ &\textit{Animal}^{\mathcal{I}} = \{\textit{a}^{\mathcal{I}}, \textit{b}^{\mathcal{I}}\} \end{split}$$

Let \mathcal{K} be the following set of axioms:

Penguin
$$\sqsubseteq$$
 Animal \sqcap \forall eats. FishFish \sqsubseteq AnimalPenguin \sqcap Fish $\sqsubseteq \bot$ Animal $\sqsubseteq \exists$ eats. \top Penguin(a)eats(a, b)

$$\begin{split} & \Delta^{\mathcal{I}} = \top^{\mathcal{I}} = \{\textit{tweety}, \textit{terry}, \textit{carl}\}, \quad \bot^{\mathcal{I}} = \emptyset, \quad \textit{a}^{\mathcal{I}} = \textit{tweety}, \quad \textit{b}^{\mathcal{I}} = \textit{terry} \\ & \textit{Penguin}^{\mathcal{I}} = \{\textit{a}^{\mathcal{I}}\} = \{\textit{tweety}\} \\ & \textit{eats}^{\mathcal{I}} = \{\langle \textit{a}^{\mathcal{I}}, \textit{b}^{\mathcal{I}}\rangle, \langle \textit{b}^{\mathcal{I}}, \textit{carl}\rangle\} = \{\langle \textit{tweety}, \textit{terry}\rangle, \langle \textit{terry}, \textit{carl}\rangle\} \\ & \textit{Fish}^{\mathcal{I}} = \{\textit{b}^{\mathcal{I}}\} = \{\textit{terry}\} \\ & \textit{Animal}^{\mathcal{I}} = \{\textit{a}^{\mathcal{I}}, \textit{b}^{\mathcal{I}}\} = \{\textit{tweety}, \textit{terry}\} \end{split}$$

Let \mathcal{K} be the following set of axioms:

Penguin
$$\sqsubseteq$$
 Animal \sqcap \forall eats. FishFish \sqsubseteq AnimalPenguin \sqcap Fish $\sqsubseteq \bot$ Animal $\sqsubseteq \exists$ eats. \top Penguin(a)eats(a, b)

Let \mathcal{I} be an interpretation such that

$$\begin{split} &\Delta^{\mathcal{I}} = \top^{\mathcal{I}} = \{\textit{tweety}, \textit{terry}, \textit{carl}\}, \quad \bot^{\mathcal{I}} = \emptyset, \quad \textit{a}^{\mathcal{I}} = \textit{tweety}, \quad \textit{b}^{\mathcal{I}} = \textit{terry} \\ &\textit{Penguin}^{\mathcal{I}} = \{\textit{a}^{\mathcal{I}}\} = \{\textit{tweety}\} \\ &\textit{eats}^{\mathcal{I}} = \{\langle \textit{a}^{\mathcal{I}}, \textit{b}^{\mathcal{I}}\rangle, \langle \textit{b}^{\mathcal{I}}, \textit{carl}\rangle\} = \{\langle \textit{tweety}, \textit{terry}\rangle, \langle \textit{terry}, \textit{carl}\rangle\} \\ &\textit{Fish}^{\mathcal{I}} = \{\textit{b}^{\mathcal{I}}\} = \{\textit{terry}\} \\ &\textit{Animal}^{\mathcal{I}} = \{\textit{a}^{\mathcal{I}}, \textit{b}^{\mathcal{I}}\} = \{\textit{tweety}, \textit{terry}\} \end{split}$$

Now $\mathcal{I} \models \mathcal{K}$.

Let \mathcal{K} be the following set of axioms:

Penguin
$$\sqsubseteq$$
 Animal $\sqcap \forall eats.Fish$
Penguin \sqcap Fish $\sqsubseteq \bot$
Penguin(a)

Fish
$$\sqsubseteq$$
 Animal Animal $\sqsubseteq \exists eats. \top$

$$eats(a, b)$$

Let \mathcal{K} be the following set of axioms:

Penguin
$$\sqsubseteq$$
 Animal \sqcap \forall eats. FishFish \sqsubseteq AnimalPenguin \sqcap Fish $\sqsubseteq \bot$ Animal $\sqsubseteq \exists$ eats. \top Penguin(a)eats(a, b)

$$\begin{split} \Delta^{\mathcal{J}} &= \top^{\mathcal{J}} = \{ \textit{tweety} \}, \quad \bot^{\mathcal{J}} = \emptyset, \quad \textit{a}^{\mathcal{J}} = \textit{tweety}, \textit{b}^{\mathcal{J}} = \textit{tweety} \\ \textit{Animal}^{\mathcal{J}} &= \{ \textit{a}^{\mathcal{J}}, \textit{b}^{\mathcal{J}} \} = \{ \textit{tweety} \}, \\ \textit{Penguin}^{\mathcal{J}} &= \{ \textit{a}^{\mathcal{J}} \} = \{ \textit{tweety} \}, \\ \textit{Fish}^{\mathcal{J}} &= \{ \textit{b}^{\mathcal{J}} \} = \{ \textit{tweety} \} \\ \textit{eats}^{\mathcal{J}} &= \{ \langle \textit{a}^{\mathcal{J}}, \textit{b}^{\mathcal{J}} \rangle, \langle \textit{b}^{\mathcal{J}}, \textit{a}^{\mathcal{J}} \rangle \} = \{ \langle \textit{tweety}, \textit{tweety} \rangle \} \end{split}$$

Let K be the following set of axioms:

Penguin
$$\sqsubseteq$$
 Animal \sqcap \forall eats. FishFish \sqsubseteq AnimalPenguin \sqcap Fish $\sqsubseteq \bot$ Animal $\sqsubseteq \exists$ eats. \top Penguin(a)eats(a, b)

Let \mathcal{J} be an interpretation such that

$$\begin{split} \Delta^{\mathcal{J}} &= \top^{\mathcal{J}} = \{ \textit{tweety} \}, \quad \bot^{\mathcal{J}} = \emptyset, \quad \textit{a}^{\mathcal{J}} = \textit{tweety}, \textit{b}^{\mathcal{J}} = \textit{tweety} \\ \textit{Animal}^{\mathcal{J}} &= \{ \textit{a}^{\mathcal{J}}, \textit{b}^{\mathcal{J}} \} = \{ \textit{tweety} \}, \\ \textit{Penguin}^{\mathcal{J}} &= \{ \textit{a}^{\mathcal{J}} \} = \{ \textit{tweety} \}, \\ \textit{Fish}^{\mathcal{J}} &= \{ \textit{b}^{\mathcal{J}} \} = \{ \textit{tweety} \} \\ \textit{eats}^{\mathcal{J}} &= \{ \langle \textit{a}^{\mathcal{J}}, \textit{b}^{\mathcal{J}} \rangle, \langle \textit{b}^{\mathcal{J}}, \textit{a}^{\mathcal{J}} \rangle \} = \{ \langle \textit{tweety}, \textit{tweety} \rangle \} \end{split}$$

Now $\mathcal{J} \nvDash \mathcal{K}$ since $\mathcal{J} \nvDash Penguin \sqcap Fish \sqsubseteq \bot$.

Modelling patterns

So, what can we say with ALC?

- ✓ Every person has a mother.
- ✓ Penguins eats only fish. Horses eats only chocolate.
- Every nuclear family has two parents, at least two children and a dog.
- ✓ No smoker is a non-smoker (and vice versa).
- Everybody loves Mary.
- X Adam is not Eve (and vice versa).
- ✓ Everything is black or white.
- ✓ There is no such thing as a free lunch.
- X Brothers of fathers are uncles.
- My friend's friends are also my friends.
- X If Homer is married to Marge, then Marge is married to Homer.
- X If Homer is a parent of Bart, then Bart is a child of Homer.

Today we'll learn how to say more.

Outline

- 1 Reminder: ALC
- 2 Important assumptions
- 3 OWL 2
 - Axioms and assertions using individuals
 - Restrictions on roles
 - Modelling problems
 - Roles
 - Datatypes

World assumptions

- Closed World Assumption (CWA)
- Open World Assumption (OWA)

CWA:

- Complete knowledge.
- Any statement that is not known to be true is false. (*)
- Typical semantics for database systems.

OWA:

- Potential incomplete knowledge.
- (*) does not hold.
- Typical semantics for logic-based systems.

Name assumptions

- Unique name assumption (UNA)
- Non-unique name assumption (NUNA)
- Under any assumption, equal names (read: individual URIs, DB constants) always denote the same "thing" (obviously).
 - E.g., cannot have $a^{\mathcal{I}} \neq a^{\mathcal{I}}$.
- Under UNA, different names always denote different things.
 - E.g., $a^{\mathcal{I}} \neq b^{\mathcal{I}}$.
 - common in relational databases.
- Under NUNA, different names need not denote different things.
 - Can have, $a^{\mathcal{I}} = b^{\mathcal{I}}$, or
 - dbpedia: $0slo^{\mathcal{I}} = geo:34521^{\mathcal{I}}$.

Outline

- 1 Reminder: ALC
- 2 Important assumptions
- **3** OWL 2
 - Axioms and assertions using individuals
 - Restrictions on roles
 - Modelling problems
 - Roles
 - Datatypes

$\mathcal{SHOIN}(\mathcal{D})$ and OWL 2

- OWL 2 is based on the DL $\mathcal{SHOIN}(\mathcal{D})$:
 - ullet ${\cal S}$ for ${\cal ALC}^1$ plus role transitivity,
 - ullet ${\cal H}$ for roles hierarchies,
 - ullet ${\cal O}$ for closed classes,
 - I for inverse roles,
 - ullet ${\cal N}$ for cardinality restrictions, and
 - ullet $\mathcal D$ for datatypes.

¹Attributive Concept Language with Complements

$\mathcal{SHOIN}(\mathcal{D})$ and OWL 2

- OWL 2 is based on the DL $\mathcal{SHOIN}(\mathcal{D})$:
 - ullet \mathcal{S} for \mathcal{ALC}^1 plus role transitivity,
 - ullet ${\cal H}$ for roles hierarchies,
 - ullet ${\cal O}$ for closed classes,
 - I for inverse roles,
 - ullet $\mathcal N$ for cardinality restrictions, and
 - \bullet \mathcal{D} for datatypes.
- So, today we'll see:
 - new concept and role builders,
 - new TBox axioms,
 - new ABox axioms,
 - new RBox axioms, and
 - datatypes.

¹Attributive Concept Language with Complements

Individual identity

- New ABox axioms.
- Express equality and non-equality between individuals.

- New ABox axioms.
- Express equality and non-equality between individuals.
- Syntax:
 - DL: $a = b, a \neq b$;
 - RDF/OWL: :a owl:sameAs :b, :a owl:differentFrom :b,
 - Manchester: SameAs, DifferentFrom.

- New ABox axioms.
- Express equality and non-equality between individuals.
- Syntax:
 - DL: a = b, $a \neq b$;
 - RDF/OWL: :a owl:sameAs :b, :a owl:differentFrom :b,
 - Manchester: SameAs, DifferentFrom.
- Semantics:
 - $\mathcal{I} \models a = b$ iff $a^{\mathcal{I}} = b^{\mathcal{I}}$
 - $\mathcal{I} \models a \neq b$ iff $a^{\mathcal{I}} \neq b^{\mathcal{I}}$

Individual identity

- New ABox axioms.
- Express equality and non-equality between individuals.
- Syntax:
 - DL: $a = b, a \neq b$;
 - RDF/OWL: :a owl:sameAs :b, :a owl:differentFrom :b,
 - Manchester: SameAs, DifferentFrom.
- Semantics:
 - $\mathcal{I} \models a = b$ iff $a^{\mathcal{I}} = b^{\mathcal{I}}$
 - $\mathcal{I} \models a \neq b$ iff $a^{\mathcal{I}} \neq b^{\mathcal{I}}$
- Examples:
 - sim:Bart owl:sameAs dbpedia:Bart_Simpson,
 - sim:Bart owl:differentFrom sim:Homer.

Individual identity

- New ABox axioms.
- Express equality and non-equality between individuals.
- Syntax:
 - DL: $a = b, a \neq b$;
 - RDF/OWL: :a owl:sameAs :b, :a owl:differentFrom :b,
 - Manchester: SameAs, DifferentFrom.
- Semantics:
 - $\mathcal{I} \models a = b$ iff $a^{\mathcal{I}} = b^{\mathcal{I}}$
 - $\mathcal{I} \models a \neq b$ iff $a^{\mathcal{I}} \neq b^{\mathcal{I}}$
- Examples:
 - sim:Bart owl:sameAs dbpedia:Bart_Simpson,
 - sim:Bart owl:differentFrom sim:Homer.
- Remember:
 - Non unique name assumption (NUNA) in Sem. Web,
 - must sometimes use = and \neq to get expected results.

New concept builder.

- New concept builder.
- Create (anonymous) concepts by explicitly listing all members.

- New concept builder.
- Create (anonymous) concepts by explicitly listing all members.
- Called closed classes in OWL.

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 14 / 38

- New concept builder.
- Create (anonymous) concepts by explicitly listing all members.
- Called closed classes in OWL.
- Syntax:
 - DL: $\{a, b, ...\}$
 - RDF/OWL: owl:oneOf + rdf:List++
 - Manchester: {a, b, ...}

- New concept builder.
- Create (anonymous) concepts by explicitly listing all members.
- Called closed classes in OWL.
- Syntax:
 - DL: {a, b, . . . } • RDF/OWL: owl:oneOf + rdf:List++
 - Manchester: {a, b, ...}
- Example:
 - $SimpsonFamily \equiv \{Homer, Marge, Bart, Lisa, Maggie\}$
 - :SimpsonFamily owl:equivalentClass [owl:oneOf (:Homer :Marge :Bart :Lisa :Maggie)] .

- New concept builder.
- Create (anonymous) concepts by explicitly listing all members.
- Called *closed classes* in OWL.
- Syntax:
 - DL: {a, b, . . . }
 - RDF/OWL: owl:oneOf + rdf:List++
 - Manchester: {a, b, ...}
- Example:
 - $SimpsonFamily \equiv \{Homer, Marge, Bart, Lisa, Maggie\}$
 - :SimpsonFamily owl:equivalentClass [owl:oneOf (:Homer :Marge :Bart :Lisa :Maggie)] .
- Note:
 - The individuals does not necessarily represent different objects,
 - we still need = and \neq to say that members are the same/different.
 - "Closed classes of data values" are datatypes.

- New ABox axiom.
- Syntax:
 - DL: $\neg R(a, b)$,
 - RDF/OWL: owl:NegativePropertyAssertion (Class of assertions/triples)
 - Manchester: a not. R. b.

- New ABox axiom.
- Syntax:
 - DL: $\neg R(a,b)$,
 - RDF/OWL: owl:NegativePropertyAssertion (Class of assertions/triples)
 - Manchester: a not. R. b.
- Semantics:
 - $\mathcal{I} \models \neg R(a, b)$ iff $\langle a^{\mathcal{I}}, b^{\mathcal{I}} \rangle \notin R^{\mathcal{I}}$,

- New ABox axiom.
- Syntax:
 - DL: $\neg R(a,b)$,
 - RDF/OWL: owl:NegativePropertyAssertion (Class of assertions/triples)
 - Manchester: a not. R. b.
- Semantics:
 - $\mathcal{I} \models \neg R(a, b)$ iff $\langle a^{\mathcal{I}}, b^{\mathcal{I}} \rangle \notin R^{\mathcal{I}}$.
- Notes:
 - Works both for object properties and datatype properties.

15 / 38 INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March

- New ABox axiom.
- Syntax:
 - DL: $\neg R(a, b)$,
 - RDF/OWL: owl:NegativePropertyAssertion (Class of assertions/triples)
 - Manchester: a not. R. b.
- Semantics:
 - $\mathcal{I} \models \neg R(a, b)$ iff $\langle a^{\mathcal{I}}, b^{\mathcal{I}} \rangle \notin R^{\mathcal{I}}$,
- Notes:
 - Works both for object properties and datatype properties.
- Examples:
 - :Bart not :hasFather :NedFlanders
 - :Bart not :hasAge "2"^^xsd:int

Recap of existential and universal restrictions

- Existential restrictions
 - have the form $\exists R.D$.
 - typically used to connect classes,
 - $C \sqsubseteq \exists R.D$: A C is R-related to (at least) some D:
 - Example: A person has a female parent: $Person \sqsubseteq \exists hasParent.Woman.$
 - Note that C-objects can be R-related to other things:
 - A person may have other parents who are not women—but there must be one who's a woman.

Restrictions on roles

16 / 38 INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March

Recap of existential and universal restrictions

- Existential restrictions
 - have the form $\exists R.D$.
 - typically used to connect classes,
 - $C \sqsubseteq \exists R.D$: A C is R-related to (at least) some D:
 - Example: A person has a female parent: $Person \sqsubseteq \exists hasParent.Woman.$
 - Note that C-objects can be R-related to other things:
 - A person may have other parents who are not women—but there must be one who's a woman.
- Universal restrictions
 - have the form $\forall R.D.$
 - restrict the things a type of object can be connected to.
 - $C \sqsubseteq \forall R.D : C$ is R-related to D's only:
 - Example: A horse eats only chocolate: *Horse* $\sqsubseteq \forall eats. Chocolate$.
 - Note that C-objects may not be R-related to anything at all:
 - A horse does not have to eat anything—but if it does it must be chocolate.

Cardinality restrictions

- New concept builder.
- Syntax:
 - DL: $\leq_n R.D$ and $\geq_n R.D$ (and $=_n R.D$).
 - RDF/OWL: owl:minCardinality, owl:maxCardinality, owl:cardinality.
 - Manchester: min, max, exactly.

Cardinality restrictions

- New concept builder.
- Syntax:
 - DL: $\leq_n R.D$ and $\geq_n R.D$ (and $=_n R.D$).
 - RDF/OWL: owl:minCardinality, owl:maxCardinality, owl:cardinality.
 - Manchester: min, max, exactly.
- Semantics:
 - $(\leq_n R.D)^{\mathcal{I}} = \{a \in \Delta^{\mathcal{I}} : |\{b : \langle a, b \rangle \in R^{\mathcal{I}} \land b \in D^{\mathcal{I}}\}| \leq n\}$
 - $\bullet \ (\geq_n R.D)^{\mathcal{I}} = \{a \in \Delta^{\mathcal{I}} : |\{b : \langle a, b \rangle \in R^{\mathcal{I}} \land b \in D^{\mathcal{I}}\}| \geq n\}$
- Restricts the number of relations a type of object can/must have.

Cardinality restrictions

- New concept builder.
- Syntax:
 - DL: $\leq_n R.D$ and $\geq_n R.D$ (and $=_n R.D$).
 - RDF/OWL: owl:minCardinality, owl:maxCardinality, owl:cardinality.
 - Manchester: min, max, exactly.
- Semantics:
 - $(\leq_n R.D)^{\mathcal{I}} = \{a \in \Delta^{\mathcal{I}} : |\{b : \langle a, b \rangle \in R^{\mathcal{I}} \land b \in D^{\mathcal{I}}\}| \leq n\}$
 - $\bullet \ (\geq_n R.D)^{\mathcal{I}} = \{a \in \Delta^{\mathcal{I}} : |\{b : \langle a, b \rangle \in R^{\mathcal{I}} \land b \in D^{\mathcal{I}}\}| \geq n\}$
- Restricts the number of relations a type of object can/must have.
- TBox axioms read:
 - $C \sqsubseteq \Box_n R.D$: "A C is R-related to n number of D's."
 - <: at most</p>
 - >: at least
 - e: exactly

- $Car \sqsubseteq \leq_2 driveAxle. \top$
 - "A car has at most two drive axles."

INF3580/4580 :: Spring 2017 Lecture 11:: 27th March 18 / 38

- Car $\square <_2$ driveAxle. \top
 - "A car has at most two drive axles."
- RangeRover $\square = 1$ driveAxle.FrontAxle $\square = 1$ driveAxle.RearAxle
 - "A Range Rover has one front axle as drive axle and one rear axle as drive axle".

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 18 / 38

- $Car \sqsubseteq <_2 driveAxle. \top$
 - "A car has at most two drive axles."
- $RangeRover \sqsubseteq =_1 driveAxle.FrontAxle \sqcap =_1 driveAxle.RearAxle$
 - "A Range Rover has one front axle as drive axle and one rear axle as drive axle".
- Human $\sqsubseteq =_2$ hasBiologicalParent. \top
 - "A human has two biological parents."

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 18 / 38

- Car $\square <_2$ driveAxle. \top
 - "A car has at most two drive axles."
- RangeRover $\square =_1$ driveAxle.FrontAxle $\square =_1$ driveAxle.RearAxle
 - "A Range Rover has one front axle as drive axle and one rear axle as drive axle".
- Human $\square =_2$ hasBiologicalParent. \top
 - "A human has two biological parents."
- $Mammal \sqsubseteq =_1 hasParent.Female \sqcap =_1 hasParent.Male$
 - "A mammal has one parent that is a female and one parent that is a male."

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 18 / 38

- Car $\square <_2$ driveAxle. \top
 - "A car has at most two drive axles."
- RangeRover $\square =_1$ driveAxle.FrontAxle $\square =_1$ driveAxle.RearAxle
 - "A Range Rover has one front axle as drive axle and one rear axle as drive axle".
- Human $\square =_2$ hasBiologicalParent. \top
 - "A human has two biological parents."
- $Mammal \sqsubseteq =_1 hasParent.Female \sqcap =_1 hasParent.Male$
 - "A mammal has one parent that is a female and one parent that is a male."
- $>_2$ owns. Houses $\sqcup >_5$ own. Car \sqsubseteq Rich
 - "Everyone who owns more than two houses or five cars is rich."

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 18 / 38

One more value restriction

- Restrictions of the form $\forall R.D, \exists R.D, \leq_n R.D, \geq_n R.D$ are called *qualified* when D is not Τ.
- We can also qualify with a closed class.

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 19 / 38

One more value restriction

- Restrictions of the form $\forall R.D, \exists R.D, \leq_n R.D, \geq_n R.D$ are called *qualified* when D is not Τ.
- We can also qualify with a closed class.
- Syntax:
 - RDF/OWL: hasValue,
 - DL, Manchester: just use: {...}.

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 19 / 38

One more value restriction

- Restrictions of the form $\forall R.D, \exists R.D, \leq_n R.D, \geq_n R.D$ are called *qualified* when D is not \top .
- We can also qualify with a closed class.
- Syntax:
 - RDF/OWL: hasValue,
 - DL, Manchester: just use: {...}.
- Example:
 - Bieberette \equiv Girl $\sqcap \exists loves. \{J.Bieber\}$
 - $\top \sqsubseteq \exists loves. \{Mary\}$
 - Norwegian \equiv Person $\cap \exists citizenOf. \{Norway\}$

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 19 / 38

Self restriction

- New construct builder.
- Local reflexivity restriction. Restricts to objects which are related to themselves.
- Syntax:
 - DL: ∃R.Self
 - RDF/OWL: owl:hasSelf,
 - Manchester: Self

Self restriction

- New construct builder.
- Local reflexivity restriction. Restricts to objects which are related to themselves.
- Syntax:
 - DI : ∃R Self
 - RDF/OWL: owl:hasSelf,
 - Manchester: Self
- Semantics:
 - $(\exists R.Self)^{\mathcal{I}} = \{x \in \Delta^{\mathcal{I}} \mid \langle x, x \rangle \in R^{\mathcal{I}}\}$

Self restriction

- New construct builder
- Local reflexivity restriction. Restricts to objects which are related to themselves.
- Syntax:
 - DI : ∃R Self
 - RDF/OWL: owl:hasSelf.
 - Manchester: Self
- Semantics:
 - $(\exists R.Self)^{\mathcal{I}} = \{x \in \Delta^{\mathcal{I}} \mid \langle x, x \rangle \in R^{\mathcal{I}}\}$
- Examples:

 - $\exists hasBoss.Self \sqsubseteq SelfEmployed$

Modelling problems

Restrictions, non-unique names and open worlds

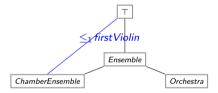
Restrictions + the OWA and the NUNA can be tricky, consider:

TBox:

Orchestra □ *Ensemble*

 $ChamberEnsemble \sqsubseteq Ensemble$

ChamberEnsemble $\sqsubseteq \leq_1$ firstViolin. \top



Restrictions, non-unique names and open worlds

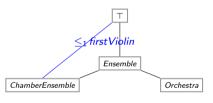
Restrictions + the OWA and the NUNA can be tricky, consider:

TBox:

```
Orchestra □ Ensemble
ChamberEnsemble \sqsubseteq Ensemble
ChamberEnsemble \square <_1 firstViolin.\top
```

ABox:

```
Ensemble(oslo)
firstViolin(oslo, skolem)
firstViolin(oslo, lie)
```



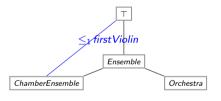
Restrictions + the OWA and the NUNA can be tricky, consider:

TBox:

```
Orchestra \sqsubseteq Ensemble
ChamberEnsemble \sqsubseteq Ensemble
ChamberEnsemble \sqsubseteq \leq_1 firstViolin. \top
```

ABox:

```
Ensemble(oslo)
firstViolin(oslo, skolem)
firstViolin(oslo, lie)
```



- Orchestras and Chamber ensembles are Ensembles.
- Chamber ensembles have only one instrument on each voice,
- in particular, only one first violin.

Restrictions, non-unique names and open worlds

Restrictions + the OWA and the NUNA can be tricky, consider:

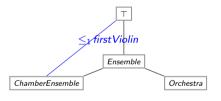
TBox:

```
Orchestra 

Ensemble
ChamberEnsemble \sqsubseteq Ensemble
ChamberEnsemble \square <_1 firstViolin.\top
```

ABox:

```
Ensemble(oslo)
firstViolin(oslo. skolem)
firstViolin(oslo, lie)
```



- Orchestras and Chamber ensembles are Ensembles.
- Chamber ensembles have only one instrument on each voice,
- in particular, only one first violin.
- oslo has two first violins; is oslo an Orchestra?

It does not follow from TBox + ABox that oslo is an *Orchestra*:

- An ensemble need neither be an orchestra nor a chamber ensemble, its "just" an ensemble
- Add "covering axiom" *Ensemble* □ *Orchestra* □ *ChamberEnsemble*:
 - An ensemble is an orchestra or a chamber ensemble.

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 22 / 38

It does not follow from TBox + ABox that oslo is an *Orchestra*:

- An ensemble need neither be an orchestra nor a chamber ensemble, its "just" an ensemble
- Add "covering axiom" *Ensemble* □ *Orchestra* □ *ChamberEnsemble*:
 - An ensemble is an orchestra or a chamber ensemble.

It still does not follow that oslo is an Orchestra:

- This is due to the NUNA
- We cannot assume that skolem and lie are distinct.
- The statement skolem owl:differentFrom lie, i.e., skolem \neq lie, makes oslo an orchestra.

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 22 / 38

It does not follow from TBox + ABox that oslo is an *Orchestra*:

- An ensemble need neither be an orchestra nor a chamber ensemble, its "just" an ensemble.
- Add "covering axiom" *Ensemble*

 ☐ *Orchestra*
 ☐ *ChamberEnsemble*:
 - An ensemble is an orchestra or a chamber ensemble.

It still does not follow that oslo is an Orchestra:

- This is due to the NUNA.
- We cannot assume that skolem and lie are distinct.
- The statement skolem owl:differentFrom lie, i.e., skolem ≠ lie, makes oslo an orchestra.

If we remove firstViolin(oslo, lie), is oslo a ChamberEnsemble?

It does not follow from TBox + ABox that oslo is an *Orchestra*:

- An ensemble need neither be an orchestra nor a chamber ensemble, its "just" an ensemble.
- Add "covering axiom" *Ensemble*

 ☐ *Orchestra*
 ☐ *ChamberEnsemble*:
 - An ensemble is an orchestra or a chamber ensemble.

It still does not follow that oslo is an Orchestra:

- This is due to the NUNA.
- We cannot assume that skolem and lie are distinct.
- The statement skolem owl:differentFrom lie, i.e., skolem ≠ lie, makes oslo an orchestra.

If we remove firstViolin(oslo, lie), is oslo a ChamberEnsemble?

- it does not follow that oslo is a ChamberEnsemble.
- This is due to the OWA:
- oslo may have other first violinists.

Protégé demo of previous slide

- Make class Ensemble.
- Make subclass Orchestra.
- Make subclass ChamberEnsemble.
- Make object property firstViolin.
- Make firstViolin max 1 superclass of ChamberEnsemble.
- Make an Ensemble oslo
- Make a Thing skolem
- Make a Thing lie
- Add firstViolin skolem to oslo
- Add firstViolin lie to oslo
- Classify! Nothing happens.
- Add covering axiom: Orchestra or ChamberEnsemble superclass of Ensemble.
- Classify! Nothing happens.
- skolem is different from lie
- Classify! Bingo! oslo is an Orchestra!

Role characteristics and relationships (RBox)

Vocabulary

Given the *roles* $\{R_1, R_2, \dots\}$

Role characteristics and relationships (RBox)

Vocabulary

```
Given the roles \{R_1, R_2, \dots\}
```

Role descriptions

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 24 / 38

Role characteristics and relationships (RBox)

Vocabulary

```
Given the roles \{R_1, R_2, \dots\}
```

Role descriptions

```
R, S \rightarrow R_i
                             (atomic role)
                             (universal role)
                             (bottom role)
            \perp_{role}
            \neg R
                             (complement role)
            R^{-}
                             (inverse role)
            R \sqcap S
                             (role intersection)
                             (role chain)
            R \circ S
```

Rbox (cont.)

ullet Role axioms: Let R and S be roles, then we can assert

```
• subsumption: R \sqsubseteq S (R^{\mathcal{I}} \subseteq S^{\mathcal{I}}),

• equivalence: R \equiv S (R^{\mathcal{I}} = S^{\mathcal{I}}),

• disjointness: R \sqcap S \sqsubseteq \bot_{\text{role}} (R^{\mathcal{I}} \cap S^{\mathcal{I}} \subseteq \emptyset),
```

• key: R is a key for concept C.

²Restrictions apply

Rbox (cont.)

- ullet Role axioms: Let R and S be roles, then we can assert
 - subsumption: $R \sqsubseteq S$ $(R^{\mathcal{I}} \subseteq S^{\mathcal{I}})$, • equivalence: $R \equiv S$ $(R^{\mathcal{I}} = S^{\mathcal{I}})$,
 - disjointness: $R \sqcap S \sqsubseteq \bot_{\mathsf{role}}$ $(R^{\mathcal{I}} \cap S^{\mathcal{I}} \subseteq \emptyset)$,
 - key: R is a key for concept C.
- A role can have the characteristics (axioms):
 - reflexive, irreflexive,
 - symmetric, asymmetric,
 - transitive, or/and²
 - functional, inverse functional.

²Restrictions apply

New roles

- The universal role, and the empty role—for both object roles and data roles.
- Syntax:
 - (DL: *U* (universal object role), *D* (universal data value role))
 - RDF/OWL, Manchester: owl:topObjectProperty, owl:topDataProperty, owl:bottomObjectProperty, owl:bottomDataProperty

New roles

- The universal role, and the empty role—for both object roles and data roles.
- Syntax:
 - (DL: *U* (universal object role), *D* (universal data value role))
 - RDF/OWL, Manchester: owl:topObjectProperty, owl:topDataProperty, owl:bottomObjectProperty, owl:bottomDataProperty
- Semantics:
 - $U^{\mathcal{I}} = \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$
 - $\mathcal{D}^{\mathcal{I}} = \Delta^{\mathcal{I}} \times \Lambda$

New roles

- The universal role, and the empty role—for both object roles and data roles.
- Syntax:
 - (DL: *U* (universal object role), *D* (universal data value role))
 - RDF/OWL, Manchester: owl:topObjectProperty, owl:topDataProperty, owl:bottomObjectProperty, owl:bottomDataProperty
- Semantics:
 - $U^{\mathcal{I}} = \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$
 - $\mathcal{D}^{\mathcal{I}} = \Delta^{\mathcal{I}} \times \Lambda$
- Reads:
 - all pairs of individuals are connected by owl:topObjectProperty,
 - no individuals are connected by owl:bottomObjectProperty.
 - all possible individuals are connected with all literals by owl:topDataProperty,
 - no individual is connected by owl:bottomDataProperty to a literal.

Corresponding mathematical properties and operations

If R and S are binary relations on X then

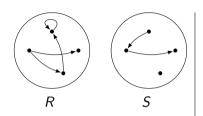
$$\bullet \ (R^-)^{\mathcal{I}} = \{ \langle a^{\mathcal{I}}, b^{\mathcal{I}} \rangle \mid \langle b^{\mathcal{I}}, a^{\mathcal{I}} \rangle \in R^{\mathcal{I}} \}$$

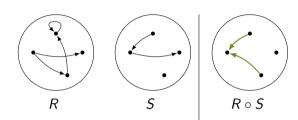
Corresponding mathematical properties and operations

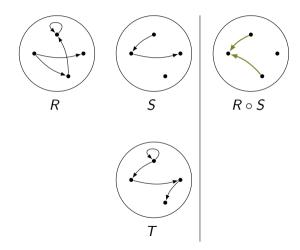
If R and S are binary relations on X then

$$\bullet \ (R^-)^{\mathcal{I}} = \{ \langle a^{\mathcal{I}}, b^{\mathcal{I}} \rangle \mid \langle b^{\mathcal{I}}, a^{\mathcal{I}} \rangle \in R^{\mathcal{I}} \}$$

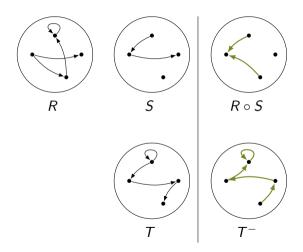
$$\bullet \ (R \circ S)^{\mathcal{I}} = \{ \langle a^{\mathcal{I}}, c^{\mathcal{I}} \rangle \mid \langle a^{\mathcal{I}}, b^{\mathcal{I}} \rangle \in R^{\mathcal{I}}, \langle b^{\mathcal{I}}, c^{\mathcal{I}} \rangle \in S^{\mathcal{I}} \}$$







28 / 38



Common properties of roles

A relation R over a set X ($R \subseteq X \times X$) is

Reflexive: if $\langle a, a \rangle \in R$ for all $a \in X$

 $(X \sqsubseteq \exists R.Self)$

A relation R over a set X ($R \subseteq X \times X$) is

Reflexive: if $\langle a, a \rangle \in R$ for all $a \in X$ $(X \sqsubseteq \exists R.Self)$ if $\langle a, a \rangle \notin R$ for all $a \in X$ $(X \sqsubset \neg \exists R.Self)$ Irreflexive:

Common properties of roles

A relation R over a set X $(R \subset X \times X)$ is

Reflexive: if $\langle a, a \rangle \in R$ for all $a \in X$ $(X \sqsubseteq \exists R.Self)$ if $\langle a, a \rangle \notin R$ for all $a \in X$ $(X \sqsubset \neg \exists R.Self)$ Irreflexive:

if $\langle a, b \rangle \in R$ implies $\langle b, a \rangle \in R$ $(R^- \sqsubseteq R)$ Symmetric:

```
Reflexive:
                                    if \langle a, a \rangle \in R for all a \in X
                                                                                                           (X \sqsubseteq \exists R.Self)
Irreflexive:
                                    if \langle a, a \rangle \not\in R for all a \in X
                                                                                                           (X \sqsubset \neg \exists R.Self)
                                    if \langle a, b \rangle \in R implies \langle b, a \rangle \in R
                                                                                                           (R^- \sqsubseteq R)
Symmetric:
                                    if \langle a, b \rangle \in R implies \langle b, a \rangle \notin R
Asymmetric:
                                                                                                           (R^- \sqsubset \neg R)
```

```
Reflexive:
                                     if \langle a, a \rangle \in R for all a \in X
                                                                                                            (X \sqsubseteq \exists R.Self)
Irreflexive:
                                    if \langle a, a \rangle \not\in R for all a \in X
                                                                                                            (X \sqsubset \neg \exists R.Self)
Symmetric:
                                    if \langle a, b \rangle \in R implies \langle b, a \rangle \in R
                                                                                                            (R^- \sqsubseteq R)
Asymmetric:
                                    if \langle a, b \rangle \in R implies \langle b, a \rangle \notin R
                                                                                                            (R^- \sqsubset \neg R)
Transitive:
                                     if \langle a, b \rangle, \langle b, c \rangle \in R implies \langle a, c \rangle \in R
                                                                                                            (R \circ R \sqsubseteq R)
```

```
Reflexive:
                                     if \langle a, a \rangle \in R for all a \in X
                                                                                                              (X \sqsubseteq \exists R.Self)
Irreflexive:
                                     if \langle a, a \rangle \notin R for all a \in X
                                                                                                              (X \sqsubset \neg \exists R.Self)
                                     if \langle a, b \rangle \in R implies \langle b, a \rangle \in R
                                                                                                              (R^- \sqsubseteq R)
Symmetric:
                                     if \langle a, b \rangle \in R implies \langle b, a \rangle \notin R
Asymmetric:
                                                                                                              (R^- \sqsubset \neg R)
Transitive:
                                     if \langle a, b \rangle, \langle b, c \rangle \in R implies \langle a, c \rangle \in R
                                                                                                              (R \circ R \sqsubseteq R)
Functional:
                                     if \langle a, b \rangle, \langle a, c \rangle \in R implies b = c
                                                                                                              (\top \sqsubset <_1 R.\top)
```

```
Reflexive:
                                                                                                            (X \sqsubseteq \exists R.Self)
                                    if \langle a, a \rangle \in R for all a \in X
Irreflexive:
                                    if \langle a, a \rangle \notin R for all a \in X
                                                                                                             (X \sqsubset \neg \exists R.Self)
                                    if \langle a, b \rangle \in R implies \langle b, a \rangle \in R
                                                                                                             (R^- \sqsubseteq R)
Symmetric:
Asymmetric:
                                    if \langle a, b \rangle \in R implies \langle b, a \rangle \notin R
                                                                                                             (R^- \sqsubset \neg R)
Transitive:
                                    if \langle a, b \rangle, \langle b, c \rangle \in R implies \langle a, c \rangle \in R
                                                                                                            (R \circ R \sqsubseteq R)
Functional:
                                    if \langle a, b \rangle, \langle a, c \rangle \in R implies b = c
                                                                                                            (\top \sqsubset <_1 R.\top)
                                    if \langle a, b \rangle, \langle c, b \rangle \in R implies a = c
                                                                                                            (\top \subseteq \leq_1 R^-.\top)
Inverse functional:
```

Properties in OWL

Remember: three kinds of *mutually disjoint* properties in OWL:

- owl:DatatypeProperty
 - link individuals to data values, e.g., xsd:string.
 - Examples: :hasAge, :hasSurname.
- owl:ObjectProperty
 - link individuals to individuals.
 - Example: :hasFather, :driveAxle.
- owl:AnnotationProperty
 - has no logical implication, ignored by reasoners.
 - Examples: rdfs:label, dc:creator.

• Object properties link individuals to individuals, so all characteristics and operations are defined for them.

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 31 / 38

- Object properties link individuals to individuals, so all characteristics and operations are defined for them.
- Datatype properties link individuals to data values, so they cannot be
 - reflexive—or they would not be datatype properties,

- Object properties link individuals to individuals, so all characteristics and operations are defined for them.
- Datatype properties link individuals to data values, so they cannot be
 - reflexive—or they would not be datatype properties.
 - transitive—since no property takes data values in 1. position.

- Object properties link individuals to individuals, so all characteristics and operations are defined for them.
- Datatype properties link individuals to data values, so they cannot be
 - reflexive—or they would not be datatype properties,
 - transitive—since no property takes data values in 1. position,
 - symmetric—as above,

- Object properties link individuals to individuals, so all characteristics and operations are defined for them.
- Datatype properties link individuals to data values, so they cannot be
 - reflexive—or they would not be datatype properties.
 - transitive—since no property takes data values in 1. position.
 - symmetric—as above,
 - inverses—as above.

- Object properties link individuals to individuals, so all characteristics and operations are defined for them.
- Datatype properties link individuals to data values, so they cannot be
 - reflexive—or they would not be datatype properties,
 - transitive—since no property takes data values in 1. position,
 - symmetric—as above,
 - inverses—as above,
 - inverse functional—for computational reasons,

- Object properties link individuals to individuals, so all characteristics and operations are defined for them.
- Datatype properties link individuals to data values, so they cannot be
 - reflexive—or they would not be datatype properties,
 - transitive—since no property takes data values in 1. position,
 - symmetric—as above.
 - inverses—as above,
 - inverse functional—for computational reasons,
 - part of chains—as above,

- Object properties link individuals to individuals, so all characteristics and operations are defined for them.
- Datatype properties link individuals to data values, so they cannot be
 - reflexive—or they would not be datatype properties.
 - transitive—since no property takes data values in 1. position.
 - symmetric—as above.
 - inverses—as above.
 - inverse functional—for computational reasons.
 - part of chains—as above.
 - so, what remains is: functionality.

- Object properties link individuals to individuals, so all characteristics and operations are defined for them.
- Datatype properties link individuals to data values, so they cannot be
 - reflexive—or they would not be datatype properties,
 - transitive—since no property takes data values in 1. position,
 - symmetric—as above.
 - inverses—as above,
 - inverse functional—for computational reasons,
 - part of chains—as above,
 - so, what remains is: functionality,
 - (and subsumption, equivalence and disjointness).

- Object properties link individuals to individuals, so all characteristics and operations are defined for them.
- Datatype properties link individuals to data values, so they cannot be
 - reflexive—or they would not be datatype properties,
 - transitive—since no property takes data values in 1. position,
 - symmetric—as above.
 - inverses—as above,
 - inverse functional—for computational reasons,
 - part of chains—as above,
 - so, what remains is: functionality,
 - (and subsumption, equivalence and disjointness).

- Object properties link individuals to individuals, so all characteristics and operations are defined for them.
- Datatype properties link individuals to data values, so they cannot be
 - reflexive—or they would not be datatype properties,
 - transitive—since no property takes data values in 1. position,
 - symmetric—as above.
 - inverses—as above,
 - inverse functional—for computational reasons,
 - part of chains—as above,
 - so, what remains is: functionality,
 - (and subsumption, equivalence and disjointness).
- (Annotation properties have no logical implication, so nothing can be said about them.)

Some relations from ordinary language

• Symmetric relations:

Some relations from ordinary language

- Symmetric relations:
 - hasSibling

- Symmetric relations:
 - hasSibling
 - differentFrom

- Symmetric relations:
 - hasSibling
 - differentFrom
- *Non*-symmetric relations:

- Symmetric relations:
 - hasSibling
 - differentFrom
- *Non*-symmetric relations:
 - hasBrother

- Symmetric relations:
 - hasSibling
 - differentFrom
- Non-symmetric relations:
 - hasBrother
- Asymmetric relations:

- Symmetric relations:
 - hasSibling
 - differentFrom
- Non-symmetric relations:
 - hasBrother
- Asymmetric relations:
 - olderThan

- Symmetric relations:
 - hasSibling
 - differentFrom
- Non-symmetric relations:
 - hasBrother
- Asymmetric relations:
 - olderThan
 - memberOf

- Symmetric relations:
 - hasSibling
 - differentFrom
- Non-symmetric relations:
 - hasBrother
- Asymmetric relations:
 - olderThan
 - memberOf
- Transitive relations:

- Symmetric relations:
 - hasSibling
 - differentFrom
- Non-symmetric relations:
 - hasBrother
- Asymmetric relations:
 - olderThan
 - memberOf
- Transitive relations:
 - olderThan

- Symmetric relations:
 - hasSibling
 - differentFrom
- Non-symmetric relations:
 - hasBrother
- Asymmetric relations:
 - olderThan
 - memberOf
- Transitive relations:
 - olderThan
 - hasSibling

- Symmetric relations:
 - hasSibling
 - differentFrom
- Non-symmetric relations:
 - hasBrother
- Asymmetric relations:
 - olderThan
 - memberOf
- Transitive relations:
 - olderThan
 - hasSibling
- Functional relations:

- Symmetric relations:
 - hasSibling
 - differentFrom
- *Non*-symmetric relations:
 - hasBrother
- Asymmetric relations:
 - olderThan
 - memberOf
- Transitive relations:
 - olderThan
 - hasSibling
- Functional relations:
 - hasBiologicalMother

- Symmetric relations:
 - hasSibling
 - differentFrom
- *Non*-symmetric relations:
 - hasBrother
- Asymmetric relations:
 - olderThan
 - memberOf
- Transitive relations:
 - olderThan
 - hasSibling
- Functional relations:
 - hasBiologicalMother
- Inverse functional relations:

- Symmetric relations:
 - hasSibling
 - differentFrom
- *Non*-symmetric relations:
 - hasBrother
- Asymmetric relations:
 - olderThan
 - memberOf
- Transitive relations:
 - olderThan
 - hasSibling
- Functional relations:
 - hasBiologicalMother
- Inverse functional relations:
 - gaveBirthTo

Examples inverses and chains

Some inverses:

- $hasParent = hasChild^-$
- hasBiologicalMother ≡ gaveBirthTo⁻
- olderThan ≡ youngerThan⁻

Examples inverses and chains

Some inverses:

- hasParent ≡ hasChild[−]
- hasBiologicalMother ≡ gaveBirthTo⁻
- olderThan ≡ youngerThan[−]

Some role chains:

- hasParent hasParent □ hasGrandParent
- hasAncestor hasAncestor □ hasAncestor
- hasParent ∘ hasBrother ⊑ hasUncle

Quirks

Role modelling in OWL 2 can get excessively complicated.

- For instance:
 - transitive roles cannot be irreflexive or asymmetric,

Role modelling in OWL 2 can get excessively complicated.

- For instance:
 - transitive roles cannot be irreflexive or asymmetric,
 - role inclusions are not allowed to cycle, i.e. not

```
\label{eq:hasParent} \begin{tabular}{ll} hasParent \circ hasHusband \sqsubseteq hasFather \\ hasParent. \\ \end{tabular}
```

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 34 / 38

Role modelling in OWL 2 can get excessively complicated.

- For instance:
 - transitive roles cannot be irreflexive or asymmetric,
 - role inclusions are not allowed to cycle, i.e. not hasParent ○ hasHusband

 hasFather hasFather
 hasParent.
 - transitive roles R and S cannot be declared disjoint

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 34 / 38

Role modelling in OWL 2 can get excessively complicated.

- For instance:
 - transitive roles cannot be irreflexive or asymmetric,

 - transitive roles R and S cannot be declared disjoint
- Note:
 - these restrictions can be hard to keep track of
 - the reason they exist are computational, not logical

Role modelling in OWL 2 can get excessively complicated.

- For instance:
 - transitive roles cannot be irreflexive or asymmetric,

 - transitive roles R and S cannot be declared disjoint
- Note:
 - these restrictions can be hard to keep track of
 - the reason they exist are computational, not logical
- Fortunately:
 - There are also simple patterns
 - that are quite useful.

- Many predefined datatypes are available in OWL:
 - all common XSD datatypes: xsd:string, xsd:int, ...
 - a few from RDF: rdf:PlainLiteral,
 - and a few of their own: owl:real and owl:rational.

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 35 / 38

- Many predefined datatypes are available in OWL:
 - all common XSD datatypes: xsd:string, xsd:int, ...
 - a few from RDF: rdf:PlainLiteral.
 - and a few of their own: owl:real and owl:rational.
- New datatypes can be defined by boolean operations: ¬, □, □:
 - owl:datatypeComplementOf, owl:intersectionOf, owl:unionOf.

- Many predefined datatypes are available in OWL:
 - all common XSD datatypes: xsd:string, xsd:int, ...
 - a few from RDF: rdf:PlainLiteral,
 - and a few of their own: owl:real and owl:rational.
- New datatypes can be defined by boolean operations: ¬, □, □:
 - owl:datatypeComplementOf, owl:intersectionOf, owl:unionOf.
- Datatypes may be restricted with constraining facets, borrowed from XML Schema.
 - For numeric datatypes: xsd:minInclusive, xsd:maxInclusive
 - For string datatypes: xsd:minLenght, xsd:maxLenght, xsd:pattern.

- Many predefined datatypes are available in OWL:
 - all common XSD datatypes: xsd:string, xsd:int, ...
 - a few from RDF: rdf:PlainLiteral.
 - and a few of their own: owl:real and owl:rational.
- New datatypes can be defined by boolean operations: ¬, □, □:
 - owl:datatypeComplementOf, owl:intersectionOf, owl:unionOf.
- Datatypes may be restricted with constraining facets, borrowed from XML Schema.
 - For numeric datatypes: xsd:minInclusive, xsd:maxInclusive
 - For string datatypes: xsd:minLenght, xsd:maxLenght, xsd:pattern.
- Example:
 - Teenager is equivalent to: (Manchester)
 Person and (age some positiveInteger[>= 13, <= 19])
 - "A teenager is a person of age 13 to 19."

- ✓ A person has a mother.
- ✓ A penguin eats only fish. A horse eats only chocolate.
- ✓ A nuclear family has two parents, at least two children and a dog.

So, what can we say now?

- ✓ A person has a mother.
- ✓ A penguin eats only fish. A horse eats only chocolate.
- ✓ A nuclear family has two parents, at least two children and a dog.

(NuclearFam $\sqsubseteq =_2$ hasMember.Parent $\sqcap \ge_2$ hasMember.Child $\sqcap \exists$ hasMember.Dog)

- ✓ A person has a mother.
- ✓ A penguin eats only fish. A horse eats only chocolate.
- ✓ A nuclear family has two parents, at least two children and a dog. (NuclearFam $\sqsubseteq =_2$ hasMember.Parent $\square \ge_2$ hasMember.Child \square ∃hasMember.Dog)
- ✓ A smoker is not a non-smoker (and vice versa).

- ✓ A person has a mother.
- ✓ A penguin eats only fish. A horse eats only chocolate.
- ✓ A nuclear family has two parents, at least two children and a dog. (NuclearFam $\sqsubseteq =_2$ hasMember.Parent $\sqcap \ge_2$ hasMember.Child $\sqcap \exists$ hasMember.Dog)
- ✓ A smoker is not a non-smoker (and vice versa).
- Everybody loves Mary.

So, what can we say now?

- ✓ A person has a mother.
- ✓ A penguin eats only fish. A horse eats only chocolate.
- ✓ A nuclear family has two parents, at least two children and a dog. (NuclearFam $\sqsubseteq =_2$ hasMember.Parent $\square \ge_2$ hasMember.Child \square ∃hasMember.Dog)
- ✓ A smoker is not a non-smoker (and vice versa).
- ✓ Everybody loves Mary. $(\top \sqsubseteq \exists loves.\{mary\})$ or $Person \sqsubseteq \exists loves.\{mary\}$

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 36 / 38

- ✓ A person has a mother.
- ✓ A penguin eats only fish. A horse eats only chocolate.
- ✓ A nuclear family has two parents, at least two children and a dog.
 (NuclearFam □ = 2 hasMember.Parent □ > 2 hasMember.Child □ ∃hasMember.Dog)
- ✓ A smoker is not a non-smoker (and vice versa).
- ✓ Everybody loves Mary. ($\top \sqsubseteq \exists loves.\{mary\}$ or $Person \sqsubseteq \exists loves.\{mary\}$)
- ✓ Adam is not Eve (and vice versa).

- ✓ A person has a mother.
- ✓ A penguin eats only fish. A horse eats only chocolate.
- ✓ A nuclear family has two parents, at least two children and a dog.
 (NuclearFam □ = 2 hasMember.Parent □ > 2 hasMember.Child □ ∃hasMember.Dog)
- ✓ A smoker is not a non-smoker (and vice versa).
- ✓ Everybody loves Mary. ($\top \sqsubseteq \exists loves.\{mary\}$ or $Person \sqsubseteq \exists loves.\{mary\}$)
- ✓ Adam is not Eve (and vice versa). $(adam \neq eve)$

- ✓ A person has a mother.
- ✓ A penguin eats only fish. A horse eats only chocolate.
- ✓ A nuclear family has two parents, at least two children and a dog.
 (NuclearFam □ = 2 hasMember.Parent □ > 2 hasMember.Child □ ∃hasMember.Dog)
- ✓ A smoker is not a non-smoker (and vice versa).
- ✓ Everybody loves Mary. ($\top \sqsubseteq \exists loves.\{mary\}$ or Person $\sqsubseteq \exists loves.\{mary\}$)
- ✓ Adam is not Eve (and vice versa). (adam ≠ eve)
- ✓ Everything is black or white.

- ✓ A person has a mother.
- ✓ A penguin eats only fish. A horse eats only chocolate.
- ✓ A nuclear family has two parents, at least two children and a dog.

```
(\mathit{NuclearFam} \sqsubseteq =_2 \mathit{hasMember.Parent} \sqcap \geq_2 \mathit{hasMember.Child} \sqcap \exists \mathit{hasMember.Dog})
```

- ✓ A smoker is not a non-smoker (and vice versa).
- ✓ Everybody loves Mary. ($\top \sqsubseteq \exists loves.\{mary\}$ or $Person \sqsubseteq \exists loves.\{mary\}$)
- ✓ Adam is not Eve (and vice versa). $(adam \neq eve)$
- Everything is black or white.
- The brother of my father is my uncle.

- ✓ A person has a mother.
- ✓ A penguin eats only fish. A horse eats only chocolate.
- ✓ A nuclear family has two parents, at least two children and a dog.

 (NuclearFam $\Box =_2$ hasMember.Parent $\Box >_2$ hasMember.Child \Box hasMember.Dog)
- ✓ A smoker is not a non-smoker (and vice versa).
- ✓ Everybody loves Mary. $(\top \sqsubseteq \exists loves.\{mary\})$ or $Person \sqsubseteq \exists loves.\{mary\})$
- ✓ Adam is not Eve (and vice versa). $(adam \neq eve)$
- Everything is black or white.
- ✓ The brother of my father is my uncle. (hasFather \circ hasBrother \sqsubseteq hasUncle)

- ✓ A person has a mother.
- ✓ A penguin eats only fish. A horse eats only chocolate.
- ✓ A nuclear family has two parents, at least two children and a dog.

```
(\textit{NuclearFam} \sqsubseteq =_2 \textit{hasMember.Parent} \sqcap \ge_2 \textit{hasMember.Child} \sqcap \exists \textit{hasMember.Dog})
```

- ✓ A smoker is not a non-smoker (and vice versa).
- ✓ Everybody loves Mary. ($\top \sqsubseteq \exists loves.\{mary\}$ or $Person \sqsubseteq \exists loves.\{mary\}$)
- ✓ Adam is not Eve (and vice versa). $(adam \neq eve)$
- Everything is black or white.
- ✓ The brother of my father is my uncle. (hasFather o hasBrother \subseteq hasUncle)
- ✓ My friend's friends are also my friends.

- ✓ A person has a mother.
- ✓ A penguin eats only fish. A horse eats only chocolate.
- ✓ A nuclear family has two parents, at least two children and a dog. (NuclearFam $\sqsubseteq =_2$ hasMember.Parent $\square \ge_2$ hasMember.Child \square ∃hasMember.Dog)
- ✓ A smoker is not a non-smoker (and vice versa).
- ✓ Everybody loves Mary. ($\top \sqsubseteq \exists loves.\{mary\}$ or Person $\sqsubseteq \exists loves.\{mary\}$)
- ✓ Adam is not Eve (and vice versa). $(adam \neq eve)$
- Everything is black or white.
- ✓ The brother of my father is my uncle. (hasFather \circ hasBrother \sqsubseteq hasUncle)
- ✓ My friend's friends are also my friends. (hasFriend o hasFriend hasFriend)

- ✓ A person has a mother.
- ✓ A penguin eats only fish. A horse eats only chocolate.
- ✓ A nuclear family has two parents, at least two children and a dog.

 (NuclearFam $\Box =_2$ hasMember.Parent $\Box >_2$ hasMember.Child \Box hasMember.Dog)
- ✓ A smoker is not a non-smoker (and vice versa).
- ✓ Everybody loves Mary. (T

 ∃loves.{mary} or Person

 ∃loves.{mary})
- ✓ Adam is not Eve (and vice versa). $(adam \neq eve)$
- Everything is black or white.
- ✓ The brother of my father is my uncle. (hasFather \circ hasBrother \sqsubseteq hasUncle)
- ✓ My friend's friends are also my friends. (hasFriend o hasFriend \subseteq hasFriend)
- ✓ If Homer is married to Marge, then Marge is married to Homer.

- ✓ A person has a mother.
- ✓ A penguin eats only fish. A horse eats only chocolate.
- ✓ A nuclear family has two parents, at least two children and a dog.

```
(NuclearFam \sqsubseteq =_2 hasMember.Parent \sqcap \ge_2 hasMember.Child \sqcap \exists hasMember.Dog)
```

- ✓ A smoker is not a non-smoker (and vice versa).
- ✓ Everybody loves Mary. ($\top \sqsubseteq \exists loves.\{mary\}$) or $Person \sqsubseteq \exists loves.\{mary\}$)
- ✓ Adam is not Eve (and vice versa). $(adam \neq eve)$
- Everything is black or white.
- ✓ The brother of my father is my uncle. (hasFather \circ hasBrother \sqsubseteq hasUncle)
- ✓ My friend's friends are also my friends. (hasFriend o hasFriend \subseteq hasFriend)
- ✓ If Homer is married to Marge, then Marge is married to Homer. ($marriedTo^- \sqsubseteq marriedTo$)

- ✓ A person has a mother.
- ✓ A penguin eats only fish. A horse eats only chocolate.
- ✓ A nuclear family has two parents, at least two children and a dog.

```
(\textit{NuclearFam} \sqsubseteq =_2 \textit{hasMember.Parent} \ \sqcap \ \geq_2 \textit{hasMember.Child} \ \sqcap \ \exists \textit{hasMember.Dog})
```

- ✓ A smoker is not a non-smoker (and vice versa).
- ✓ Everybody loves Mary. ($\top \sqsubseteq \exists loves.\{mary\}$) or $Person \sqsubseteq \exists loves.\{mary\}$)
- ✓ Adam is not Eve (and vice versa). $(adam \neq eve)$
- Everything is black or white.
- ✓ The brother of my father is my uncle. (hasFather o hasBrother \subseteq hasUncle)
- ✓ My friend's friends are also my friends. (hasFriend o hasFriend \subseteq hasFriend)
- ✓ If Homer is married to Marge, then Marge is married to Homer. (marriedTo-

 marriedTo)
- ✓ If Homer is a parent of Bart, then Bart is a child of Homer.

- ✓ A person has a mother.
- ✓ A penguin eats only fish. A horse eats only chocolate.
- ✓ A nuclear family has two parents, at least two children and a dog.

```
(NuclearFam \sqsubseteq =_2 hasMember.Parent \sqcap \ge_2 hasMember.Child \sqcap \exists hasMember.Dog)
```

- ✓ A smoker is not a non-smoker (and vice versa).
- ✓ Everybody loves Mary. ($\top \sqsubseteq \exists loves.\{mary\}$) or $Person \sqsubseteq \exists loves.\{mary\}$)
- ✓ Adam is not Eve (and vice versa). ($adam \neq eve$)
- Everything is black or white.
- ✓ The brother of my father is my uncle. (hasFather \circ hasBrother \sqsubseteq hasUncle)
- ✓ My friend's friends are also my friends. (hasFriend o hasFriend \subseteq hasFriend)
- ✓ If Homer is married to Marge, then Marge is married to Homer. (marriedTo-

 marriedTo)
- ✓ If Homer is a parent of Bart, then Bart is a child of Homer. (parentOf = childOf)

So, what can we say now?

- ✓ A person has a mother.
- ✓ A penguin eats only fish. A horse eats only chocolate.
- ✓ A nuclear family has two parents, at least two children and a dog.

```
(\textit{NuclearFam} \sqsubseteq =_2 \textit{hasMember.Parent} \ \sqcap \ \geq_2 \textit{hasMember.Child} \ \sqcap \ \exists \textit{hasMember.Dog})
```

- ✓ A smoker is not a non-smoker (and vice versa).
- ✓ Everybody loves Mary. ($\top \sqsubseteq \exists loves.\{mary\}$) or $Person \sqsubseteq \exists loves.\{mary\}$)
- ✓ Adam is not Eve (and vice versa). ($adam \neq eve$)
- ✓ Everything is black or white.
- ✓ The brother of my father is my uncle. (hasFather \circ hasBrother \sqsubseteq hasUncle)
- ✓ My friend's friends are also my friends. (hasFriend o hasFriend \subseteq hasFriend)
- ✓ If Homer is married to Marge, then Marge is married to Homer. (marriedTo-

 marriedTo)
- ✓ If Homer is a parent of Bart, then Bart is a child of Homer. (parentOf = childOf)

... and more!

DL: Family of languages

http://www.cs.man.ac.uk/~ezolin/dl/

INF3580/4580 :: Spring 2017 Lecture 11 :: 27th March 37 / 30

Next week

- More modelling with OWL/OWL 2.
- What cannot be expressed in OWL/OWL 2?