INF3580/4580 — Semantic Technologies — Spring 2017
Lecture 12: OWL: Loose Ends

Ernesto Jiménez-Ruiz

3rd April 2017

UNIVERSITY OF
OsLo

DEPARTMENT OF

c INFORMATICS

Reminder: OWL

Outline

© Reminder: OWL

INF3580/4580 :: Spring 2017 Lecture 12 :: 3rd April

T ———
Mandatory exercises

@ Oblig 6 published after lecture.
o First attempt by April 25th.
@ Second attempt by May 16th.

INF3580,/4580 :: Spring 2017 Lecture 12 :: 3rd April

Make it simple!

“Data level” with resources
“Ontology level” with properties and ‘“classes”
Can have rdf :type relation between data objects and classes

Allow a fixed vocabulary for relations between classes and properties

Interpret:
o Class as set of data objects
o Property as relation between data objects

INF3580/4580 :: Spring 2017 Lecture 12 :: 3rd April

Reminder: OWL Reminder: OWL

OWL 2 TBox and ABox OWL 2 TBox and ABox
@ The TBox

e is for terminological knowledge

o is independent of any actual instance data @ The ABox

o is a set of axioms: o is for assertional knowledge
o Class inclusion C, equivalence = e contains facts about concrete instances a, b, c, . ..
@ roles symmetric, asymmetric, reflexive, irreflexive, transitive,. .. e A set of (negative) concept assertions C(a), —=D(b) ...
e roles functional, inverse functional e and (negative) role assertions R(b, c), =S(a, b)
o inverse roles: hasParent = hasChild o also owl:sameAs: a = b and owl:differentFrom: a # b.
o role inclusion hasBrother C hasSibling
@ role chains hasParent o hasBrother = hasUncle

e Only certain combinations allowed

INF3580,/4580 :: Spring 2017 Lecture 12 :: 3rd April / INF3580,/4580 :: Spring 2017 Lecture 12 :: 3rd April

Assumptions A Strange Catalogue

@ We have seen many nice things that can be said in OWL
@ Why the strange restrictions, e.g. on role axioms?

@ Why not use 1st-order logic, could say much more?

@ Closed World Assumption
@ Open World Assumption @ Because of the reasoning

o Class satisfiability (C # L)
@ Unique Name Assumption Classification (C E D)

]
Inst Check (C
Non-Unique Name Assumption : ”5. ance Check (C(a))

o All decidable

@ Algorithm gives a correct answer after finite time

@ Add a little more to OWL, and this is lost

INF3580/4580 :: Spring 2017 Lecture 12 :: 3rd April / INF3580/4580 :: Spring 2017 Lecture 12 :: 3rd April

Disjointness and Covering Axioms

Single and Married
@ Try to model the relationship between the concepts Person, Married and Single:

Outline
o First try:
Single T Person
Married T Person

o General shape of a model:

e Disjointness and Covering Axioms
oy

Person

Married Single

Eresto

L]
Emilie

@ x is both Single and Married, y is neither but a Person

Lecture 12 :: 3rd April

INF3580,/4580 :: Spring 2017

Lecture 12 :: 3rd April

INF3580,/4580 :: Spring 2017

Disjointness and Covering Axioms Disjointness and Covering Axioms
Disjointness Axioms Covering Axioms
@ Nothing should be both a Single and a Married
o Add a disjointness axiom for Single and Married . . .
2 cuajointhess axi ng ! @ Any Person should be either Single or Married.
@ Equivalent possibilities:]])]
Single 1 Married = 1 o Add a covering axiom Person C Married U Single
Single T —Married @ General shape of a model (with disjointness):
Married C —Single Person
@ General shape of a model: Harred Single
[Em3e
Person oy Ernesto
Single
emie
@ Specific support in Protégé (Edit Menu: “Add Covering Axiom™)
@ Specific support in OWL (owl:disjointWith) and Protégé
Lecture 12 :: 3rd April INF3580/4580 :: Spring 2017 Lecture 12 :: 3rd April

INF3580/4580 :: Spring 2017

Disjointness and Covering Axioms Disjointness and Covering Axioms

Meat and Veggies Cats and Dogs
o Careful: not all subclasses are disjoint and covering
o Subclasses can be covering but not disjoint. @ Subclasses can be disjoint but not covering.
° E.g.] E.g.
MeatEatingMammal T Mammal Cat T Mammal
VeggieEatingMammal T Mammal Dog £ Mammal
o All mammals eat either meat or vegetables. .. @ Nothing is both a cat and a dog: Cat C —~Dog
e Mammal T MeatEatingMammal U VeggieEatingMammal @ But there are mammals which are neither
o But there are mammals eating both @ No covering axiom with subclasses Cat and Dog for Mammal
@ No disjointness axiom for MeatEatingMammal and VeggieEatingMammal

INF3580,/4580 :: Spring 2017 Lecture 12 :: 3rd April / INF3580,/4580 :: Spring 2017 Lecture 12 :: 3rd April

Teachers and Students Outline

Subclasses can be neither disjoint nor covering.
E.g.

Teacher T Person
Researcher T Person 9 Keys
There are people who are neither a researcher nor a teacher (yet)
No covering axiom for these subclasses of Person
There are people who are both a researcher and a teacher
E.g. most PhD students
No disjointness axiom for Reasearcher and Teacher

INF3580/4580 :: Spring 2017 Lecture 12 :: 3rd April / INF3580/4580 :: Spring 2017 Lecture 12 :: 3rd April

Keys Keys

@ A Norwegian is uniquely identified by his/her “personnummer”
o Different Norwegians have different numbers
@ Each customer in the DB is uniquely identified by the customer ID

o No two customers with the same customer 1D o Keys in applications are usually (tuples of) literals
o Referred to as a key for a database table. @ Can we use “inverse functional datatype properties’ ?
@ A course is uniquely determined by code, semester, year. @ Reasoning about these is problematic
o E.g. (INF3580/4580, Spring, 2017) @ Their exixtence would imply a literal as subject in a triple (not allowed in RDF)
® Ris a key for some set A if for all x,y € A @ Therefore, datatype properties cannot be declared inverse functional in OWL 2
xRk and y Rk imply x=y
@ So R is a key if it is “inverse functional”

o There is a function giving exactly one object for every key value

INF3580,/4580 :: Spring 2017 Lecture 12 :: 3rd April 7/ INF3580,/4580 :: Spring 2017 Lecture 12 :: 3rd April

OWL 2 Keys Reasoning with OWL Keys
@ Given:

o :Norwegian hasKey {:personnr}
:drillo a :Norwegian
:drillo :personnr "12345698765"
regil a :Norwegian
tegil :personnr "12345698765"
o Can infer:

o :drillo owl:sameAs :egil

@ OWL 2 includes special "hasKey" axioms

@ Example: Course hasKey {hasCode, hasSemester, hasYear}

@ Works for object properties and datatype properties.
o OWL Keys apply only to explicitly named instances
o Makes reasoning tractable. o Given:
e It may not be uspported by all OWL 2 reasoners o :Singleton hasKey {:id}
o :Singleton C :id value 1
e :xX a :Singleton
e :y a :Singleton
o Can infer:
o :x owl:sameAs :y

INF3580/4580 :: Spring 2017 Lecture 12 :: 3rd April / INF3580/4580 :: Spring 2017 Lecture 12 :: 3rd April

What's with the “named instances”?

o Given:
e :Singleton hasKey {:id}
:Singleton L :id value 1
:x a :Singleton
:Singleton C :other some :Singleton

:Singleton

@ Since _:b is a blank node, and therefore not an explicitly named instance,
@ the reasoner does not infer :x owl:sameAs _:b.

INF3580,/4580 :: Spring 2017 Lecture 12 :: 3rd April

Outline

@ Punning

INF3580/4580 :: Spring 2017 Lecture 12 :: 3rd April

What's with the “named instances”?

o Given:
e :Singleton hasKey {:id}

o :Singleton L :id value 1
e :x a :Singleton
e :Singleton C :other some (:Singleton and not {:x})
:Singleton
a a
:other
X _:b

@ This is not inconsistent.
@ Distinct keys only required for explicitly named individuals.

INF3580,/4580 :: Spring 2017 Lecture 12 :: 3rd April

Punning

entirely correct...

@ OWL 2 introduces punning, allowing one URI to be used for, e.g., both a class and an
individual,

@ but not both a class and a datatype property, or for different property types.

@ Example:
:Joe rdf:type :Eagle .
:Eagle rdf :type :Species .

:Eagle is both a class and an individual.
o However, semantically, “punned” URI are treated as different terms. (under the hood)

o Meaning, the class :Eagle is different from the individual :Eagle.
o Axioms about the class is not transferred to the individual, or vice versa.

INF3580/4580 :: Spring 2017 Lecture 12 :: 3rd April

@ Remember: In OWL strict separation of classes, properties and individuals. However, not

Outline

e More about Datatypes

INF3580,/4580 :: Spring 2017 Lecture 12 :: 3rd April

A tempting mistake

o Cardinality restrictions are not suitable to express

durations

intervals

or any kind of sequence

and they cannot be used for arithmetic

@ Anti-pattern:

e Scotch whisky is aged at least 3 years:
o Use a datatype property age with range int.
e Scotch T Whisky M >3 age.int

o Why?
o This says that Scotch has at least 3 different ages
e For instance -1, 0, 15

A possible solution

@ Idea: don't use age.
@ Use a property casked
o domain Whisky
e range Int
o relates the whisky to each year it is in the cask.
e.g. :young :casked "2000"""int, "2001"""int, "2002"""int
@ Scotch C Whisky M >3 casked.int
@ Works, but. ..
@ Can't express e.g. that the years are consecutive
e Knowing a whisky is casked in 2000 and 2009 doesn't imply it is casked for 10 years.
@ Reasoning about >, often works by generating n sample instances
o Town = >1q000 inhabitant.Person

o Metropolis = >1900000 Inhabitant.Person
o Will kill almost any reasoner

INF3580/4580 :: Spring 2017 Lecture 12 :: 3rd April

INF3580,/4580 :: Spring 2017 Lecture 12 :: 3rd April

Reminder: Datatype properties

o OWL distinguishes between

e object properties: go from resources to resources
o datatype properties: go from resources to literals
@ OWL (2) prescribes a list of available built-in datatypes for literals
o Numbers: real, rational, integer, positive integer, double, long,. ..
Strings
Booleans
Binary data
IRIs
Time Instants
XML Literals

@ Varying tool support (e.g., depending on editor and reasoner)

@ Possible to define custom datatypes (e.g. datatype “age” as xsd:integer[> 0, < 130])

INF3580/4580 :: Spring 2017 Lecture 12 :: 3rd April

Data Ranges Range Examples

@ Like concept descriptions, only for data types
@ Boolean combinations allowed (Manchester syntax)

o xsd:integer or xsd:string
o xsd:integer and not xsd:byte @ A teenager:
Person and age some integer[>= 13, <= 19]

@ A whisky that is at least 12 years old:
Whisky and age some integer[>= 12]

@ Each basic datatype can be restricted by a number of facets

o xsd:integer[> 9] — integers > 9. @ A metropolis:

e xsd:integer[> 9, < 11] —integers between 9 and 11. Place and nolnhabitants some integer[>= 1000000]
o xsd:string[length 5] — strings of length 5.

o xsd:string[maxLength 5] — strings of length < 5. o Note: often makes best sense with functional properties

e xsd:string[minLength 5] — strings of length > 5. Why?

o xsd:string[pattern "[01]*"] — strings consisting of 0 and 1.

INF3580,/4580 :: Spring 2017 Lecture 12 :: 3rd April 29 / INF3580/4580 :: Spring 2017 Lecture 12 :: 3rd April

Pattern Examples Outline

@ An integer or a string of digits

o xsd:integer or xsd:string[pattern "[0-9]+"]
@ ISBN numbers: 13 digits in 5 —-separted groups, first 978 or 979, last a single digit.

o Book C ISBN some string[length 17 ,

pattern "97[89]-[0-9]+-[0-9]+-[0-9]+-[0-9]"]

@ Reasoning about patterns:

e R a functional datatype property

A= R some string[pattern "(ab)*"]

)
e B= R some string[pattern "a(ba)*b"] e What can’t be expressed in OWL 2
o Reasoner can find out that B C A.

INF3580/4580 :: Spring 2017 Lecture 12 :: 3rd April / INF3580/4580 :: Spring 2017 Lecture 12 :: 3rd April

Expressivity

o Certain relationships between concepts and properties can't be expressed in OWL
e E.g.

o Given that property hasSibling and class Male are defined. ..

e ...cannot say that hasBrother(x,y) iff hasSibling(x,y) and Male(y).

@ Usually, adding such missing relationships would lead to undecidability
@ Not easy to show that something is not expressible
o We look at some examples, not proofs

INF3580,/4580 :: Spring 2017 Lecture 12 :: 3rd April

What can't be expressed in OWL 2

What can't be expressed in OWL 2

Brothers

@ Given terms

hasSibling Male
@ ...a brother is defined to be a sibling who is male

]

hasSibling

hasBrother

@ Best try:
hasBrother T hasSibling

T C VhasBrother.Male or: rg(hasBrother, Male)
JhasSibling.Male T JhasBrother. T

@ Not enough to infer that all male siblings are brothers

INF3580,/4580 :: Spring 2017

What can't be expressed in OWL 2

Uncles

@ Given terms

hasParent hasBrother

@ ...an uncle is defined to be a brother of a parent.

hasB h
@ asBrother Abel

hasParent

Enoch

hasUncle
@ Best try:
hasParent o hasBrother

C hasUncle
hasUncle C

hasParent o hasBrother

@ properties cannot be declared sub-properties of property chains in OWL 2.
o problematic for reasoning

INF3580/4580 :: Spring 2017

Lecture 12 :: 3rd April

Lecture 12 :: 3rd April

What can't be expressed in OWL 2

Diamond Properties

@ A semi-detached house has a left and a right unit
@ Each unit has a separating wall
@ The separating walls of the left and
right units are the same
o “diamond property”

pasLeftUnit

o Try...

SemiDetached T FhasLeftUnit.Unit M JhasRightUnit.Unit
Unit C 3hasSeparatingWall.Wall

@ But this does not guarantee to use the same wall

INF3580,/4580 :: Spring 2017

Lecture 12 :: 3rd April

Connecting Datatype Properties Reasoning about Numbers

@ Given terms
Person hasChild hasBirthday

@ A twin parent is defined to be a person who has two children with the same birthday. @ Reasoning about natural numbers is undecidable in general.
o Try... @ DL Reasoning is decidable
TwinParent = Person 1 ShasChild.3hasBirthday(. .] @ Therefore, general reasoning about numbers can’'t be “encoded” in DL
M ShasChild.3hasBirthdayl. . | o Cannot encode addition, multiplication, etc.
@ No way to connect the two birthdays to say that they're the same. @ Note: a lot can be done with other logics, but not with DLs
o (and no way to say that the children are not the same) o Outside the intended scope of Description Logics
o Try...

TwinParent = Person 1 >hasChild.3hasBirthday]. .]

Still no way of connecting the birthdays

INF3580/4580 :: Spring 2017 Lecture 12 :: 3rd April 37/ INF3580/4580 :: Spring 2017 Lecture 12 :: 3rd April

Combining OWL 2 and Rules Outline

Some limitation may be addressed

@ SWRL: Semantic Web Rule Language
Uses XML syntax based on RuleML
OWL 2 + unrestricted SWRL leads to undecidability
Restricted SWRL + OWL is decidable and very powerful
A bit more in the next SPARQL lesson

@ OWL 2 profiles

INF3580/4580 :: Spring 2017 Lecture 12 :: 3rd April INF3580/4580 :: Spring 2017 Lecture 12 :: 3rd April

OWL 2 profiles

@ OWL 2 has various profiles that correspond to different DLs.

@ OWL 2 DL is the “normal” OWL 2 (sublanguage): “maximum” expressiveness while
keeping reasoning problems decidable—but still very expensive.
@ (Other) profiles are tailored for specific ends, e.g.,
o OWL 2 QL:
o Specifically designed for efficient database integration.
o OWL 2 EL:
o A lightweight language with polynomial time reasoning.
o OWL 2 RL:

o Designed for compatibility with rule-based inference tools.

@ OWL Full: Anything goes: classes, relations, individuals, ... like in RDFS, are not kept apart. Highly expressive, not decidable. But we want OWL's

reasoning capabilities, so stay away if you can—and you almost always can.

OWL 2 Validator: http://owl.cs.manchester.ac.uk/validator/

OWL EL

Based on DL ££FT.

ELTT concept descriptions, simplified

¢c,b— A (atomic concept)
T (universal concept)
L (bottom concept)

(intersection)

\
\
\
{a} | (singular enumeration)
\
| (existential restriction)

Axioms
@ CLC D and C = D for concept descriptions D and C.
@ PLC Q and P = Q for roles P, Q. Also Domain and Range.
@ C(a) and R(a, b) for concept C, role R and individuals a, b.

INF3580,/4580 :: Spring 2017

Lecture 12 :: 3rd April

OWL EL contd.

Not supported, simplified:
@ negation, (NB, disjointness of classes: C D C L possible),
disjunction,
universal quantification,

]

]

@ cardinalities,
@ inverse roles,
°

plus some role characteristics.

reduced list of datatypes (e.g., not supported "boolean” nor “double™)

Complete list: http://www.w3.org/TR/owl2-profiles/#Feature_Overview.

@ Checking ontology consistency, class expression subsumption, and instance checking is in
P.

@ "“Good for large ontologies.”
@ Used in many biomedical ontologies (e.g. SNOMED CT).

INF3580,/4580 :: Spring 2017 Lecture 12 :: 3rd April

OWL QL

Based on DL-Liteg.

DL-Liteg concept descriptions, simplified

c—» A | (atomic concept)

IR.T | (existential restriction with T only)
D— A | (atomic concept)

3R.D | (existential restriction)

=D | (negation)

DD’ | (intersection)

Axioms
@ C C D for concept descriptions D and C (and C = C').
@ PC Q and P = Q for roles P, Q. Also Domain and Range.
@ C(a) and R(a, b) for concept C, role R and individuals a, b.

INF3580,/4580 :: Spring 2017

Lecture 12 :: 3rd April

INF3580/4580 :: Spring 2017 Lecture 12 :: 3rd April

http://owl.cs.manchester.ac.uk/validator/
http://www.w3.org/TR/owl2-profiles/#Feature_Overview

OWL QL contd.

Not supported, simplified:
@ disjunction,
universal quantification,
cardinalities,

= (SameIndividual)

°
°

o functional roles, keys,

°

@ enumerations (closed classes),
°

subproperties of chains, transitivity

reduced list of datatypes (e.g., not supported “boolean” nor “double”)
Complete list: http://www.w3.org/TR/owl2-profiles/#Feature_Overview_2.
o Captures language for which queries can be translated to SQL.
@ "Good for large datasets.”

@ We will see more in the Ontology Based Data Access (OBDA) lesson

INF3580,/4580 :: Spring 2017 Lecture 12 :: 3rd April

OWL 2 profiles

OWL2: RL

RL-concepts

c— A |
cnc |
cuc |
3dR.C |

D— A |
pnp |
VR.D \

OWL 2 RL is based on the description logic RL (also called DLP):

(atomic concept)
(intersection)

(union)

(existential restriction)
(atomic concept)
(intersection)
(universal restriction)

Axioms

e CLD,C=C,TCVRD, TCVYR".DRL

descriptions C and D. Also Domain and Range.
@ C(a) and R(a, b) for concept C, role R and individuals a, b.

P, R= P~ and R = P for roles R, P and concept

OWL RL contd.

@ Puts constraints in the way in which constructs are used (i.e., syntactic subset of OWL 2).
@ So that OWL 2 RL axioms can be directly translated into datalog rules
@ Enables desirable computational properties using rule-based reasoning engines.

@ It also imposes a reduced list of allowed datatypes (e.g., not supported “real” nor
“rational”)

@ We will see more in the next SPARQL lesson.

Complete list of characteristics: http://www.w3.org/TR/owl2-profiles/#Feature_0verview_3.

INF3580/4580 :: Spring 2017 Lecture 12 :: 3rd April

INF3580/4580 :: Spring 2017 Lecture 12 :

3rd April

OWL 2 profiles

JRT C C
T E VRC
RoR C R
T C <1RT
T C <1R.T
R C R
R C =R~
T LC dR.Self
JR.Self C L

EXERCISE: Property axioms expressed as DL-axioms

INF3580,/4580 :: Spring 2017 Lecture 12 :

3rd April

http://www.w3.org/TR/owl2-profiles/#Feature_Overview_2
http://www.w3.org/TR/owl2-profiles/#Feature_Overview_3

EXERCISE: Property axioms expressed as DL-axioms Next

JR.T C C Domain (3hasPet. T C Person) o Guest lecture:
T C VR.C Range (T C VhasPet.(Animal 1 —Person)) o April 24

RoR C R Transitivity (ancestorOf oancestorOf C ancestorOf) o Veronika Hemsbakk (Acando https://www.acando.no/)
Ri = Ry Inverse (partOf = hasPart™) o Theoretic aspects of SHACL (https://www.w3.org/TR/shacl/) covering how to build up
T C <1RT Functionality (T C <1 hasSpouse.T) a shape, the different core constraints and validation result graphs.
T C <1R-.T Inverse Functionality (T T < 1 hasSpouse™.T) o Application (demo) within the elnnsyn project https://einnsyn.difi.no/
R E R_* Symmetry (friendOf fr;ngOf*) o Exam will include questions from guest lecture
R C =R Asymmetry (partOf C —partOf) @ May 8: More (practical) details about SPARQL and rules (Ernesto)
T LC JR.Self Reflexive (T C JhasRelative.Self) e May 15: OBDA, R2RML, query rewriting (Ernesto)

JR.Self T L Irreflexive (parentOf .Self T L) o May 22: Linked Open Data (Leif)

INF3580,/4580 :: Spring 2017 Lecture 12 :: 3rd April INF3580/4580 :: Spring 2017 Lecture 12 :: 3rd April

https://www.acando.no/
https://www.w3.org/TR/shacl/
https://einnsyn.difi.no/

	Reminder: OWL
	Disjointness and Covering Axioms
	Keys
	Punning
	More about Datatypes
	What can't be expressed in OWL 2
	OWL 2 profiles

