
INF3580/4580 – Semantic Technologies – Spring 2017
Lecture 13: SPARQL 1.1

Ernesto Jiménez-Ruiz

8th May 2017

Department of
Informatics

University of
Oslo



Today’s Plan

1 Introduction

2 Recap: SPARQL 1.0

3 SPARQL 1.1 QUERY language
Assignment and Expressions
Aggregates
Subqueries
Negation
Property paths

4 SPARQL 1.1 Federated Query

5 SPARQL 1.1 UPDATE Language

6 SPARQL 1.1 Entailment Regimes

INF3580/4580 :: Spring 2017 Lecture 13 :: 8th May 2 / 56



Introduction

Outline

1 Introduction

2 Recap: SPARQL 1.0

3 SPARQL 1.1 QUERY language
Assignment and Expressions
Aggregates
Subqueries
Negation
Property paths

4 SPARQL 1.1 Federated Query

5 SPARQL 1.1 UPDATE Language

6 SPARQL 1.1 Entailment Regimes

INF3580/4580 :: Spring 2017 Lecture 13 :: 8th May 3 / 56



Introduction

Introduction

Today’s lecture

Ernesto Jiménez-Ruiz (ernestoj@ifi.uio.no)
http://www.mn.uio.no/ifi/english/people/aca/ernestoj/

Office hours: from 9:00 to 16:00 at OJD 8165
Lessons

February 6th: SPARQL 1.0
April 3rd: OWL loose ends (Profiles and others)
May 8th: More SPARQL (SPARQL 1.1 and entailment regimes)
May 15th: OBDA: Ontology Based Data Access

INF3580/4580 :: Spring 2017 Lecture 13 :: 8th May 4 / 56

http://www.mn.uio.no/ifi/english/people/aca/ernestoj/


Introduction

SPARQL

SPARQL Protocol And RDF Query Language

Standard language to query graph data represented as RDF triples

W3C Recommendations

SPARQL 1.0: W3C Recommendation 15 January 2008
SPARQL 1.1: W3C Recommendation 21 March 2013

This lecture is about SPARQL 1.1.

Documentation:

SPARQL 1.1 Query Language.
https://www.w3.org/TR/sparql11-query/

INF3580/4580 :: Spring 2017 Lecture 13 :: 8th May 5 / 56

https://www.w3.org/TR/sparql11-query/


Recap: SPARQL 1.0

Outline

1 Introduction

2 Recap: SPARQL 1.0

3 SPARQL 1.1 QUERY language
Assignment and Expressions
Aggregates
Subqueries
Negation
Property paths

4 SPARQL 1.1 Federated Query

5 SPARQL 1.1 UPDATE Language

6 SPARQL 1.1 Entailment Regimes

INF3580/4580 :: Spring 2017 Lecture 13 :: 8th May 6 / 56



Recap: SPARQL 1.0

Query with Basic Graph Pattern

Names of people who have published with “Ernesto Jimenez-Ruiz”

SELECT DISTINCT ?collab WHERE {

?ejr foaf:name "Ernesto Jimenez-Ruiz" .

?pub dc:creator ?ejr .

?pub dc:creator ?other .

?other foaf:name ?collab.

}

PREFIX declarations omitted in some examples, use http://prefix.cc to find!
Answer:

?name

"Ernesto Jimenez-Ruiz"

"Jorge Sales"

"Ian Horrocks"

"Bernardo Cuenca Grau"

"Rafael Berlanga Llavori"

. . .
INF3580/4580 :: Spring 2017 Lecture 13 :: 8th May 7 / 56

http://prefix.cc


Recap: SPARQL 1.0

Graph Patterns

The previous SPARQL query as a graph:

?ejr "Ernesto Jimenez-Ruiz"

?pub

?other ?name

foaf:name

foaf:name

dc:
cre

ato
r

dc:creator

Pattern matching: assign values to variables to make this a sub-graph of the RDF graph!

INF3580/4580 :: Spring 2017 Lecture 13 :: 8th May 8 / 56



Recap: SPARQL 1.0

SPARQL Query with blank nodes

Names of people who have published with “Ernesto Jimenez-Ruiz”

SELECT DISTINCT ?name WHERE {

_:ejr foaf:name "Ernesto Jimenez-Ruiz" .

_:pub dc:creator _:ejr .

_:pub dc:creator _:other .

_:other foaf:name ?name.

}

The same with blank node syntax

SELECT DISTINCT ?name WHERE {

[ dc:creator [foaf:name "Ernesto Jimenez-Ruiz"] ,

[foaf:name ?name]

]

}

INF3580/4580 :: Spring 2017 Lecture 13 :: 8th May 9 / 56



Recap: SPARQL 1.0

Graph with blank nodes

Variables not SELECTed can equivalently be blank:

"Ernesto Jimenez-Ruiz"

?name

foaf:name

foaf:name

dc:
cre

ato
r

dc:creator

Pattern matching: assign values to variables and blank nodes to make this a sub-graph of
the RDF graph!

INF3580/4580 :: Spring 2017 Lecture 13 :: 8th May 10 / 56



Recap: SPARQL 1.0

Components of an SPARQL query

Prologue: prefix definitions Results form specification: (1) variable list, (2) type of query
(SELECT, ASK, CONSTRUCT, DESCRIBE), (3) remove duplicates (DISTINCT, REDUCED)
Dataset specification Query pattern: graph pattern to be matched: BGP, FILTER,
OPTIONAL, GROUPS, UNION, RDF Datasets Solution modifiers: ORDER BY, LIMIT,
OFFSET

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT DISTINCT ?collab

FROM <http://dblp dataset>

WHERE {

?ejr foaf:name "Ernesto Jimenez-Ruiz" .

?pub dc:creator ?ejr .

?pub dc:creator ?other .

OPTIONAL {

?other foaf:name ?collab .

FILTER (STR(?collab)!="Ernesto Jimenez-Ruiz")

}

}

ODER BY ?collab

INF3580/4580 :: Spring 2017 Lecture 13 :: 8th May 11 / 56



SPARQL 1.1 QUERY language

Outline

1 Introduction

2 Recap: SPARQL 1.0

3 SPARQL 1.1 QUERY language
Assignment and Expressions
Aggregates
Subqueries
Negation
Property paths

4 SPARQL 1.1 Federated Query

5 SPARQL 1.1 UPDATE Language

6 SPARQL 1.1 Entailment Regimes

INF3580/4580 :: Spring 2017 Lecture 13 :: 8th May 12 / 56



SPARQL 1.1 QUERY language

SPARQL 1.1: new fatures

The new features in SPARQL 1.1 QUERY language:

Aggregates
Subqueries
Negation
Expressions in the SELECT clause
Property paths
Assignment
A short form for CONSTRUCT
An expanded set of functions and operators

SPARQL 1.1 UPDATE Language

SPARQL 1.1 Federated Queries

SPARQL 1.1 Entailment Regimes

Rationale for the extensions of SPARQL 1.0
https://www.w3.org/TR/sparql-features/

INF3580/4580 :: Spring 2017 Lecture 13 :: 8th May 13 / 56

https://www.w3.org/TR/sparql-features/


SPARQL 1.1 QUERY language Assignment and Expressions

Assignment and Expressions

The value of an expression can be assigned/bound to a new variable

Can be used in SELECT, BIND or GROUP BY clauses: (expression AS ?var)

Products with price < 20 taking into account discount

SELECT ?title ?price)

{

{ ?x ns:price ?p .

?x ns:discount ?discount

BIND (?p*(1-?discount) AS ?price)

}

{ ?x dc:title ?title .

FILTER(?price < 20)

}

}

INF3580/4580 :: Spring 2017 Lecture 13 :: 8th May 14 / 56



SPARQL 1.1 QUERY language Assignment and Expressions

Assignment and Expressions

The value of an expression can be assigned/bound to a new variable

Can be used in SELECT, BIND or GORUP BY clauses: (expression AS ?var)

Expressions in SELECT clause

SELECT ?title (?p AS ?fullPrice) (?fullPrice*(1-?discount) AS

?customerPrice))

{

?x ns:price ?p .

?x dc:title ?title .

?x ns:discount ?discount

}

INF3580/4580 :: Spring 2017 Lecture 13 :: 8th May 15 / 56



SPARQL 1.1 QUERY language Aggregates

Aggregates: Grouping and Filtering

Solutions can optionally be grouped according to one or more expressions.

To specify the group, use GROUP BY.

If GROUP BY is not used, then only one (implicit) group

To filter solutions resulting from grouping, use HAVING.

HAVING operates over grouped solution sets, in the same way that FILTER operates over
un-grouped ones.

INF3580/4580 :: Spring 2017 Lecture 13 :: 8th May 16 / 56



SPARQL 1.1 QUERY language Aggregates

Aggregates: Example

Counties of Norway with less than 15 municipalities

SELECT ?name (count(?kommune) AS ?kcount)

WHERE {

?county a gd:Fylke ;

gn:officialName ?name ;

gn:hasmunicipality ?kommune .

?kommune a gd:Kommune .

}

GROUP BY ?name

HAVING (?kcount < 15)

Note: Only expressions consisting of aggregates and constants may be projected, together with
variables in GROUP BY.

INF3580/4580 :: Spring 2017 Lecture 13 :: 8th May 17 / 56



SPARQL 1.1 QUERY language Aggregates

Aggregates: functions

Count counts the number of times a variable has been bound.

Sum sums numerical values of bound variables.

Avg finds the average of numerical values of bound variables.

Min finds the minimum of the numerical values of bound variables.

Max finds the maximum of the numerical values of bound variables.

Group Concat creates a string with the values concatenated, separated by some optional
character.

Sample just returns a sample of the values.

INF3580/4580 :: Spring 2017 Lecture 13 :: 8th May 18 / 56



SPARQL 1.1 QUERY language Subqueries

Subqueries

Subqueries are a way to embed SPARQL queries within other queries
To achieve results which cannot otherwise be achieved, for example, limiting the number
of results from some sub-expression within the query.

Return the lowest sort order name of Alice’s friends

SELECT ?y ?minName WHERE {

:alice :knows ?y .

{

SELECT ?y (MIN(?name) AS ?minName) WHERE {

?y :name ?name .} GROUP BY ?y

}

}

Subqueries are evaluated logically first, and the results are projected up to the outer query.
Only variables projected out of the subquery will be visible, or in scope, to the outer query.

INF3580/4580 :: Spring 2017 Lecture 13 :: 8th May 19 / 56



SPARQL 1.1 QUERY language Negation

Negation in SPARQL 1.0

COMBINING OPTIONAL, FILTER and !BOUND:

People without names

SELECT DISTINCT * WHERE {

?person a foaf:Person .

OPTIONAL {

?person foaf:name ?name .

FILTER (!bound(?name))

}

}

However, this is not very easy to write.

INF3580/4580 :: Spring 2017 Lecture 13 :: 8th May 20 / 56



SPARQL 1.1 QUERY language Negation

Negation in SPARQL 1.1: MINUS and FILTER NOT EXISTS

Two ways to do negation:

People without names

SELECT DISTINCT * WHERE {

?person a foaf:Person .

MINUS { ?person foaf:name ?name }

}

People without names, take II

SELECT DISTINCT * WHERE {

?person a foaf:Person .

FILTER NOT EXISTS { ?person foaf:name ?name }

}

INF3580/4580 :: Spring 2017 Lecture 13 :: 8th May 21 / 56



SPARQL 1.1 QUERY language Negation

Negation in SPARQL 1.1: MINUS and FILTER NOT EXISTS (cont.)

They may produce different results. Data with ex:Ernesto a foaf:Person

SELECT DISTINCT * WHERE {

?s ?p ?o .

MINUS { ?x ?y ?z }

}

Does not remove solutions (no shared variables!) and returns ex:Ernesto a foaf:Person

SELECT DISTINCT * WHERE {

?s ?p ?o .

FILTER NOT EXISTS { ?x ?y ?z }

}

Returns no solutions. Since there are not shared variables, it removes all solutions.

INF3580/4580 :: Spring 2017 Lecture 13 :: 8th May 22 / 56



SPARQL 1.1 QUERY language Negation

Open and Closed World Assumptions

Aggregates and negation assume Closed World and Unique names!
The answers are only true with respect to the current dataset.

“As far as we know, there are 13 municipalities in Vestfold.”

Can’t say: “they don’t have names”, can say: “we don’t know their names”.

“As far as we know, no-one has climbed that mountain.”

“Based on the available data, the average fuel price is currently 13.37 NOK/l.”

This will have implications when combined with reasoning.

INF3580/4580 :: Spring 2017 Lecture 13 :: 8th May 23 / 56



SPARQL 1.1 QUERY language Property paths

Property paths: basic motivation

Some queries get needlessly complex.

Sometimes write foaf:maker|dct:creator instead of UNION.

To get friend’s name, go { _:me foaf:knows/foaf:name ?friendsname }.

Sum several items:
SELECT (sum(?cost) AS ?total) { :order :hasItem/:price ?cost }

etc.

Adds a small property-oriented query language inside the language.

INF3580/4580 :: Spring 2017 Lecture 13 :: 8th May 24 / 56



SPARQL 1.1 QUERY language Property paths

Property paths: syntax

Syntax Form Matches

iri An (property) IRI. A path of length one.
^elt Inverse path (object to subject).
elt1 / elt2 A sequence path of elt1 followed by elt2.
elt1 | elt2 A alternative path of elt1 or elt2 (all possibilities are tried).
elt* Seq. of zero or more matches of elt.
elt+ Seq. of one or more matches of elt.
elt? Zero or one matches of elt.
!iri or !(iri1| ...|irin) Negated property set.
!^iri or !(^irii| ...|^irin) Negation of inverse path.
!(iri1|...|irij|^irij+1|...|^irin) Negated combination of forward and inverese properties.
(elt) A group path elt, brackets control precedence.

* elt is a path element, which may itself be composed of path constructs (see Syntax form).

INF3580/4580 :: Spring 2017 Lecture 13 :: 8th May 25 / 56



SPARQL 1.1 QUERY language Property paths

Property paths: example

The names of all my friends of friends

SELECT ?name WHRE {

uio:Ernesto foaf:knows+ ?friend

?friend foaf:name|foaf:firstName ?name .

}

INF3580/4580 :: Spring 2017 Lecture 13 :: 8th May 26 / 56



SPARQL 1.1 Federated Query

Outline

1 Introduction

2 Recap: SPARQL 1.0

3 SPARQL 1.1 QUERY language
Assignment and Expressions
Aggregates
Subqueries
Negation
Property paths

4 SPARQL 1.1 Federated Query

5 SPARQL 1.1 UPDATE Language

6 SPARQL 1.1 Entailment Regimes

INF3580/4580 :: Spring 2017 Lecture 13 :: 8th May 27 / 56



SPARQL 1.1 Federated Query

Federated query support

The SERVICE keyword instructs a federated query processor to invoke a portion of a
SPARQL query against a remote SPARQL service/endpoint.

SPARQL service: any implementation conforming to the SPARQL 1.1 Protocol for RDF

Combining local file with remote SPARQL service

SELECT ?name

FROM <http://example.org/mylocalfoaf.rdf>

WHRE {

<http://example.org/mylocalfoaf/I> foaf:knows ?person .

SERVICE <http://people.example.org/sparql> {

?person foaf:name ?name . }

}

INF3580/4580 :: Spring 2017 Lecture 13 :: 8th May 28 / 56



SPARQL 1.1 UPDATE Language

Outline

1 Introduction

2 Recap: SPARQL 1.0

3 SPARQL 1.1 QUERY language
Assignment and Expressions
Aggregates
Subqueries
Negation
Property paths

4 SPARQL 1.1 Federated Query

5 SPARQL 1.1 UPDATE Language

6 SPARQL 1.1 Entailment Regimes

INF3580/4580 :: Spring 2017 Lecture 13 :: 8th May 29 / 56



SPARQL 1.1 UPDATE Language

SPARQL 1.1 UPDATE

Do not confuse with CONSTRUCT

CONSTRUCT is an alternative for SELECT

Instead of returning a table of result values, CONSTRUCT returns an RDF graph
accoding to the template

SPARQL 1.1 UPDATE is a language to modify the given GRAPH

https://www.w3.org/TR/2013/REC-sparql11-update-20130321/

INF3580/4580 :: Spring 2017 Lecture 13 :: 8th May 30 / 56

https://www.w3.org/TR/2013/REC-sparql11-update-20130321/


SPARQL 1.1 UPDATE Language

SPARQL 1.1 UPDATE: Inserting and deleting triples

Inserting triples in a graph

INSERT DATA {

GRAPH </graph/courses/> {

<course/inf3580> ex:taughtBy <staff/ernestoj> .

<staff/ernestoj> foaf:name "Ernesto Jimenez Ruiz" ;

} }

Deleting triples from a graph

DELETE DATA {

GRAPH </graph/courses/> {

<course/inf3580> ex:oblig <exercise/oblig6> .

<exercise/oblig6> rdfs:label "Mandatory Exercise 6" .

} }

If no GRAPH is given, default graph is used.
INF3580/4580 :: Spring 2017 Lecture 13 :: 8th May 31 / 56



SPARQL 1.1 UPDATE Language

SPARQL 1.1 UPDATE: Inserting conditionally

Most useful when inserting statements that you already have, but hold true for something else.

Inserting triples for another subject

INSERT {

<http:// .../geo/inndeling/03> a gd:Fylke ;

gn:name "Oslo" ;

?p ?o .

}

WHERE {

<http:// .../geo/inndeling/03/0301> a gd:Kommune ;

?p ?o .

}

INF3580/4580 :: Spring 2017 Lecture 13 :: 8th May 32 / 56



SPARQL 1.1 UPDATE Language

SPARQL 1.1 UPDATE: Deleting conditionally

From specification:

Deleting old books

DELETE {

?book ?p ?v .

}

WHERE {

?book dc:date ?date .

FILTER ( ?date < "2000-01-01T00:00:00"^^xsd:dateTime )

?book ?p ?v .

}

INF3580/4580 :: Spring 2017 Lecture 13 :: 8th May 33 / 56



SPARQL 1.1 UPDATE Language

SPARQL 1.1 UPDATE: Deleting conditionally, common shortform

Deleting exactly what’s matched by the WHERE clause.

DELETE WHERE {

?s a skos:Concept .

?s ?p <http://smil.uio.no/topic/betennelse-i-bihuler> .

}

INF3580/4580 :: Spring 2017 Lecture 13 :: 8th May 34 / 56



SPARQL 1.1 UPDATE Language

SPARQL 1.1 UPDATE: Delete/Insert full syntax

In most cases, you would delete some triples first, then add new, possibly in the same or other
graphs.
From specification:

All the possibilities offered by DELETE/INSERT

( WITH IRIref )?

( ( ( DELETE QuadPattern ) ( INSERT QuadPattern )? ) | (INSERT

QuadPattern) )

( USING ( NAMED )? IRIref )*

WHERE GroupGraphPattern

INF3580/4580 :: Spring 2017 Lecture 13 :: 8th May 35 / 56



SPARQL 1.1 UPDATE Language

SPARQL 1.1 UPDATE: Delete/Insert simple example

Update user information query from Sublima

DELETE {

<http:// .../user/larshvermannsen> ?p ?o .

}

INSERT {

<http:// .../user/larshvermannsen> a sioc:User ;

rdfs:label """Lars Hvermannsen"""@no ;

sioc:email <mailto:lars@hvermannsen.no> ;

sioc:has function <http:// .../role/Administrator> ;

wdr:describedBy status:inaktiv .

}

WHERE {

<http:// .../user/larshvermannsen> ?p ?o .

}

INF3580/4580 :: Spring 2017 Lecture 13 :: 8th May 36 / 56



SPARQL 1.1 UPDATE Language

SPARQL 1.1 UPDATE: Delete/Insert example with named graphs

Update user information query from Sublima

DELETE {

GRAPH </graphs/users/> {

<http:// .../user/larshvermannsen> ?p ?o .

}

}

INSERT {

GRAPH </graphs/users/> {

<http:// .../user/larshvermannsen> a sioc:User ;

rdfs:label """Lars Hvermannsen"""@no .

}

}

USING </graphs/users/> WHERE {

<http:// .../user/larshvermannsenno> ?p ?o .

}
INF3580/4580 :: Spring 2017 Lecture 13 :: 8th May 37 / 56



SPARQL 1.1 UPDATE Language

SPARQL 1.1 UPDATE: Delete/Insert example explained

USING plays the same role as FROM.

GRAPH says where to insert or delete.

This makes it possible to delete, insert and match against different graphs.

INF3580/4580 :: Spring 2017 Lecture 13 :: 8th May 38 / 56



SPARQL 1.1 UPDATE Language

SPARQL 1.1 UPDATE: Delete/Insert example with single named graphs

Update user information query from Sublima

WITH </graphs/users/>

DELETE {

<http:// .../user/larshvermannsen> ?p ?o .

}

INSERT {

<http:// .../user/larshvermannsen> a sioc:User ;

rdfs:label """Lars Hvermannsen"""@no .

}

WHERE {

<http:// .../user/larshvermannsenno> ?p ?o .

}

Equivalent to the previous query!

INF3580/4580 :: Spring 2017 Lecture 13 :: 8th May 39 / 56



SPARQL 1.1 UPDATE Language

SPARQL 1.1 UPDATE: Whole graph operations

From the specification:

LOAD ( SILENT )? IRIref from ( INTO GRAPH IRIref to )?

Loads the graph at IRIref from into the specified graph, or the default graph if
not given.

CLEAR ( SILENT )? (GRAPH IRIref | DEFAULT | NAMED | ALL )

Removes the triples from the specified graph, the default graph, all named graphs
or all graphs respectively. Some implementations may remove the whole graph.

CREATE ( SILENT )? GRAPH IRIref

Creates a new graph in stores that record empty graphs.

DROP ( SILENT )? (GRAPH IRIref | DEFAULT | NAMED | ALL )

Removes the specified graph, the default graph, all named graps or all graphs
respectively. It also removes all triples of those graphs.

Also provides shortcuts, COPY, MOVE and ADD.
Usually, LOAD and DROP are what you want.

INF3580/4580 :: Spring 2017 Lecture 13 :: 8th May 40 / 56



SPARQL 1.1 Entailment Regimes

Outline

1 Introduction

2 Recap: SPARQL 1.0

3 SPARQL 1.1 QUERY language
Assignment and Expressions
Aggregates
Subqueries
Negation
Property paths

4 SPARQL 1.1 Federated Query

5 SPARQL 1.1 UPDATE Language

6 SPARQL 1.1 Entailment Regimes

INF3580/4580 :: Spring 2017 Lecture 13 :: 8th May 41 / 56



SPARQL 1.1 Entailment Regimes

Entailment regimes: overview

Gives guiadance for SPARQL query engines

Basic graph pattern by means of subgraph matching: simple entailment

Solutions that implicitly follow from the queried graph: entailment regimes

RDF entailment, RDF Schema entailment, D-Entailment, OWL 2 RDF-Based
Semantics entailment, OWL 2 Direct Semantics entailment, and RIF-Simple
entailment

https://www.w3.org/TR/2013/REC-sparql11-entailment-20130321/

INF3580/4580 :: Spring 2017 Lecture 13 :: 8th May 42 / 56

https://www.w3.org/TR/2013/REC-sparql11-entailment-20130321/


SPARQL 1.1 Entailment Regimes

Entailment regimes: example (1)

ex:book1 rdf:type ex:Publication .

ex:book2 rdf:type ex:Article .

ex:Article rdfs:subClassOf ex:Publication .

ex:publishes rdfs:range ex:Publication .

ex:MITPress ex:publishes ex:book3 .

QUERY 1: SELECT ?prop WHERE ?prop rdf:type rdf:Property QUERY 2: SELECT

?pub WHERE ?pub rdf:type ex:Publication

INF3580/4580 :: Spring 2017 Lecture 13 :: 8th May 43 / 56



SPARQL 1.1 Entailment Regimes

Entailment regimes: example (2)

INF3580/4580 :: Spring 2017 Lecture 13 :: 8th May 44 / 56



SPARQL 1.1 Entailment Regimes

Entailment regimes: example (3)

ex:book1 rdf:type ex:Publication .

ex:book2 rdf:type ex:Article .

ex:Article rdfs:subClassOf ex:Publication .

ex:publishes rdfs:range ex:Publication .

ex:MITPress ex:publishes ex:book3 .

Using RDFS entailment regime (new entailed triples):

ex:publishes rdf:type rdf:Property .

Using RDFS entailment regime (new entailed triples):

ex:book2 rdf:type ex:Publication .

ex:book3 rdf:type ex:Publication .

(Graph mathcing is performed over the extended RDF graph)

INF3580/4580 :: Spring 2017 Lecture 13 :: 8th May 45 / 56



SPARQL 1.1 Entailment Regimes

The OWL Entailment Regimes

OWL 2 RDF-based Semantics Entailment Regime

OWL 2 Direct Semantics Entailment Regime

https://www.w3.org/TR/2013/REC-sparql11-entailment-20130321/

Birte Glimm. Using SPARQL with RDFS and OWL entailment. International
Conference on Reasoning Web, 2011

INF3580/4580 :: Spring 2017 Lecture 13 :: 8th May 46 / 56

https://www.w3.org/TR/2013/REC-sparql11-entailment-20130321/


SPARQL 1.1 Entailment Regimes

OWL 2 Direct Semantics Entailment Regime

Challenges:

Expressive datatype constructs may lead to infinite answers:

i.e., required binding to infinitely many integer values
Solution: limit to literals explicitly mentioned in graph

OWL Direct Semantics defined in terms of OWL objects

RDF graph and query must first be translated.
Restriction on RDF graphs and SPARQL queries

Variable typing:

In order to have an unambiguous correspondence between BGPs and OWL objects

e.g., ?x rdf:type TYPE .

owl:Class, owl:ObjectProperty, owl:DataProperty, owl:Datatype, or owl:NamedIndividual

INF3580/4580 :: Spring 2017 Lecture 13 :: 8th May 47 / 56



SPARQL 1.1 Entailment Regimes

OWL 2 RDF-based Semantics Entailment Regime

Direct extension of the RDFS semantics

It interprets RDF triples directly without the need of mapping an RDF graph into OWL
objects

Treats classes as individuals that refer to elements of the domain

This may lead to less consequences than expected (Incompleteness)

INF3580/4580 :: Spring 2017 Lecture 13 :: 8th May 48 / 56



SPARQL 1.1 Entailment Regimes

OWL 2 Entailment Regimes: example

Graph: x:a rdf:type ex:C

BGP in query:
?x rdf:type

[

rdf:type owl:Class ;

owl:unionOf( ex:C ex:D )

]

ex:a not resturned in the solution for ?x using OWL 2 RDF-Based Semantics

G does not include that this union is the class extension of any domain element
Solution: add statement ex:E owl:unionOf ( ex:C ex:D )

These type of statement may lead to undecidability

ex:a would be a solution for ?x using OWL 2 Direct Semantics

classes denote sets and not domain elements

INF3580/4580 :: Spring 2017 Lecture 13 :: 8th May 49 / 56



SPARQL 1.1 Entailment Regimes

OWL 2 Entailment Regimes: Complexity and Profiles

Entailment under OWL 2 (DL) Direct Semantics entailemnt is decidable, but
computationally hard.

Entailment under OWL 2 (DL) RDF-based semantics is incomplete and undecidable for
OWL 2 Full.

No Direct Semantics for OWL 2 Full.

Direct Semantics for OWL 2 QL and EL Profiles have very nice computational properties.

Entailemnt under OWL 2 QL and EL RDF-based semantics is incomplete as well.

INF3580/4580 :: Spring 2017 Lecture 13 :: 8th May 50 / 56



SPARQL 1.1 Entailment Regimes

OWL 2 Entailment Regimes: Complexity and Profiles (cont.)

OWL 2 RL defines a syntactic subset of OWL 2. For RDF graphs that fall into this
syntactic subset:

Direct Semantics and RDF-based Semantics yield the same (complete and sound) results.
Outside OWL 2 RL, the RDF-Based Semantics can still be used, but reasoning can be
incomplete.
For Direct Semantics the input RDF graph has to satisfy some constrains.
The RDF-Based semantics can be use with any RDF graph, but under the OWL 2 RL profile

INF3580/4580 :: Spring 2017 Lecture 13 :: 8th May 51 / 56



SPARQL 1.1 Entailment Regimes

OWL 2 Entailment Regimes: Complexity and Profiles (cont.)

INF3580/4580 :: Spring 2017 Lecture 13 :: 8th May 52 / 56



SPARQL 1.1 Entailment Regimes

OWL 2 Entailment Regimes: Systems

OWL-BGP: SPARQL implementation where basic graph patterns are evaluated with
OWL 2 Direct Semantics.

https://github.com/iliannakollia/owl-bgp

RDFox: highly scalable in-memory RDF triple store that supports parallel datalog
reasoning.

OWL 2 RL axioms can be directly transformed to datalog rules
https://www.cs.ox.ac.uk/isg/tools/RDFox/

ontop: answering SPARQL queries over databases under OWL 2 QL Entailment regime

Ontop is a platform to query relational databases as Virtual RDF Graphs using SPARQL
An Ontology in OWL 2 QL and R2RML mappings
R2RML: RDB to RDF Mapping Language (more next week!)
http://ontop.inf.unibz.it/

INF3580/4580 :: Spring 2017 Lecture 13 :: 8th May 53 / 56

https://github.com/iliannakollia/owl-bgp
https://www.cs.ox.ac.uk/isg/tools/RDFox/
http://ontop.inf.unibz.it/


SPARQL 1.1 Entailment Regimes

Entailment Regimes: Service description

How do we know the Entailment Regime for a SPARQL endpoint?

SPARQL 1.1 Service Descriptions

Among other charactersitics, can be used to describe what kind of entailment checkers is
used in the backgroud to answer SPARQL queries

sd:defaultEntailmentRegime or sd:entailmentRegime:

e.g.: http://dbpedia.org/sparql sd:entailmentRegime er:OWL-Direct

sd:defaultSupportedEntailmentProfile or sd:supportedEntailmentProfile:

e.g.: http://dbpedia.org/sparql sd:supportedEntailmentProfile owlp:QL

Unfortunately this information is not always provided

INF3580/4580 :: Spring 2017 Lecture 13 :: 8th May 54 / 56



SPARQL 1.1 Entailment Regimes

Entailment Regimes: Service description (cont.)

Simple Entailment: http://www.w3.org/ns/entailment/Simple
RDF Entailment: http://www.w3.org/ns/entailment/RDF
RDFS Entailment: http://www.w3.org/ns/entailment/RDFS
D Entailment: http://www.w3.org/ns/entailment/D
OWL Entailment with Direct Semantics:
http://www.w3.org/ns/entailment/OWL-Direct
OWL Entailment with RDF Based Semantics:
http://www.w3.org/ns/entailment/OWL-RDF-Based
RIF Entailment: http://www.w3.org/ns/entailment/RIF

OWL 2 Full entailment checkers: http://www.w3.org/ns/owl-profile/Full
OWL 2 DL entailment checkers: http://www.w3.org/ns/owl-profile/DL
OWL 2 EL entailment checkers: http://www.w3.org/ns/owl-profile/EL
OWL 2 QL entailment checkers: http://www.w3.org/ns/owl-profile/QL
OWL 2 RL entailment checkers: http://www.w3.org/ns/owl-profile/RL

INF3580/4580 :: Spring 2017 Lecture 13 :: 8th May 55 / 56



SPARQL 1.1 Entailment Regimes

Questions?

Ernesto Jiménez-Ruiz (ernestoj@ifi.uio.no)

http://www.mn.uio.no/ifi/english/research/groups/logid

http://www.mn.uio.no/ifi/english/people/aca/ernestoj/

Office hours: from 9:00 to 16:00 at OJD 8165

INF3580/4580 :: Spring 2017 Lecture 13 :: 8th May 56 / 56

http://www.mn.uio.no/ifi/english/research/groups/logid
http://www.mn.uio.no/ifi/english/people/aca/ernestoj/

	Introduction
	Recap: SPARQL 1.0
	SPARQL 1.1 QUERY language
	Assignment and Expressions
	Aggregates
	Subqueries
	Negation
	Property paths

	SPARQL 1.1 Federated Query
	SPARQL 1.1 UPDATE Language
	SPARQL 1.1 Entailment Regimes

