
RDFS and reasoning

Read

• Foundations of Semantic Web Technologies: chapter 2, 3.

1 Entailment

In these exercises we will learn about entailment and decide the logical consequences of RDFS
statements.

Let entailments.n3 be the file listed below, where rdf and rdfs are the usual namespaces.

1 :Person a rdfs:Class .
2 :Man a rdfs:Class ;
3 rdfs:subClassOf :Person .
4 :Parent a rdfs:Class ;
5 rdfs:subClassOf :Person .
6 :Father a rdfs:Class ;
7 rdfs:subClassOf :Parent ;
8 rdfs:subClassOf :Man .
9 :Child a rdfs:Class ;

10 rdfs:subClassOf :Person .
11 :hasParent a rdf:Property ;
12 rdfs:domain :Person ;
13 rdfs:range :Parent .
14 :hasFather a rdf:Property ;
15 rdfs:subPropertyOf :hasParent ;
16 rdfs:range :Father .
17 :isChildOf a rdf:Property ;
18 rdfs:domain :Child ;
19 rdfs:range :Parent .
20 :Ann a :Person ;
21 :hasFather :Carl .
22 :Carl a :Man .

:CODE: :END:

1.1 Exercise

Is entailments.n3 syntactically correct RDF(S)?

1.1.1 Solution

Yes.

1

1.2 Exercise

Assuming the RDFS statements in entailments.n3 are syntactically correct, are they semanti-
cally correct, i.e., do they give an accurate description of "the real world"?

1.3 Exercise

Explain what it means for one set of statements to entail a (different) set of statements.

1.3.1 Solution

Quoting RDF semantics1 :

Entailment is the key idea which connects model-theoretic semantics to real-world
applications. As noted earlier, making an assertion amounts to claiming that the
world is an interpretation which assigns the value true to the assertion. If A entails
B, then any interpretation that makes A true also makes B true, so that an assertion
of A already contains the same "meaning" as an assertion of B; one could say that
the meaning of B is somehow contained in, or subsumed by, that of A.

2 Manual entailment calculation

In the following exercises decide if entailment.n3 entails the statement(s) given and explain
why/why not? If the answer is "yes, the statement(s) is entailed by entailments.n3", then use
the simple entailment rules (se1, se2) and the rdfs entailment rules (rdfs1, . . . , rdfs12) found
at RDFS entailment rules2 to prove your answer. If the answer is "no", then explain, informally
or formally, why this is so.

There are quite a few of these exercises, but many of them are quite easy so they should be
quick to do. If they are too easy, then skip to the last ones, which are perhaps a bit harder.

2.1 Exercise

First, to get the an overview of the statements in entailments.n3, draw a diagram.

2.1.1 Solution

Legend: Nodes are represented in the diagram as nodes. A resource of type rdfs:Class is
depicted with a circle. A resource of type rdf:Property is depicted with a diamond. A box is
a resource which is not of type rdfs:Class or rdf:Resource. The resources rdfs:Class,
rdf:Property, rdf:type, rdfs:subClassOf and rdfs:subPropertyOf are not marked by
nodes in the diagram.

Triples are illustrated with edges, where the node which the edge points from is the subject,
the edge itself is the predicate and the object is the node which the edge points to. A solid

1http://www.w3.org/TR/rdf-mt/#entail
2http://www.w3.org/TR/rdf-mt/

2/9

http://www.w3.org/TR/rdf-mt/#entail
http://www.w3.org/TR/rdf-mt/
http://www.w3.org/TR/rdf-mt/#entail
http://www.w3.org/TR/rdf-mt/

Figure 1: A diagram of the entailments.n3 graph.

unlabelled edge represent an rdfs:subClassOf or a rdfs:subPropertyOf predicate. Blue,
dashed edges show domain and range restrictions for properties. An edge pointing to a
property represents the domain restriction for the property, a range restriction is marked with
an outwards pointing edge.

2.2 Exercise

:Father rdfs:subClassOf :Person .

2.2.1 Solution

True. :Father is (transitively) a subclass of :Person. Rule rdfs11.

In the proof below each line is marked with "P" if the statement is a premise, i.e., exists in
entailments.n3, or with the rule and the input statements to this rule by which the line in
question is concluded.

Proof:

1. :Father rdfs:subClassOf :Parent — P

2. :Parent rdfs:subClassOf :Person — P

3. :Father rdfs:subClassOf :Person — 1, 2, rdfs11

Statements 1. and 2. are found in entailments.n3 and are premises to the application of the
entailment rule rdfs11 on line 3, which yields the statement we’re after.

2.3 Exercise

:Man rdfs:subClassOf :Person .

2.3.1 Solution

True. This is explicitly stated in entailments.n3, so the entailment is trivial.

3/9

2.4 Exercise

:Carl a :Person .

2.4.1 Solution

True. :Carl is a :Man. :Man is a subclass of :Person. Thus, :Carl is a :Person. Rule rdfs9.
Proof:

1. :Man rdfs:subclassOf :Person — P

2. :Carl rdf:type :Man — P

3. :Carl rdf:type :Person — 1, 2, rdfs9

2.5 Exercise

:Carl a :Parent .

2.5.1 Solution

True. Carl is in the range of hasFather (:Ann :hasFather :Carl). The range of hasFather is
:Father. Thus, :Carl is a :Father. :Father is a subclass of :Parent, which makes :Carl a
:Parent. Rule rdfs3 and rdfs9. Proof:

1. :hasFather rdfs:range :Father — P

2. :Ann :hasFather :Carl — P

3. :Carl rdf:type :Father — 1, 2, rdfs3

4. :Father rdfs:subClassOf :Parent — P

5. :Carl rdf:type :Parent — 4, 3, rdfs9

2.6 Exercise

:Carl :hasChild :Ann .

2.6.1 Solution

False. The predicate :hasChild does not exist in entailments.n3.

2.7 Exercise

:Carl a :Man .

2.7.1 Solution

True. Trivial. Statement is in entailments.n3.

4/9

2.8 Exercise

:Carl a :Father .

2.8.1 Solution

True. See :Carl a :Parent.

2.9 Exercise

:Child rdf:type rdfs:Resource .

2.9.1 Solution

True. Proof:

1. :Child rdf:type rdfs:Class — P

2. :Child rdf:type rdfs:Resource 1, rdfs4a

2.10 Exercise

:Ann a :Child .

2.10.1 Solution

False. The statements about Ann in entailments.n3 are :Ann a Person and
:Ann :hasFather :Carl. None of these statements force us to conclude that :Ann is a :Child.

2.11 Exercise

:Ann :isChildOf :Carl .

2.11.1 Solution

False. See :Ann a :Child.

2.12 Exercise

:Ann :hasParent :Carl .

5/9

2.12.1 Solution

True. :Ann :hasFather :Carl is a statement in entailments.n3. :hasFather is a subprop-
erty of :hasParent. This means that all pairs related by the :hasFather property are also
related by the :hasParent property. Rule rdfs7. Proof:

1. :Ann :hasFather :Carl — P

2. :hasFather rdfs:subPropertyOf :hasParent — P

3. :Ann :hasParent :Carl — 2, 1, rdfs7

2.13 Exercise

:Ann :hasParent _:x .

2.13.1 Solution

True. This follows from the results from the previous exercise. Since it is true that "Ann has a
parent Carl", then it is true that "Ann has some parent". This is a conclusion by the application
of a simple entailment rule. Proof:

1. :Ann :hasParent :Carl — P (from previous exercise)

2. :Ann :hasParent _:x — 1, se1

2.14 Exercise

:Ann :hasParent [rdf:type :Person] .

2.14.1 Solution

True. This follows from the results of the previous exercise and the fact that the fact that the
range of the property :hasParent is :Person.

1. :Ann :hasParent _:x — P (from previous exercise)

2. :hasParent rdfs:range :Parent — P

3. _:x rdf:type :Parent — 2, 1, rdfs3

4. :Parent rdfs:subClassOf :Person — P

5. _:x rdf:type :Person — 4, 3, rdfs9

:Ann :hasParent [rdf:type :Person] is just an other form of writing the statements 1.
and 5.

2.15 Exercise

:hasFather rdfs:domain :Person .

6/9

2.15.1 Solution

False. No RDFS entailment rule lets one derive a statement (see right-most column in the
RDFS entailment rules table) about rdfs:domain.

With the "Extensional Entailment Rules" (ext1, . . . , ext9) the entainment would be true,
however, there rules are not included in the rdfs-rules, quoting the RDF Semantics document:
#+beginquote: The semantics given [above] is deliberately chosen to be the weakest ’reasonable’
interpretation of the RDFS vocabulary. Semantic extensions MAY strengthen the range, domain,
subclass and subproperty semantic conditions [. . .]. #+endquote

2.16 Exercise

rdfs:range rdf:type rdfs:Resource .

2.16.1 Solution

True. This statement is an axiomatic triple and is always satisfied in an RDFS model.

2.17 Exercise

:hasFather rdfs:range :Father .

2.17.1 Solution

True. Trivial. Statement is in entailments.n3.

2.18 Exercise

:hasFather rdfs:domain [rdfs:subClassOf :Person] .

2.18.1 Solution

False. See :hasFather rdfs:domain :Person . exercise.

2.19 Exercise

:Father rdfs:subClassOf [rdfs:subClassOf :Person] .

2.19.1 Solution

True. Proof:

1. :Father rdfs:subClassOf :Parent — P

2. :Father rdfs:subClassOf _:n — 1, se1

7/9

3. :Parent rdfs:subClassOf :Person — P

4. _:n rdfs:subClassOf :Person — 3, se2

Combine 2. and 4. to get :Father rdfs:subClassOf [rdfs:subClassOf :Person].

3 The Simpson family

Now we will use the family vocabulary as a schema for the Simpsons data we have produced
earlier, by opening both files in Protégé. Even though Protégé is an OWL editor it is quite safe
to also load RDFS models as Protégé interprets them as OWL ontologies. This is not always
the case, so it is best to use OWL if you do not need the meta-modelling capabilities of RDFS.

3.1 Exercise

Open Protégé and choose create a new OWL ontology. Give it the ontology URI

http://www.ifi.uio.no/INF3580/v16/simpsons.owl

Save it to a file of your choice, and choose the format you would like to use. What format you
choose will not be directly visible in the user interface of Protégé, but is used when saving the
ontology to file.

3.1.1 Solution

I chose Turtle. The saved file looks like this:

1 @prefix : <http://www.ifi.uio.no/INF3580/v16/simpsons.owl#> .
2 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
3 @prefix owl2xml: <http://www.w3.org/2006/12/owl2-xml#> .
4 @prefix owl: <http://www.w3.org/2002/07/owl#> .
5 @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
6 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
7 @prefix sim: <http://www.ifi.uio.no/INF3580/simpsons#> .
8 @base <http://www.ifi.uio.no/INF3580/v16/simpsons.owl> .
9

10 <http://www.ifi.uio.no/INF3580/v16/simpsons.owl> rdf:type owl:Ontology .

3.2 Exercise

Import the Simpsons RDF file you wrote in the RDF week exercises and the Family RDFS
file you have written in this week’s exercises. (This is done by clicking the plus sign in the
"Ontology Imports" pane on the starting page of Protégé and importing "an ontology contained
in a specific file" for each of the RDF files.) Note that Protégé seems to have a problem
importing files which are not in RDF/XML format, while opening files in different formats
works better. If you have written your files in a format different from RDF/XML and you have
problems with this exercise, try converting your files to RDF/XML with, e.g., RDF Validator
and Converter3 .

3http://www.easyrdf.org/converter

8/9

http://www.easyrdf.org/converter
http://www.easyrdf.org/converter
http://www.easyrdf.org/converter

Then both files are successfully imported you should see the hierarchy of classes, properties
and individuals under the tabs Classes, Object Properties and Data Properties respectively and
Individuals. See also if your domain and range assertions look correct.

3.2.1 Solution

11 <http://www.ifi.uio.no/INF3580/v16/simpsons.owl>
12 owl:imports
13 <http://www.ifi.uio.no/INF3580/simpsons> ,
14 <http://www.ifi.uio.no/INF3580/family> .

3.3 Exercise

Find the class Person in the Classes pane and see that it has quite a few members, while the
classes Man and Woman have no members.

Now apply reasoning by choosing a reasoner, e.g., Pellet, in the Reasoner menu, and click
Classify. . . in the same menu. Record any error messages that appear, you should get none.

If reasoning was successful, and assuming you have modelled classes and properties the same
way as I have, you should see that the classes Man and Woman now have members.

Questions:

• What is the added statements about Bart after reasoning?

• In the Individuals list there might appear new individuals labelled genid1, genid2,. . .
Explain what they are.

• Which named individuals do not get any added information after reasoning?

3.3.1 Solution

The added information about Bart after reasoning is that he

• hasRelationshipTo Marge, Homer

• hasParent Marge, Homer

The genid individuals are the blank nodes we already have met in the previous exercises.
Notice that they also get added information after reasoning. In my case genid1 has Abraham
as father. Now I know that Homer is the same individual as genid1, but this is not "discovered"
by the reasoner. To make this happen we need to add restrictions so that they necessarily must
be the same individuals.

The individuals that reasoning does not add any information to are Simpsons, Female, Male.

9/9

	Entailment
	Exercise
	Solution

	Exercise
	Exercise
	Solution

	Manual entailment calculation
	Exercise
	Solution

	Exercise
	Solution

	Exercise
	Solution

	Exercise
	Solution

	Exercise
	Solution

	Exercise
	Solution

	Exercise
	Solution

	Exercise
	Solution

	Exercise
	Solution

	Exercise
	Solution

	Exercise
	Solution

	Exercise
	Solution

	Exercise
	Solution

	Exercise
	Solution

	Exercise
	Solution

	Exercise
	Solution

	Exercise
	Solution

	Exercise
	Solution

	Exercise
	Solution

	The Simpson family
	Exercise
	Solution

	Exercise
	Solution

	Exercise
	Solution

