Semantics

1 Literals and blank nodes

Let Γ be the RDF graph below. You will need to interpret both blank nodes and literals using the semantics layed out in the lectures.

1. Create an interpretation \mathcal{I}_{1} such that $\mathcal{I}_{1} \models \Gamma$.
2. Create an interpretation \mathcal{I}_{2} such that $\mathcal{I}_{2} \not \vDash \Gamma$.
```
1 @prefix : <http://www.example.org#> .
2 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
3
4 :Tweety rdf:type :Bird .
5 :Nixon rdf:type :Republican .
6 :Nixon rdf:type :Quacker .
7 :Nixon :listensTo :Tweety .
8 :Nixon :likes [ a :Bird ] .
9 [] :likes :Nixon .
10 :Nixon :hasNickname "Ric" .
11 :Tweety :hasNickname "Mr. Man" .
12 :Tweety :likes :Tux .
```


1.1 Solution

New things to pay attention in this exercises are:

- Λ is the set of all literals. All literals are interpreted to themselves(, i.e., there is no $\Lambda^{\mathcal{I}}$).
- We need to interpret blank nodes. For this we use a blank node valuation function β, which assigns values from $\Delta^{\mathcal{I}} \cup \Lambda$ to blank nodes: $\beta(b) \in \Delta^{\mathcal{I}} \cup \Lambda$ for all blank nodes b.

First, let's create an interpretation which satisfies Γ.
Since there are blank nodes in Γ the interpretation we give needs to interpret them, i.e., we need to find an interpretation \mathcal{I} such that there exists a blank node valuation β where $\mathcal{I}, \beta \vDash \Gamma$.

We let b_{1} identify the blank node in

```
:Nixon :likes [ a :Bird ] .
```

and b_{2} identify the blank node in
[] :likes :Nixon .
Construct the following interpretation \mathcal{I} :

- $\Delta^{\mathcal{I}}=\{$ Tweety, Nixon, aBird, Something, Tux $\}$
- Tweety $^{\mathcal{I}}=$ Tweety
- $:$ Nixon $^{\mathcal{I}}=$ Nixon
- $: \operatorname{Tux}^{\mathcal{I}}=T u x$
- $: \operatorname{Bird}^{\mathcal{I}}=\{$ Tweety, a Bird $\}$
- : Republican ${ }^{\mathcal{I}}=\{$ Nixon $\}$
- $:$ Quacker ${ }^{\mathcal{I}}=\{$ Nixon $\}$
- : listensTo ${ }^{\mathcal{I}}=\{\langle$ Nixon, Tweety $\rangle\}$
- : likes ${ }^{\mathcal{I}}=\{\langle$ Nixon, aBird \rangle,\langle Something, Nixon \rangle,\langle Tweety, Tux $\rangle\}$
- : hasNickname ${ }^{\mathcal{I}}=\{\langle$ Nixon, "Rix" \rangle,\langle Tweety, "Mr. Man" $\rangle\}$

Let

- $\beta\left(b_{1}\right)=a$ Bird, and
- $\beta\left(b_{2}\right)=$ Something.

Then $\mathcal{I}, \beta \vDash \Gamma$, so we also have that $\mathcal{I} \vDash \Gamma$.
To construct a new interpretation such that $\mathcal{I} \not \forall \Gamma$, let \mathcal{I} be as above, but let : Bird ${ }^{\mathcal{I}}=\emptyset$. Then there is nothing we can send the blank node b_{1} to have $\mathcal{I}, \beta \vDash:$ Nixon :likes [a :Bird] . (and also nothing to send :Tweety to), so this interpretation does not satisfy $\Gamma: \mathcal{I} \not \models \Gamma$.

