Semantics

1 Literals and blank nodes

Let Γ be the RDF graph below. You will need to interpret both blank nodes and literals using the semantics layed out in the lectures.

- 1. Create an interpretation \mathcal{I}_1 such that $\mathcal{I}_1 \models \Gamma$.
- 2. Create an interpretation \mathcal{I}_2 such that $\mathcal{I}_2 \not\models \Gamma$.

```
1
    @prefix : <http://www.example.org#> .
    @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
4
   :Tweety rdf:type
                        :Bird .
5
   :Nixon rdf:type
                        :Republican .
6
   :Nixon
            rdf:type
                        :Quacker .
7
    :Nixon
            :listensTo :Tweety .
    :Nixon
            :likes
                        [a:Bird]
9
            :likes
                        :Nixon .
    :Nixon :hasNickname "Ric" .
10
    :Tweety :hasNickname "Mr. Man" .
12
    :Tweety :likes
                        :Tux .
```

1.1 Solution

New things to pay attention in this exercises are:

- Λ is the set of all literals. All literals are interpreted to themselves (, i.e., there is no $\Lambda^{\mathcal{I}}$).
- We need to interpret blank nodes. For this we use a blank node valuation function β , which assigns values from $\Delta^{\mathcal{I}} \cup \Lambda$ to blank nodes: $\beta(b) \in \Delta^{\mathcal{I}} \cup \Lambda$ for all blank nodes b.

First, let's create an interpretation which satisfies Γ .

Since there are blank nodes in Γ the interpretation we give needs to interpret them, i.e., we need to find an interpretation \mathcal{I} such that there exists a blank node valuation β where $\mathcal{I}, \beta \vDash \Gamma$.

We let b_1 identify the blank node in

:Nixon :likes [a:Bird].

and b_2 identify the blank node in

[] :likes :Nixon .

Construct the following interpretation \mathcal{I} :

- $\Delta^{\mathcal{I}} = \{Tweety, Nixon, aBird, Something, Tux\}$
- :Tweety $^{\mathcal{I}} = Tweety$
- :Nixon $^{\mathcal{I}} = Nixon$
- :Tux $^{\mathcal{I}} = Tux$
- :Bird $^{\mathcal{I}} = \{Tweety, aBird\}$
- :Republican $^{\mathcal{I}} = \{Nixon\}$
- :Quacker $^{\mathcal{I}} = \{Nixon\}$
- :listensTo $^{\mathcal{I}} = \{\langle Nixon, Tweety \rangle\}$
- $\bullet \ : \mathtt{likes} \ ^{\mathcal{I}} = \{ \langle Nixon, aBird \rangle, \langle Something, Nixon \rangle, \langle Tweety, Tux \rangle \}$
- :hasNickname $^{\mathcal{I}} = \{ \langle Nixon, "Rix" \rangle, \langle Tweety, "Mr. Man" \rangle \}$

Let

- $\beta(b_1) = aBird$, and
- $\beta(b_2) = Something$.

Then $\mathcal{I}, \beta \vDash \Gamma$, so we also have that $\mathcal{I} \vDash \Gamma$.

To construct a new interpretation such that $\mathcal{I} \not\models \Gamma$, let \mathcal{I} be as above, but let :Bird $^{\mathcal{I}} = \emptyset$. Then there is nothing we can send the blank node b_1 to have $\mathcal{I}, \beta \vDash :$ Nixon :likes [a :Bird] . (and also nothing to send :Tweety to), so this interpretation does not satisfy $\Gamma : \mathcal{I} \not\models \Gamma$.