
More OWL

Read

• Foundations of Semantic Web Technologies: chapter 4, 5.

1 The Simpsons in OWL 2

In this exercise we will extend the family ontology by using OWL 2 vocabu-
lary. OWL 2 adds expressivity to OWL DL without becoming undecidable.
For an overview of the new features of OWL 2 see OWL 2 Web Ontology
Language: New Features and Rationale.

1.1 Exercise

Create a new ontology which imports the family OWL ontology we made in
last week’s exercises.

1.1.1 Solution

1 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
2 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
3 @prefix owl: <http://www.w3.org/2002/07/owl#> .
4 @prefix owl2xml: <http://www.w3.org/2006/12/owl2-xml#> .
5 @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
6 @prefix fam: <http://www.ifi.uio.no/INF3580/v18/family#> .
7 @prefix : <http://www.ifi.uio.no/INF3580/v18/family.owl2.n3#> .
8 @base <http://www.ifi.uio.no/INF3580/v18/family.owl2.n3> .
9

10 <http://www.ifi.uio.no/INF3580/v18/family.owl2.n3> rdf:type owl:Ontology ;
11 owl:imports <http://www.ifi.uio.no/INF3580/v18/family.owl> .

1.2 Exercise

State that a person have exactly one gender.

1

http://www.w3.org/TR/owl2-new-features/
http://www.w3.org/TR/owl2-new-features/

1.2.1 Solution

To do this we use the exactly cardinality restriction.

hasGender exactly 1 Gender

In N3 this translates to:

12 foaf:Person rdfs:subClassOf
13 [rdf:type owl:Restriction ;
14 owl:onProperty fam:hasGender ;
15 owl:onClass fam:Gender ;
16 owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger
17] .

1.3 Exercise

Explain what owl keys are.
How would you state that foaf:name is key for Person?

1.3.1 Solution

See http://www.w3.org/2007/OWL/wiki/Easy_Keys.

18 foaf:Person owl:hasKey (foaf:name) .

1.4 Exercise

Identify the correct characteristics of all properties in the ontology, i.e., which
properties are

• asymmetric

• reflexive

• irreflexive

Explain what asymmetric, reflexive and irreflexive properties are. Use
examples.

1.4.1 Tip

Note that the exercise says "identify" and not "add". The reason for this is
that not all combinations of property characteristics are admissible in OWL
2. Adding more property characteristics carelessly will cause reasoners to
report errors. For more information see the paper The even more irresistible
SROIQ by Horrocks et al. SROIQ is the description logic which is the logical
basis for OWL 2.

2

http://www.w3.org/2007/OWL/wiki/Easy_Keys
https://www.aaai.org/Papers/KR/2006/KR06-009.pdf
https://www.aaai.org/Papers/KR/2006/KR06-009.pdf

1.4.2 Solution

See wikipedia for explanations of the characteristics asymmetric, reflexive
and irreflexive.

Assuming all relationships have Person as both domain and range, the
following is an arguably common interpretation of their characteristics.

Irreflexive Asymmetric Symmetric Transitive
hasRelationshipTo X X
hasSibling x X X
hasBrother x X
hasSister x X
hasParent x X
hasMother x X
hasFather x X
hasAunt x X
hasUncle x X
hasChild x
hasSon x
hasDaugther x
hasGrandParent x
hasSpouse x X
hasHusband x X †)
hasWife x X †)

Notes:

• x: hasRelationshipTo is irreflexive, so all subproperties of it must also
be.

• †) Assuming heteronormativity.

Relationships not considered:

• hasFamilyMember

• hasName

• hasAge

• hasGender

1.5 Exercise

Explain what it means for two properties to be disjoint. Add the natural
disjoint axioms for properties in the ontology.

3

http://en.wikipedia.org/wiki/Asymmetric_relation
http://en.wikipedia.org/wiki/Reflexive_relation
http://en.wikipedia.org/wiki/Reflexive_relation

1.5.1 Solution

Formally, relations are sets of pairs of individuals, so stating that two rela-
tions R and S are disjoint is the same as stating that no pair (a, b) can be
member of both R and S.

As an example, if hasChild and hasSpouse is disjoint, then the model is
not accept that a parent may be the spouse of its own child—which seems
quite fair. A more normal example is declaring hasSister and hasBrother
as disjoint, but this statement is not necessary as the range of the two prop-
erties are respectively Woman and Man, which are already stated as disjoint.

This is an example of how to express disjointness of properties in OWL:

19 [rdf:type owl:AllDisjointProperties ;
20 owl:members (fam:hasFamilyMember
21 fam:hasGender
22 fam:isRelativeOf
23)] .

1.6 Exercise

Explain what property chaining is. Using property chaining, define the prop-
erties

• fam:hasAunt

• fam:hasGrandParent

• fam:hasUncle

as equivalent to the correct property chain.
Create two new properties

• :hasGrandMother

• :hasGrandFather

in the same manner.

1.6.1 Solution

See the the book’s homepage for an explanation of what property chaining
is.

Property chaining is added in Protégé by selecting the property, e.g.,
fam:hasAunt, and adding the appropriate axiom in the slot "Property
chains". The symbol for chaining is "o", e.g.,

hasParent o hasSister -> hasAunt

4

http://www.semantic-web-book.org/w/images/b/b0/KI09-OWL-Rules-1.pdf

In Turtle it looks like this.

24 fam:hasAunt owl:propertyChainAxiom (fam:hasParent fam:hasSister) .
25 fam:hasUncle owl:propertyChainAxiom (fam:hasParent fam:hasBrother) .
26 fam:hasGrandParent owl:propertyChainAxiom (fam:hasParent fam:hasParent) .
27 fam:hasGrandMother owl:propertyChainAxiom (fam:hasParent fam:hasMother) .
28 fam:hasGrandFather owl:propertyChainAxiom (fam:hasParent fam:hasFather) .

1.7 Exercise

Define a class Minor as a Person which is under the age of 18.
Define a class Juvenile as a Person which is under the age of 16.

1.7.1 Solution

In Protégé Minor is defined by adding an axiom under Equivalent classes:

Person and hasAge some integer [< 18]

In the same manner Juvenile is defined as equivalent to

Person and hasAge some integer [< 16]

In Turtle syntax:

29 :Minor owl:equivalentClass
30 [rdf:type owl:Class ;
31 owl:intersectionOf
32 (foaf:Person
33 [rdf:type owl:Restriction ;
34 owl:onProperty foaf:age ;
35 owl:someValuesFrom
36 [rdf:type rdfs:Datatype ;
37 owl:onDatatype xsd:integer ;
38 owl:withRestrictions ([xsd:maxExclusive 18])
39]])] .
40
41 :Juvenile owl:equivalentClass
42 [rdf:type owl:Class ;
43 owl:intersectionOf
44 (foaf:Person
45 [rdf:type owl:Restriction ;
46 owl:onProperty foaf:age ;
47 owl:someValuesFrom
48 [rdf:type rdfs:Datatype ;
49 owl:onDatatype xsd:integer ;
50 owl:withRestrictions ([xsd:maxExclusive 16])
51]])] .

5

1.8 Exercise

Add a class Job and a object property hasJob with domain Person and range
Job.

Define a class Retiree as a Person which is over 66 years old and has
no Job.

1.8.1 Solution

52 :Job rdf:type owl:Class .
53
54 :hasJob rdf:type owl:ObjectProperty ;
55 rdfs:domain foaf:Person ;
56 rdfs:range :Job .
57
58 :Retiree owl:equivalentClass
59 [rdf:type owl:Class ;
60 owl:intersectionOf
61 (foaf:Person
62 [rdf:type owl:Class ;
63 owl:complementOf
64 [rdf:type owl:Restriction ;
65 owl:onProperty :hasJob ;
66 owl:someValuesFrom owl:Thing
67]]
68 [rdf:type owl:Restriction ;
69 owl:onProperty foaf:age ;
70 owl:someValuesFrom
71 [rdf:type rdfs:Datatype ;
72 owl:onDatatype xsd:integer ;
73 owl:withRestrictions ([xsd:minExclusive 66])
74]]
75)] .

6

	The Simpsons in OWL 2
	Exercise
	Solution

	Exercise
	Solution

	Exercise
	Solution

	Exercise
	Tip
	Solution

	Exercise
	Solution

	Exercise
	Solution

	Exercise
	Solution

	Exercise
	Solution

