
INF3580/4580 – Semantic Technologies – Spring 2017
Lecture 7: Reasoners in Jena

Martin Giese

27th February 2018

Department of
Informatics

University of
Oslo

Today’s Plan

1 Recap: Reasoning with rules

2 Backwards and forwards reasoning

3 The Jena reasoning system

4 Built-in reasoners

5 Richer API with OntModel

6 External reasoners

7 A worked example

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February 2 / 49

Recap: Reasoning with rules

Outline

1 Recap: Reasoning with rules

2 Backwards and forwards reasoning

3 The Jena reasoning system

4 Built-in reasoners

5 Richer API with OntModel

6 External reasoners

7 A worked example

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February 3 / 49

Recap: Reasoning with rules

What is inference?

In a Semantic Web context, inference always means,
adding triples,

More specifically it means,

adding new triples to an RDF graph,
on the basis of the triples already in it.
‘adding’ should be understood in a logical sense, indeed;

new/inferred triples need not be materialized or persisted

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February 4 / 49

Recap: Reasoning with rules

cont.

A rule of the form

P1, · · · ,Pn

P

may be read as an instruction;

“If P1, · · · ,Pn are all in the graph, add P to the graph”
as an instruction this may in turn be understood procedurally. . .

in a forward sense, or
in a backward sense

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February 5 / 49

Recap: Reasoning with rules

RDFS reasoning

RDFS supports three principal kinds of reasoning pattern:

I. Type propagation:
“The 2CV is a car, and a car is a motorised vehicle, so. . . ”

II. Property inheritance:
“Martin lectures at Ifi, and lecturers are employed by Ifi, so. . . ”

III. Domain and range reasoning:
“Everything written is a document. Martin wrote x , hence x . . . ”
“All fathers are males. Martin is the father of Karl, therefore. . . ”

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February 6 / 49

Recap: Reasoning with rules

Sample RDFS rules

Rules for property transfer

Transitivity:

p rdfs:subPropertyOf q . q rdfs:subPropertyOf r .
rdfs5p rdfs:subPropertyOf r .

Reflexivity:

p rdf:type rdf:Property .
rdfs6p rdfs:subPropertyOf p .

Property transfer:

p rdfs:subPropertyOf q . u p v .
rdfs7u q v .

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February 7 / 49

Recap: Reasoning with rules

Example: Conductors and ensembles

rdfs:Resource

:Person :Ensemble

:conductor :SymphonyOrchestra

rdf
s:s

ubC
las

sOf rdfs:subClassOf

rd
fs

:s
ub

Cl
as

sO
f

rdfs:domain
rd

fs
:r

an
ge

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February 8 / 49

Recap: Reasoning with rules

Example contd.

This ontolology includes

:SymphonyOrchestra rdfs:subClassOf :Ensemble .

:conductor rdfs:domain :SymphonyOrchestra .

:conductor rdfs:range :Person .

Suppose the data includes

:OsloPhilharmonic :conductor :Petrenko .

then the the following triples can be inferred:

:OsloPhilharmonic rdf:type :SymphonyOrchestra .

:OsloPhilharmonic rdf:type :Ensemble .

:Petrenko rdf:type :Person .

try to figure
out why!

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February 9 / 49

Backwards and forwards reasoning

Outline

1 Recap: Reasoning with rules

2 Backwards and forwards reasoning

3 The Jena reasoning system

4 Built-in reasoners

5 Richer API with OntModel

6 External reasoners

7 A worked example

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February 10 / 49

Backwards and forwards reasoning

Forward chaining vs. backward chaining

Forward chaining:
reasoning from premises to conclusions of rules
adds facts corresponding to the conclusions of rules
entailed facts are stored and reused
reasoning is up front

Backward chaining:
reasoning from conclusions to premises
‘. . . what needs to be true for this conclusion to hold?’
reasoning is on-demand

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February 11 / 49

Backwards and forwards reasoning

Forward chaining inference

Explicit facts

Entailed facts

Fact 1 Fact 2

Fact 3

Fact 4

Fact 5

Explicit facts

Entailed facts

Fact 1 Fact 2 Fact 6

Fact 3

Fact 4

Fact 5

Fact 7Fact 8

Fact 9

Fact 10

Figure: When a fact is added, all entailments are computed and stored.

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February 12 / 49

Backwards and forwards reasoning

Benefits of forward chaining

Precomputing and storing answers is suitable for data which is:
frequently accessed,
expensive to compute,
relatively static,
and small enough to store efficiently.

Benefits:
forward chaining optimizes retrieval
no additional inference is necessary at query time

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February 13 / 49

Backwards and forwards reasoning

Forward chaining and truth-maintenance

Explicit facts

Entailed facts

Fact 1 Fact 2

Fact 3

Fact 4

Fact 5

Explicit facts

Entailed facts

Fact 1 Fact 2 Fact 6

Fact 3

Fact 4

Fact 5

Fact 7Fact 8

Fact 9

Fact 10

Figure: When a fact is added, all entailments are computed and stored.

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February 14 / 49

Backwards and forwards reasoning

Forward chaining and truth-maintenance

Explicit facts

Entailed facts

Fact 1 Fact 2

Fact 3

Fact 4

Fact 5

Explicit facts

Entailed facts

Fact 1 Fact 2 Fact 6

Fact 3

Fact 4

Fact 5

Fact 7Fact 8

Fact 9

Fact 10

Figure: When a fact is removed, everything that comes with it must go too.

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February 15 / 49

Backwards and forwards reasoning

Drawbacks of forward chaining

Drawbacks:
increases storage size
increases the overhead of insertion
removal is highly problematic
truth maintenance usually not implemented in RDF stores
problematic for distributed and/or dynamic systems

rules could apply to premisses on different disks, etc.

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February 16 / 49

Backwards and forwards reasoning

Backward chaining inference

Explicit facts

Entailed facts

Fact 2 Fact 3Fact 1

Fact 4

Fact 5

Fact 6Fact 7

Figure: Backward chaining uses rules to expand queries.

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February 17 / 49

Backwards and forwards reasoning

Backward chaining: Example
RDFS/RDF knowledge base:

ex:Mammal rdfs:subClassOf ex:Vertebrate .

ex:KillerWhale rdfs:subClassOf ex:Mammal .

ex:Lion rdfs:subClassOf ex:Mammal .

ex:Keiko rdf:type ex:KillerWhale .

ex:Simba rdf:type ex:Lion .

Query:
SELECT ?x WHERE { ?x rdf:type ex:Vertebrate . }

Inferred triples:

A rdfs:subClassOf B . x rdf:type A .
x rdf:type B .

?x rdf:type ex:Vertabrate .

?x rdf:type ex:Mammal . (rdfs9)
?x rdf:type ex:KillerWhale . (rdfs9) ⇒ ?x = ex:Keiko

?x rdf:type ex:Lion . (rdfs9) ⇒ ?x = ex:Simba

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February 18 / 49

Backwards and forwards reasoning

Drawbacks and benefits of backward chaining

Computing answers on demand is suitable where:

there is little need for reuse of computed answers
answers can be efficiently computed at runtime
answers come from multiple dynamic sources

Benefits:
only the relevant inferences are drawn
truth maintenance is automatic
no persistent storage space needed

Drawbacks:
trades insertion overhead for access overhead
without caching, answers must be recomputed every time

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February 19 / 49

The Jena reasoning system

Outline

1 Recap: Reasoning with rules

2 Backwards and forwards reasoning

3 The Jena reasoning system

4 Built-in reasoners

5 Richer API with OntModel

6 External reasoners

7 A worked example

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February 20 / 49

The Jena reasoning system

Quick facts

In Jena there is
a zillion ways to configure and plug-in a reasoner
some seem rather haphazard

Imposing order at the cost of precision we may say that. . .
reasoners fall into one of two categories

built-in- and
external reasoners

. . . and are combined with two kinds of model
models of type InfModel, and
models of type OntModel

Different reasoners implement different logics, e.g
Transitive reasoning,
RDFS,
OWL

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February 21 / 49

The Jena reasoning system

Reasoners, Factories, Registries. . .

Every reasoner is an object of class Reasoner
These are created by ReasonerFactory objects
So: one ReasonerFactory per type of reasoner
All reasoner factories are stored in a global ReasonerRegistry

Allows finding a factory for reasoners by URI
Also by “descriptions” which are again RDF

Example:
ReasonerRegistry registry = ReasonerRegistry.theRegistry();
String reasonerURI = "http://jena.hpl.hp.com/2003/RDFSExptRuleReasoner";
ReasonerFactory factory = registry.getFactory(reasonerURI);
Reasoner reasoner = factory.create(config);

config is a Resource that describes requested features for the reasoner.

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February 22 / 49

The Jena reasoning system

Inference Models

Now a Model with inferencing can be constructed, given
an underlying Model with “raw” data
a Reasoner instance

InfModel inf = ModelFactory.createInfModel(reasoner, rawModel);
Depending on reasoner, this InfModel might do

forward chaining: precompute all consequences of triples in rawModel
backward chaining: triggered by SPARQL queries or list(...) calls

Different reasoners compute different sets of consequences:
“transitive” reasoner: only subClassOf hierarchy, etc.
RDFS reasoner: all RDFS inference rules
OWL/mini/micro: various subsets of OWL inferences

Most reasoners can be configured before binding them to a model,
to change various details of their behaviour.

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February 23 / 49

The Jena reasoning system

The road most often travelled. . .

Convenience methods are used to construct standard reasoners or inference models
Get standard reasoners from ReasonerRegistry:
Reasoner reasoner = ReasonerRegistry.getRDFSReasoner();

Get inference models with standard reasoners from ModelFactory:
InfModel inf = ModelFactory.createRDFSModel(rawModel);
What’s the point of the long winded way?

Can ask for non-builtin provers, e.g. Pellet
Can configure reasoners

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February 24 / 49

The Jena reasoning system

Simplified overview

ModelFactory
creates

selects from

OntModel

wraps

InfModel

produces

Reasoner

ReasonerRegistry

contains

ReasonerFactory
creates

RDF graph

expanded by

Ontology

creates

Figure: The structure of the reasoning system

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February 25 / 49

Built-in reasoners

Outline

1 Recap: Reasoning with rules

2 Backwards and forwards reasoning

3 The Jena reasoning system

4 Built-in reasoners

5 Richer API with OntModel

6 External reasoners

7 A worked example

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February 26 / 49

Built-in reasoners

Built-in reasoners

Transitive reasoners:
provides support for simple taxonomy traversal
implements only the reflexivity and transitivity of

rdfs:subPropertyOf, and
rdfs:subClassOf.

RDFS reasoners:
supports (most of) the axioms and inference rules specific to RDFS.

OWL, OWL mini/micro reasoners:
implements different subsets of the OWL specification

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February 27 / 49

Built-in reasoners

Obtaining a built-in reasoner

Three main ways of obtaining a built-in reasoner:
1 call a convenience method on the ModelFactory

which calls a ReasonerFactory in the ReasonerRegistry, and
returns an InfModel all in one go

2 call a static method in the ReasonerRegistry,
the static method returns a reasoner object
pass it to ModelFactory.createInfModel()
along with a model and a dataset

3 use a reasoner factory directly
covered in connection with external reasoners later

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February 28 / 49

Built-in reasoners

Example I: Using a convenience method

A simple RDFS model
Model sche = FileManager.get().loadModel(aURI);
Model dat = FileManager.get().loadModel(bURI);
InfModel inferredModel = ModelFactory.createRDFSModel(sche, dat);

method createRDFSModel() returns an InfModel
An InfModel has a basic inference API, such as;

getDeductionsModel() which returns the inferred triples,
getRawModel() which returns the base triples,
getReasoner() which returns the RDFS reasoner,
getDerivation(stmt) which returns a trace of the derivation

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February 29 / 49

Built-in reasoners

Example II: Using static methods in the registry

using ModelFactory.createInfModel
Model sche = FileManager.get().loadModel(aURI);
Model dat = FileManager.get().loadModel(bURI);

Reasoner reas = ReasonerRegistry.getOWLReasoner();
InfModel inf = ModelFactory.createInfModel(reas, sche, dat);

Virtues of this approach:

we retain a reference to the reasoner,
that can be used to configure it

e.g. to do backwards or forwards chaining
. . . mind you, not all reasoners can do both

similar for built-in and external reasoners alike

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February 30 / 49

Richer API with OntModel

Outline

1 Recap: Reasoning with rules

2 Backwards and forwards reasoning

3 The Jena reasoning system

4 Built-in reasoners

5 Richer API with OntModel

6 External reasoners

7 A worked example

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February 31 / 49

Richer API with OntModel

An OntModel is ontology-aware

An InfModel provides
basic functionality associated with the reasoner, and
basic functionality to sort entailed from explicit statements
. . . but no fine-grained control over an ontology

An OntModel provides
a richer view of a knowledge base
in terms of ontological concepts
mirrored by methods such as

createClass()
createDatatypeProperty()
getIntersectionClass()

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February 32 / 49

Richer API with OntModel

contd.

An OntModel does not by itself compute entailments
it is merely a wrapper
that provides a convenient API
given that your data is described by an ontology

However,
an OntModel can be constructed according to a specification object
that, among other things, tells Jena which reasoner to use

More generally, an OntModelSpec encapsulates
the storage scheme,
language profile,
and the reasoner associated with a particular OntModel

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February 33 / 49

Richer API with OntModel

Some predefined specification objects

The class OntModelSpec contains static references to prebuilt instances:

OWL_DL_MEM_RDFS_INF: In-memory OWL DL model that uses the RDFS inference engine.
OWL_LITE_MEM: In-memory OWL Lite model. No reasoning.
OWL_MEM_MICRO_RULE_INF: In-memory OWL model uses the OWLMicro inference engine.
OWL_DL_MEM: In-Memory OWL DL model. No reasoning.

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February 34 / 49

Richer API with OntModel

Example: Configuring an OntModel

An OntModel is created by calling a method in ModelFactory

Specifying an OntModel
OntModelSpec spec = new OntModelSpec(OntModelSpec.OWL_DL_MEM);
OntModel model = ModelFactory.createOntologyModel(spec, model);

Jena currently lags behind (. . . and has done so for quite a while)
no spec for OWL 2
. . . or any of its profiles
does not mean that we cannot use OWL 2 ontologies with Jena
but we do not have support in the API for all language constructs
some reasoners supply their own such API, e.g. Pellet

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February 35 / 49

Richer API with OntModel

Question

So. . . we learnt how to use Jena to add, retrieve, modify triples
— why do we need reasoners?

Many reasons:
Separate logic (All symphony orchestras are ensembles) from control (when to add which
triples): declarative programming.
Can use ontology reasoners to check that the logic is OK. Much easier than checking that
a Java program is OK.
Getting the control right (and efficient) is not always easy. Using a generic reasoner reuses
this know-how.

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February 36 / 49

External reasoners

Outline

1 Recap: Reasoning with rules

2 Backwards and forwards reasoning

3 The Jena reasoning system

4 Built-in reasoners

5 Richer API with OntModel

6 External reasoners

7 A worked example

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February 37 / 49

External reasoners

Plugging in third-party reasoners

Jena’s reasoning-system architecture makes it easy. . .
for third party vendors to write reasoners
that can be plugged in to Jena architecture

External reasoners usually
check in a ReasonerFactory in the ReasonerRegistry, and
supply a OntModelSpec to be handed to the ModelFactory

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February 38 / 49

External reasoners

Some better known ones

There are many, many reasoners to choose from, e.g.
FaCT++
Cerebra Engine
CEL
HermiT
Pellet

Reasoning algorithms vary with purpose, scope, philosophy and age (!);
tableau reasoners (FaCT++, Pellet, Cerebra)
rule-based reasoners (CEL)
hyper-tableaux (HermiT)
only rule reasoners have a notion of forwards vs. backwards

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February 39 / 49

External reasoners

Using an external reasoner

retrieve an instance of the reasoner:

Reasoner r;
r = PelletReasonerFactory.theInstance().create();

associate the reasoner with an InfModel, an ontology and a dataset:

InfModel inf;
inf = ModelFactory.createInfModel(r, ontology, dataset);

Or: create an OntModel for a richer API:

OntModel m;
m = ModelFactory.createOntologyModel(

PelletReasonerFactory.THE_SPEC);

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February 40 / 49

A worked example

Outline

1 Recap: Reasoning with rules

2 Backwards and forwards reasoning

3 The Jena reasoning system

4 Built-in reasoners

5 Richer API with OntModel

6 External reasoners

7 A worked example

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February 41 / 49

A worked example

Integrating information from DBpedia

Quick facts about the DBpedia project:
aims to extract structured content from Wikipedia
it is a community effort, so. . .
the data is not always uniform and consistent
distinct properties for ‘intuitively similar’ objects not uncommon, e.g.;

dbprop:doctoralStudents
dbpedia:doctoralStudent

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February 42 / 49

A worked example

Who has worked with Jeffrey Ullman?

Ullman is one of the most referenced computer scientists

DBpedia contains info about, e.g. his
education and laureates
citizenship and nationality
scientific contributions

say we wish to compile a list of his collaborators, including at least
advisors, and
PhD students

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February 43 / 49

A worked example

set relevant prefixes:
String ont = "http://dbpedia.org/ontology/";
String res = "http://dbpedia.org/resource/";
String prop = "http://dbpedia.org/property/";
String ex = "http://www.example.org/";

connect to DBpedia, describe J. Ullman:
String dbpedia = "http://dbpedia.org/sparql";
String describe = "DESCRIBE <" + res + "Jeffrey_Ullman>";
QueryExecution qexc =

QueryExecutionFactory.sparqlService(dbpedia, describe);
Model ullman = qexc.execDescribe();

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February 44 / 49

A worked example

build an ontology of collaborators (or better, read it from file):

Model ontology = ModelFactory.createDefaultModel();
Property collab = ontology.createProperty(ex + "collaborator");
Property phds = ontology.createProperty(prop + "doctoralStudents");
Property phd = ontology.createProperty(ont + "doctoralStudent");
Property adv = ontology.createProperty(ont + "doctoralAdvisor");
ontology.add(phds, RDFS.subPropertyOf, collab);
ontology.add(phd, RDFS.subPropertyOf, collab);
ontology.add(adv, RDFS.subPropertyOf, collab);

. . . and reason over it:

InfModel inf;
inf = ModelFactory.createRDFSModel(ontology, ullman);

wrap it in an OntModel if you need a richer API

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February 45 / 49

A worked example

write the query:
String qStr =
"PREFIX ont: <" + ont + ">" +
"PREFIX res: <" + res + ">" +
"PREFIX ex: <" + ex + ">" +
"SELECT ?collaborator WHERE {" +
" res:Jeffrey_Ullman ex:collaborator ?collaborator." +
"}";

execute it. . .
Query query = QueryFactory.create(qStr);
QueryExecution qe = QueryExecutionFactory.create(query, inf);
ResultSet res = qe.execSelect();

and, if, you like, print out the results
ResultSetFormatter.out(res, query);

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February 46 / 49

A worked example

Backwards reasoning over the same example

backwards reasoning often suitable for stuff in memory
you need a reasoner capable of doing backwards reasoning
i.e. a rule reasoner
and a way to configure it
let’s use the built-in RDFSRuleReasoner
first create a configuration specification:

A config spec is itself an RDF graph
Resource config = ontology.createResource();

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February 47 / 49

A worked example

ReasonerVocabulary holds terms for configuration purposes:

config.addProperty(ReasonerVocabulary.PROPruleMode, "backward");

now create a rule reasoner and pass it the configuration

Reasoner r;
r = RDFSRuleReasonerFactory.theInstance().create(config);

proceed as before. . .

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February 48 / 49

A worked example

Next Weeks

(Simplified) Model Semantics for RDF and RDFS
Relationship Reasoning ⇐⇒ Semantics
OWL, semantics of that, etc.

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February 49 / 49

	Recap: Reasoning with rules
	Backwards and forwards reasoning
	The Jena reasoning system
	Built-in reasoners
	Richer API with OntModel
	External reasoners
	A worked example

