INF3580,/4580 — Semantic Technologies — Spring 2017

Lecture 7: Reasoners in Jena

Martin Giese

27th February 2018

University of
Oslo

Department of

‘ Informatics

Today's Plan

@ Recap: Reasoning with rules

© Backwards and forwards reasoning
e The Jena reasoning system

@ Built-in reasoners

© Richer API with OntModel

@ External reasoners

@ A worked example

Recap: Reasoning with rules

Outline

© Recap: Reasoning with rules

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February

Recap: Reasoning with rules

What is inference?

In a Semantic Web context, inference always means,

@ adding triples,

More specifically it means,

@ adding new triples to an RDF graph,

@ on the basis of the triples already in it.

@ ‘adding’ should be understood in a logical sense, indeed;
e new/inferred triples need not be materialized or persisted

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February

Recap: Reasoning with rules

cont.

A rule of the form

may be read as an instruction;

@ "If Py,---, P, are all in the graph, add P to the graph”

@ as an instruction this may in turn be understood procedurally. . .
e in a forward sense, or
@ in a backward sense

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February

Recap: Reasoning with rules

Sample RDFS rules

Rules for property transfer
@ Transitivity:

p rdfs:subProperty0f q . q rdfs:subProperty0f r

p rdfs:subProperty0f r . rdfs5
@ Reflexivity:
p rdf:type rdf:Property . f
p rdfs:subProperty0f p . rdfs6
@ Property transfer:
p rdfs:subProperty0f q . upv .
Tqv . rdfs7

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February

Recap: Reasoning with rules

RDFS reasoning

RDFS supports three principal kinds of reasoning pattern:
I. Type propagation:
o “The 2CV is a car, and a car is a motorised vehicle, so...”
Il. Property inheritance:
e “Martin lectures at Ifi, and lecturers are employed by Ifi, so..."”
[1l. Domain and range reasoning:

o “Everything written is a document. Martin wrote x, hence x..."
o "All fathers are males. Martin is the father of Karl, therefore..."”

INF3580/4580 :: Spring 2017

Lecture 7 :: 27th February

Recap: Reasoning with rules

Example: Conductors and ensembles

:Person :Ensemble
b=
%

o 8

i g

I

“ e

o ®

i i
°
o1

_\ rdfs:domain |
:conductor | :SymphonyOrchestra

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February

Recap: Reasoning with rules

Example contd.

This ontolology includes
:SymphonyOrchestra rdfs:subClass0f :Ensemble
:conductor rdfs:domain :SymphonyOrchestra .

:conductor rdfs:range :Person .

Suppose the data includes

:0sloPhilharmonic :conductor :Petrenko

then the the following triples can be inferred:

:0sloPhilharmonic rdf:type :SymphonyOrchestra .

try to figure
out why!

:0sloPhilharmonic rdf:type :Ensemble

:Petrenko rdf:type :Person

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February

Backwards and forwards reasoning

QOutline

INF3580/4580 :: Spring 2017

© Backwards and forwards reasoning

Lecture 7 :: 27th February

Backwards and forwards reasoning

Forward chaining vs. backward chaining

Forward chaining:
@ reasoning from premises to conclusions of rules
@ adds facts corresponding to the conclusions of rules
@ entailed facts are stored and reused

@ reasoning is up front

Backward chaining:
@ reasoning from conclusions to premises
@ ‘... what needs to be true for this conclusion to hold?’

@ reasoning is on-demand

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February

Backwards and forwards reasoning

Forward chaining inference

Entailed facts

=
\

\
\

\
7+

/
/
1

/
e

'

Explicit facts

|

Figure: When a fact is added, all entailments are computed and stored.

Entailed facts
~ 7 N
\ 7’ ~
.
g ’ \
7 / N
1 / \
! I Fact 8 | | Fact 7 I
/) 7 T
| > |
; ; N—
<
| | ~ |
[Fact1 | [Fact2 | [Facte |
Explicit facts

INF3580/4580 :: Spring 2017

: 27th February

Backwards and forwards reasoning Backwards and forwards reasoning

Benefits of forward chaining Forward chaining and truth-maintenance
Entailed facts Entailed facts

Precomputing and storing answers is suitable for data which is:

o frequently accessed, B A RN

@ expensive to compute, \‘\ \‘\

o relatively static,

@ and small enough to store efficiently. // ,'I | Faitlf | | F\aiﬂ

BN

Benefits: - + - - —

o forward chaining optimizes retrieval (Fact 1] Faci2] (Fact 6)

@ no additional inference is necessary at query time Explicit facts Explicit facts

Figure: When a fact is added, all entailments are computed and stored.

Lecture 7 :: 27th February INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February

INF3580/4580 :: Spring 2017

Backwards and forwards reasoning Backwards and forwards reasoning

Forward chaining and truth-maintenance Drawbacks of forward chaining
Entailed facts Entailed facts
" Eict 10 |
{_Fact10 | Drawbacks:
i i [_Fact9) @ increases storage size
\ \
@ increases the overhead of insertion
K) ' Fact®) ' Faa 7 @ removal is highly problematic
o truth maintenance usually not implemented in RDF stores
- - @ problematic for distributed and/or dynamic systems
T Facie ! o rules could apply to premisses on different disks, etc.
Explicit facts Explicit facts
Figure: When a fact is removed, everything that comes with it must go too.

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February

Backwards and forwards reasoning Backwards and forwards reasoning

Backward chaining inference Backward chaining: Example

RDFS/RDF knowledge base:

Entailed facts ex:Mammal rdfs:subClassOf ex:Vertebrate .

ex:KillerWhale rdfs:subClassOf ex:Mammal .
I .
: ex:Lion rdfs:subClassOf ex:Mammal . A rdfs:subClassOf B . x rdf:type A
[. . x rdf:type B .
v ex:Keiko rdf:type ex:KillerWhale .
yP
BAERN ex:Simba rdf:type ex:Lion .
Query:
e N
SELECT 7x WHERE { 7x rdf:type ex:Vertebrate . }
> I
N T Inferred triples:
[Fact 1] [Fact 2] [Fact 3]

?x rdf:type ex:Vertabrate

Explicit facts

?7x rdf:type ex:Mammal . (rdfs9)
) o) ?x rdf:type ex:KillerWhale . (rdfs9) = ?x = ex:Keiko
Figure: Backward chaining uses rules to expand queries. . .

?x rdf:type ex:Lion . (rdfs9) = 7?x = ex:Simba

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February

Drawbacks and benefits of backward chaining Outline

Computing answers on demand is suitable where:

@ there is little need for reuse of computed answers
@ answers can be efficiently computed at runtime
@ answers come from multiple dynamic sources

e The Jena reasoning system
Benefits:

@ only the relevant inferences are drawn
@ truth maintenance is automatic

@ no persistent storage space needed

Drawbacks:
@ trades insertion overhead for access overhead

@ without caching, answers must be recomputed every time

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February

Quick facts

In Jena there is
@ a zillion ways to configure and plug-in a reasoner
@ some seem rather haphazard

Imposing order at the cost of precision we may say that. ..
@ reasoners fall into one of two categories
o built-in- and
e external reasoners
@ ...and are combined with two kinds of model
e models of type InfModel, and
e models of type OntModel
@ Different reasoners implement different logics, e.g
e Transitive reasoning,
o RDFS,
o OWL

INF3580/4580 :: Spring 2017

Lecture 7 :: 27th February

The Jena reasoning system

Reasoners, Factories, Registries. . .

Every reasoner is an object of class Reasoner Ase"w“'ic web
\ p framework

These are created by ReasonerFactory objects enq

All reasoner factories are stored in a global ReasonerRegistry

o Allows finding a factory for reasoners by URI
o Also by “descriptions” which are again RDF

o
°
@ So: one ReasonerFactory per type of reasoner
°

Example:

ReasonerRegistry registry = ReasonerRegistry.theRegistry();

String reasonerURI = "http://jena.hpl.hp.com/2003/RDFSExptRuleReasoner";
ReasonerFactory factory = registry.getFactory(reasonerURI);

Reasoner reasoner = factory.create(config);

@ config is a Resource that describes requested features for the reasoner.

The Jena reasoning system

Inference Models

Now a Model with inferencing can be constructed, given

e an underlying Model with “raw” data
o a Reasoner instance

InfModel inf = ModelFactory.createInfModel (reasoner, rawModel);

Depending on reasoner, this InfModel might do

o forward chaining: precompute all consequences of triples in rawModel
e backward chaining: triggered by SPARQL queries or 1ist(...) calls

Different reasoners compute different sets of consequences:

o “transitive” reasoner: only subClassOf hierarchy, etc.

o RDFS reasoner: all RDFS inference rules

e OWL/mini/micro: various subsets of OWL inferences
@ Most reasoners can be configured before binding them to a model,
to change various details of their behaviour.

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February

The Jena reasoning system

The road most often travelled. . .

@ Convenience methods are used to construct standard reasoners or inference models

o Get standard reasoners from ReasonerRegistry:
Reasoner reasoner = ReasonerRegistry.getRDFSReasoner();
@ Get inference models with standard reasoners from ModelFactory:
InfModel inf = ModelFactory.createRDFSModel (rawModel) ;
@ What's the point of the long winded way?

e Can ask for non-builtin provers, e.g. Pellet
o Can configure reasoners

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February

The Jena reasoning system

Simplified overview

creates

ModelFactory OntModel

selects from) wraps

ReasonerRegistry| MD

contains produces

o Factory creates .
L~

expanded by

| [omaew]

{ RDF graph

Figure: The structure of the reasoning system

Lecture 7 :: 27th February

INF3580/4580 :: Spring 2017

Built-in reasoners

QOutline

@ Built-in reasoners

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February

Built-in reasoners

Built-in reasoners

Transitive reasoners:
@ provides support for simple taxonomy traversal

@ implements only the reflexivity and transitivity of

o rdfs:subProperty0f, and
o rdfs:subClassOf.

RDFS reasoners:
@ supports (most of) the axioms and inference rules specific to RDFS.

OWL, OWL mini/micro reasoners:
@ implements different subsets of the OWL specification

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February

Built-in reasoners

Obtaining a built-in reasoner

Three main ways of obtaining a built-in reasoner:

@ call a convenience method on the ModelFactory
e which calls a ReasonerFactory in the ReasonerRegistry, and
e returns an InfModel all in one go

@ call a static method in the ReasonerRegistry,

o the static method returns a reasoner object
@ pass it to ModelFactory.createInfModel ()
o along with a model and a dataset

© use a reasoner factory directly
e covered in connection with external reasoners later

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February

Built-in reasoners

Example |: Using a convenience method

A simple RDFS model

Model sche = FileManager.get().loadModel (aURI) ;
Model dat = FileManager.get () .loadModel (bURI) ;

InfModel inferredModel = ModelFactory.createRDFSModel(sche, dat);

method createRDFSModel () returns an InfModel
@ An InfModel has a basic inference API, such as;
o getDeductionsModel() which returns the inferred triples,
o getRawModel () which returns the base triples,
o getReasoner () which returns the RDFS reasoner,
o getDerivation(stmt) which returns a trace of the derivation

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February

Built-in reasoners

Example II: Using static methods in the registry

using ModelFactory.createInfModel
Model sche = FileManager.get () .loadModel (aURI) ;
Model dat = FileManager.get().loadModel (bURI) ;

Reasoner reas = ReasonerRegistry.getOWLReasoner();
InfModel inf = ModelFactory.createInfModel(reas, sche, dat);

Virtues of this approach:

@ we retain a reference to the reasoner,

@ that can be used to configure it
e e.g. to do backwards or forwards chaining
e ... mind you, not all reasoners can do both

@ similar for built-in and external reasoners alike

Richer API with OntModel

Outline

© Richer API with OntModel

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February

Richer API with OntModel

An OntModel is ontology-aware

An InfModel provides
@ basic functionality associated with the reasoner, and
@ basic functionality to sort entailed from explicit statements

@ ...but no fine-grained control over an ontology

An OntModel provides
@ a richer view of a knowledge base
@ in terms of ontological concepts

@ mirrored by methods such as

e createClass()
o createDatatypeProperty()
o getIntersectionClass()

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February

Richer API with OntModel Richer API with OntModel

contd. Some predefined specification objects

An OntModel does not by itself compute entailments
@ it is merely a wrapper

@ that provides a convenient API

o given that your data is described by an ontology The class OntModelSpec contains static references to prebuilt instances:

However OWL_DL_MEM_RDFS_INF: In-memory OWL DL model that uses the RDFS inference engine.
@ an OntModel can be constructed according to a specification object OWL_LITE_MEM: In-memory OWL Lite model. No reasoning.
o that, among other things, tells Jena which reasoner to use OWL_MEM_MICRO_RULE_INF: In-memory OWL model uses the OWLMicro inference engine.

OWL_DL_MEM: In-Memory OWL DL model. No reasoning.
More generally, an OntModelSpec encapsulates

@ the storage scheme,
@ language profile,

@ and the reasoner associated with a particular OntModel

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February

Richer API with OntModel Richer API with OntModel

Example: Configuring an OntModel Question

An OntModel is created by calling a method in ModelFactory

Specifying an OntModel So... we learnt how to use Jena to add, retrieve, modify triples
— ?
OntModelSpec spec = new OntModelSpec (OntModelSpec.OWL_DL_MEM) ; Why do we need reasoners!

OntModel model = ModelFactory.createOntologyModel (spec, model) ; Many reasons:

@ Separate logic (All symphony orchestras are ensembles) from control (when to add which

Jena currently lags behind (.. .and has done so for quite a while) triples): declarative programming.
@ no spec for OWL 2 @ Can use ontology reasoners to check that the logic is OK. Much easier than checking that
. . a Java program is OK.
@ ...or any of its profiles Cotting th i 4 offic . | _ _
o does not mean that we cannot use OWL 2 ontologies with Jena ® Getting the control right (and efficient) is not always easy. Using a generic reasoner reuses
) this know-how.
@ but we do not have support in the API for all language constructs
@ some reasoners supply their own such API, e.g. Pellet

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February

External reasoners

QOutline

@ External reasoners

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February

External reasoners

Some better known ones

There are many, many reasoners to choose from, e.g.
o FaCT++

@ Cerebra Engine

o CEL

o HermiT

o Pellet

Reasoning algorithms vary with purpose, scope, philosophy and age (!);
@ tableau reasoners (FaCT++, Pellet, Cerebra)
@ rule-based reasoners (CEL)
@ hyper-tableaux (HermiT)

@ only rule reasoners have a notion of forwards vs. backwards

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February

External reasoners

Plugging in third-party reasoners

Jena's reasoning-system architecture makes it easy. ..
o for third party vendors to write reasoners

@ that can be plugged in to Jena architecture

External reasoners usually
@ check in a ReasonerFactory in the ReasonerRegistry, and

@ supply a OntModelSpec to be handed to the ModelFactory

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February

External reasoners

Using an external reasoner

@ retrieve an instance of the reasoner:

Reasoner r;

r = PelletReasonerFactory.theInstance().create();

@ associate the reasoner with an InfModel, an ontology and a dataset:

InfModel inf;
inf = ModelFactory.createInfModel(r, ontology, dataset);

@ Or: create an OntModel for a richer API:

OntModel m;
m = ModelFactory.createOntologyModel (

PelletReasonerFactory.THE_SPEC) ;

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February

Outline Integrating information from DBpedia

Quick facts about the DBpedia project:
@ aims to extract structured content from Wikipedia
@ it is a community effort, so. ..
@ the data is not always uniform and consistent

@ distinct properties for ‘intuitively similar’ objects not uncommon, e.g.;

o dbprop:doctoralStudents
o dbpedia:doctoralStudent

@ A worked example

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February

Who has worked with Jeffrey Ullman?

@ set relevant prefixes:
String ont = "http://dbpedia.org/ontology/";

Ullman is one of the most referenced computer scientists String res = "http://dbpedia.org/resource/";
String prop = "http://dbpedia.org/property/";
@ DBpedia contains info about, e.g. his String ex = "http://www.example.org/";
e education and laureates
e citizenship and nationality @ connect to DBpedia, describe J. Ullman:
e scientific contributions String dbpedia = "http://dbpedia.org/sparql";

String describe = "DESCRIBE <" + res + "Jeffrey_Ullman>";
QueryExecution gexc =

@ say we wish to compile a list of his collaborators, including at least ")))
QueryExecutionFactory.sparqlService(dbpedia, describe);

e advisors, and

o PhD students Model ullman = gexc.execDescribe();

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February

A worked example

@ build an ontology of collaborators (or better, read it from file):

Model ontology = ModelFactory.createDefaultModel();

Property collab = ontology.createProperty(ex + "collaborator");
Property phds = ontology.createProperty(prop + "doctoralStudents");
Property phd = ontology.createProperty(ont + "doctoralStudent");
Property adv = ontology.createProperty(ont + "doctoralAdvisor");
ontology.add(phds, RDFS.subProperty0f, collab);

ontology.add(phd, RDFS.subProperty0f, collab);

ontology.add(adv, RDFS.subProperty0f, collab);

@ ...and reason over it:

InfModel inf;
inf = ModelFactory.createRDFSModel (ontology, ullman);

@ wrap it in an OntModel if you need a richer API

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February

A worked example

@ write the query:
String gStr =

"PREFIX ont: <" + ont + ">" +
"PREFIX res: <" + res + ">" +
"PREFIX ex: <" + ex + ">" +

"SELECT 7collaborator WHERE {" +
" res:Jeffrey_Ullman ex:collaborator ?collaborator." +

Il}ll;

@ execute it...
Query query = QueryFactory.create(qStr);
QueryExecution ge = QueryExecutionFactory.create(query, inf);
ResultSet res = ge.execSelect();

@ and, if, you like, print out the results
ResultSetFormatter.out(res, query);

A worked example

Backwards reasoning over the same example

backwards reasoning often suitable for stuff in memory
you need a reasoner capable of doing backwards reasoning
i.e. a rule reasoner

and a way to configure it

let's use the built-in RDFSRuleReasoner

first create a configuration specification:
A config spec is itself an RDF graph
Resource config = ontology.createResource();

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February

INF3580/4580 :: Spring 2017

Lecture 7 :: 27th February

A worked example

@ ReasonerVocabulary holds terms for configuration purposes:

config.addProperty(ReasonerVocabulary.PROPruleMode, "backward");

@ now create a rule reasoner and pass it the configuration

Reasoner r;

r = RDFSRuleReasonerFactory.theInstance().create(config) ;

@ proceed as before. ..

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February

Next Weeks

o (Simplified) Model Semantics for RDF and RDFS
@ Relationship Reasoning <= Semantics
e OWL, semantics of that, etc.

INF3580/4580 :: Spring 2017 Lecture 7 :: 27th February

	Recap: Reasoning with rules
	Backwards and forwards reasoning
	The Jena reasoning system
	Built-in reasoners
	Richer API with OntModel
	External reasoners
	A worked example

