INF3580/4580 – Semantic Technologies – Spring 2018 Lecture 8: RDF and RDFS semantics

Martin Giese

6th March 2018

University of Oslo

Oblig 5

- Published today
- First delivery due 21 March
- Final delivery 2 weeks after feedback
- Extra question for INF4580 students
- "Real" semantics of RDF and RDFS
- Foundations book: Section 3.2
- Still OK to ignore some complications, see oblig text
- We provide an excerpt of Sect. 3.2 with unimportant parts removed.
- Go to group sessions!

Why we need semantics

2 Model-theoretic semantics from a birds-eye perspective

- 3 Repetition: Propositional Logic
- 4 Simplified RDF semantics

Outline

Why we need semantics

2 Model-theoretic semantics from a birds-eye perspective

- 3 Repetition: Propositional Logic
- 4 Simplified RDF semantics

Semantics-why do we need it?

A formal semantics for RDFS became necessary because

- the previous informal specification
- ② left plenty of room for interpretation of conclusions, whence
- Itriple stores sometimes answered queries differently, thereby
- obstructing interoperability and interchangeability.
- The information content of data once more came to depend on applications But RDF was supposed to be the **data liberation movement**

Another look at the Semantic Web cake

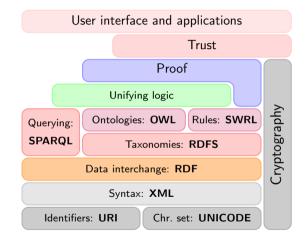


Figure: Semantic Web Stack

Absolute precisision required

RDF is to serve as the foundation of the entire Semantic Web tower.

- It must therefore be sufficiently clear to sustain advanced reasoning, e.g.:
 - type propagation/inheritance,
 - "Tweety is a penguin and a penguin is a bird, so..."
 - domain and range restrictions,
 - "Martin has a birthdate, and only people have birthdates, so..."
 - existential restrictions.
 - "all persons have parents, and Martin is a person, so..."
 - ... to which we shall return in later lectures
- To ensure that infinitely many conclusions will be agreed upon,
 - RDF must be furnished with a model-theory
 - that specifies how the different node types should be interpreted
 - and in particular what entailment should be taken to mean.

Example: What is the meaning of blank nodes?

```
Co-authors of Paul Erdős:
SELECT DISTINCT ?name WHERE {
   _:pub dc:creator [foaf:name "Paul Erdős"] , [foaf:name ?name] .
}
```

SPARQL must

- match the query to graph patterns
- which involves assigning values to variables and blank nodes

But,

- which values are to count?
- the problem becomes more acute under reasoning.
- Should a value for foaf:familyname match a query for foaf:name?
- Are blanks in SPARQL the same as blanks in RDF?

Outline

1 Why we need semantics

2 Model-theoretic semantics from a birds-eye perspective

- 3 Repetition: Propositional Logic
- 4 Simplified RDF semantics

Formal semantics

- The study of how to model the meaning of a logical calculus.
- A logical calculus consists of:
 - A finite set of symbols,
 - a grammar, which specifies the formulae,
 - a set of axioms and inference rules from which we construct proofs.
- A logical calculus can be defined apart from any interpretation.
- A calculus that has not been furnished with a formal semantics,
 - is a 'blind' machine, a mere symbol manipulator,
 - the only criterion of correctness is provability.

Derivations

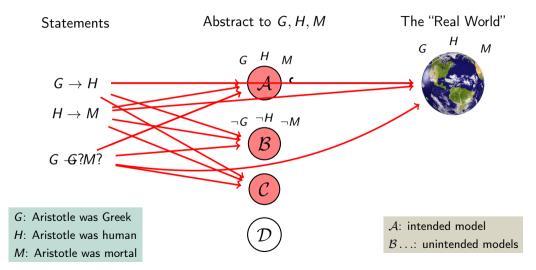
A proof typically looks something like this:

$$\begin{array}{c|c} P \vdash Q, P & Q, P \vdash Q \\ \hline \hline P \rightarrow Q, P \vdash Q & \hline P \rightarrow Q, R \vdash Q \\ \hline \hline \hline P \rightarrow Q, P \vdash Q & \hline \hline P \rightarrow Q, R \vdash Q \\ \hline \hline \hline \hline P \rightarrow Q \vdash (P \lor R) \rightarrow Q \end{array}$$

Where each line represents an application of an inference rule.

- How do we know that the inference rules are well-chosen?
- Which manipulations derive conclusions that hold in the real world?

Finding out stuff about the World



Model-theoretic semantics

Basic idea: Asserting a sentence makes a claim about the world:

- A formula therefore limits the set of worlds that are possible.
- We can therefore encode meaning/logical content
 - by describing models of these worlds.
 - thus making certain aspects of meaning mathematically tractable
- The exact makeup of models varies from logic to logic, but they all
 - express a view on what kinds of things there are,
 - and the basic relations between these things
- By selecting a class of models one selects the basic features of the world
 - as one chooses to see it.
- Whatever these models all share can be said to be entailed by those features.

Outline

- Why we need semantics
- 2 Model-theoretic semantics from a birds-eye perspective
- 3 Repetition: Propositional Logic
- ④ Simplified RDF semantics

Propositional Logic: Formulas

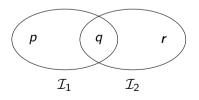
- Formulas are defined "by induction" or "recursively":
- 1 Any letter p, q, r, \ldots is a formula
- 2 if A and B are formulas, then
 - $(A \land B)$ is also a formula (read: "A and B")
 - $(A \lor B)$ is also a formula (read: "A or B")
 - $\neg A$ is also a formula (read: "not A")
- Nothing else is. Only what rules [1] and [2] say is a formula.
- Examples of formulae: $p (p \land \neg r) (q \land \neg q) ((p \lor \neg q) \land \neg p)$
- Formulas are just a kind of strings until now:
 - no meaning
 - but every formula can be "parsed" uniquely.

$$((q \land p) \lor (p \land q))$$

$$\begin{array}{c} & & \\ & &$$

Interpretations

- Logic is about truth and falsity
- Truth of compound formulas depends on truth of letters.
- Idea: put all letters that are "true" into a set!
- \bullet Define: An interpretation ${\mathcal I}$ is a set of letters.
- Letter p is true in interpretation \mathcal{I} if $p \in \mathcal{I}$.
- E.g., in $\mathcal{I}_1 = \{p, q\}$, p is true, but r is false.



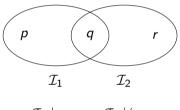
• But in $\mathcal{I}_2 = \{q, r\}$, p is false, but r is true.

Semantic Validity \models

• To say that p is true in \mathcal{I} , write

 $\mathcal{I}\models p$

• For instance



$$\mathcal{I}_1 \models p \qquad \mathcal{I}_2 \not\models p$$

• In other words, for all letters *p*:

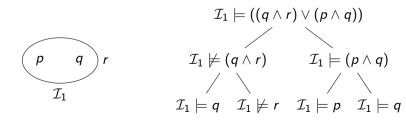
$$\mathcal{I} \models p$$
 if and only if $p \in \mathcal{I}$

Validity of Compound Formulas

- Is $((q \land r) \lor (p \land q))$ true in \mathcal{I} ?
- Idea: apply our rule recursively
- For any formulas A and B,...
- \bullet . . . and any interpretation \mathcal{I},\ldots
 - $\ldots \mathcal{I} \models A \land B$ if and only if $\mathcal{I} \models A$ and $\mathcal{I} \models B$
 - ... $\mathcal{I} \models A \lor B$ if and only if $\mathcal{I} \models A$ or $\mathcal{I} \models B$ (or both)

•
$$\ldots \mathcal{I} \models \neg A$$
 if and only if $\mathcal{I} \not\models A$.

• For instance



Truth Table

• Semantics of \neg , \land , \lor often given as *truth table*:

Α	В	$\neg A$	$A \wedge B$	$A \lor B$
f	f	t	f	f
f	t	t	f	t
t	f	f	f	t
t	t	f	t	t

Tautologies

- A formula A that is true in all interpretations is called a tautology
- also logically valid
- also a *theorem* (of propositional logic)
- written:

$\models A$

- $(p \lor \neg p)$ is a tautology
- True whatever *p* means:
 - The sky is blue or the sky is not blue.
 - P.N. will win the 50km in 2016 or P.N. will not win the 50km in 2016.
 - The slithy toves gyre or the slithy toves do not gyre.
- Possible to derive true statements mechanically...
- ... without understanding their meaning!
- \bullet \ldots e.g. using truth tables for small cases.

Entailment

- Tautologies are true in all interpretations
- Some formulas are true only under certain assumptions
- A entails B, written $A \models B$ if

 $\mathcal{I} \models B$

for all interpretations \mathcal{I} with $\mathcal{I} \models A$

- Also: "B is a logical consequence of A"
- Whenever A holds, also B holds
- For instance:

$$p \wedge q \models p$$

- Independent of meaning of *p* and *q*:
 - If it rains and the sky is blue, then it rains
 - $\bullet\,$ If P.N. wins the race and the world ends, then P.N. wins the race
 - If 'tis brillig and the slythy toves do gyre, then 'tis brillig
- Also entailment can be checked mechanically, without knowing the meaning of words.

Question

Given the letters

- P Ola answers none of the questions correctly
- Q Ola fails the exam
- Which of the following are tautologies of propositional logic?
 - \rm 🛛 Q
 - **②** ¬*Q*
 - $\ \, \pmb{0} \ \, P \rightarrow Q$

Outline

- Why we need semantics
- 2 Model-theoretic semantics from a birds-eye perspective
- 3 Repetition: Propositional Logic
- 4 Simplified RDF semantics

Taking the structure of triples into account

Unlike propositions, triples have parts, namely:

- subject
- predicates, and
- objects

Less abstractly, these may be:

- URI references
- literal values, and
- blank nodes

Triples are true or false on the basis of what each part refers to.

On what there is: Resources, Properties, Literals

The RDF data model consists of three object types; resources, properties and literals values:

Resources: All things described by RDF are called resources. Resources are identified by URIs

- Properties: A property is a specific aspect, characteristic, attribute or relation used to describe a resource. Properties are also resources, and therefore identified by URIs.
 - Literals: A literal value is a concrete data item, such as an integer or a string. String literals name themselves, i.e.
 - "Julius Ceasar" names the string "Julius Ceasar"
 - "42" names the string "42"

The semantics of typed and language tagged literals is considerably more complex.

Restricting RDF/RDFS

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint kinds:
 - Properties like foaf:knows, dc:title
 - Classes like foaf:Person
 - Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
 - Individuals (all the rest, "usual" resources)
- All triples have one of the forms:

individual property individual .
individual rdf:type class .

class rdfs:subClassOf class .
property rdfs:subPropertyOf property .
property rdfs:domain class .
property rdfs:range class .

• Forget blank nodes and literals for a while!

Short Forms

- Resources and Triples are no longer all alike
- No need to use the same general triple notation
- Use alternative notation

Triples	Abbreviation
indi prop indi .	$ \begin{array}{c} r(i_1, i_2) \\ C(i_1) \end{array} $
indi rdf:type class .	$C(i_1)$
<pre>class rdfs:subClassOf class .</pre>	$C \sqsubseteq D$ $r \sqsubseteq s$ dom(r, C) rg(r, C)
<pre>prop rdfs:subPropOf prop .</pre>	<i>r</i> ⊑ <i>s</i>
<pre>prop rdfs:domain class .</pre>	dom(<i>r</i> , <i>C</i>)
<pre>prop rdfs:range class .</pre>	rg(<i>r</i> , <i>C</i>)

- This is called "Description Logic" (DL) Syntax
- Used much in particular for OWL

Example

Triples:

```
ws:romeo ws:loves ws:juliet .
ws:juliet rdf:type ws:Lady .
ws:Lady rdfs:subClassOf foaf:Person .
ws:loves rdfs:subPropertyOf foaf:knows .
ws:loves rdfs:domain ws:Lover .
ws:loves rdfs:range ws:Beloved .
```

• DL syntax, without namespaces:

```
loves(romeo, juliet)
Lady(juliet)
Lady ⊑ Person
loves ⊑ knows
dom(loves, Lover)
rg(loves, Beloved)
```


Interpretations for RDF

- To interpret propositional formulas, we need to know how to interpret
 - Letters
- To interpret the six kinds of triples, we need to know how to interpret
 - Individual URIs as real or imagined objects
 - Class URIs as sets of such objects
 - Property URIs as relations between these objects
- \bullet A DL-interpretation ${\mathcal I}$ consists of
 - A set $\Delta^{\mathcal{I}}$, called the *domain* (sorry!) of \mathcal{I}
 - For each individual URI *i*, an element $i^{\mathcal{I}} \in \Delta^{\mathcal{I}}$
 - For each class URI *C*, a subset $C^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$
 - For each property URI r, a relation $r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$
- Given these, it will be possible to say whether a triple holds or not.

An example "intended" interpretation

•
$$\Delta^{\mathcal{I}_{1}} = \left\{ \left| \overbrace{}^{\circ} \right|, \left| \overbrace{}^{\circ} \right|, \left| \overbrace{}^{\circ} \right| \right\}$$

• $romeo^{\mathcal{I}_{1}} = \left| \overbrace{}^{\circ} \right| juliet^{\mathcal{I}_{1}} = \left| \overbrace{}^{\circ} \right|$
• $Lady^{\mathcal{I}_{1}} = \left\{ \left| \overbrace{}^{\circ} \right| \right\} Person^{\mathcal{I}_{1}} = \Delta^{\mathcal{I}_{1}}$
 $Lover^{\mathcal{I}_{1}} = Beloved^{\mathcal{I}_{1}} = \left\{ \left| \overbrace{}^{\circ} \right|, \left| \overbrace{}^{\circ} \right| \right\}$
• $loves^{\mathcal{I}_{1}} = \left\{ \left\langle \left| \overbrace{}^{\circ} \right|, \left| \overbrace{}^{\circ} \right| \right\rangle, \left\langle \left| \overbrace{}^{\circ} \right|, \left| \overbrace{}^{\circ} \right| \right\rangle \right\}$
 $knows^{\mathcal{I}_{1}} = \Delta^{\mathcal{I}_{1}} \times \Delta^{\mathcal{I}_{1}}$

An example "non-intended" interpretation

•
$$\Delta^{\mathcal{I}_2} = \mathbb{N} = \{1, 2, 3, 4, \ldots\}$$

- $romeo^{\mathcal{I}_2} = 17$ $juliet^{\mathcal{I}_2} = 32$
- $Lady^{\mathcal{I}_2} = \{2^n \mid n \in \mathbb{N}\} = \{2, 4, 8, 16, 32, \ldots\}$ $Person^{\mathcal{I}_2} = \{2n \mid n \in \mathbb{N}\} = \{2, 4, 6, 8, 10, \ldots\}$ $Lover^{\mathcal{I}_2} = Beloved^{\mathcal{I}_2} = \mathbb{N}$
- $loves^{\mathcal{I}_2} = <= \{ \langle x, y \rangle \mid x < y \}$ $knows^{\mathcal{I}_2} = \le= \{ \langle x, y \rangle \mid x \le y \}$
- Just because names (URIs) look familiar, they don't need to denote what we think!
- In fact, there is no way of ensuring they denote only what we think!

Validity in Interpretations (RDF)

- Given an interpretation $\mathcal I,$ define \models as follows:
- $\mathcal{I} \models r(i_1, i_2) \text{ iff } \langle i_1^{\mathcal{I}}, i_2^{\mathcal{I}} \rangle \in r^{\mathcal{I}}$
- $\mathcal{I} \models C(i)$ iff $i^{\mathcal{I}} \in C^{\mathcal{I}}$
- Examples:
 - $\mathcal{I}_1 \models loves(juliet, romeo)$ because

• $\mathcal{I}_1 \models \textit{Person(romeo)}$ because

$$romeo^{\mathcal{I}_1} = egin{matrix} \mathcal{I}_1 \ \mathcal{I}_2 \ \mathcal{I}_1 \ \mathcal{I}_1$$

- $\mathcal{I}_2 \not\models loves(juliet, romeo)$ because $loves^{\mathcal{I}_2} = < and juliet^{\mathcal{I}_2} = 32 \not< romeo^{\mathcal{I}_2} = 17$
- $\mathcal{I}_2 \not\models Person(romeo)$ because
- romeo^{\mathcal{I}_2} = 17 \notin Person^{\mathcal{I}_2} = {2, 4, 6, 8, 10, ...}

Validity in Interpretations, cont. (RDFS)

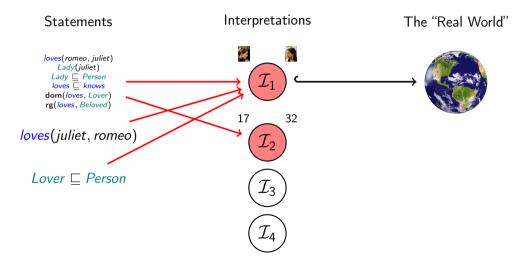
- Given an interpretation \mathcal{I} , define \models as follows:
- $\mathcal{I} \models C \sqsubseteq D$ iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
- $\mathcal{I} \models r \sqsubseteq s$ iff $r^{\mathcal{I}} \subseteq s^{\mathcal{I}}$
- $\mathcal{I} \models \mathsf{dom}(r, C)$ iff for all $\langle x, y \rangle \in r^{\mathcal{I}}$, we have $x \in C^{\mathcal{I}}$
- $\mathcal{I} \models \mathsf{rg}(r, C)$ iff for all $\langle x, y \rangle \in r^{\mathcal{I}}$, we have $y \in C^{\mathcal{I}}$
- Examples:

•
$$\mathcal{I}_{1} \models Lover \sqsubseteq Person \text{ because}$$

 $Lover^{\mathcal{I}_{1}} = \left\{ \bigotimes_{i=1}^{m}, \bigotimes_{i=1}^{m} \right\} \subseteq Person^{\mathcal{I}_{1}} = \left\{ \bigotimes_{i=1}^{m}, \bigotimes_{i=1}^{m}, \bigotimes_{i=1}^{m} \right\}$

• $\mathcal{I}_2 \not\models Lover \sqsubseteq Person$ because $Lover^{\mathcal{I}_2} = \mathbb{N}$ and $Person^{\mathcal{I}_2} = \{2, 4, 6, 8, 10, \ldots\}$ Simplified RDF semantics

Finding out stuff about Romeo and Juliet



Example: Range/Domain semantics

 $\mathcal{I}_2 \models \mathsf{dom}(\mathit{knows}, \mathit{Beloved})$

because...

$$knows^{\mathcal{I}_2} = \leq = \{ \langle x, y \rangle \mid x \leq y \}$$

 $Beloved^{\mathcal{I}_2} = \mathbb{N}$

and for any x and y with

$$\langle x, y \rangle \in knows^{\mathcal{I}_2}, \quad \text{i.e.} \quad x \leq y,$$

we also have

$$x \in \mathbb{N}$$
 i.e. $x \in Beloved^{\mathcal{I}_2}$

Interpretation of Sets of Triples

- \bullet Given an interpretation ${\cal I}$
- And a set of triples \mathcal{A} (any of the six kinds)
- $\bullet~\mathcal{A}$ is valid in $\mathcal{I},$ written

$$\mathcal{I} \models \mathcal{A}$$

- iff $\mathcal{I} \models A$ for all $A \in \mathcal{A}$.
- Then \mathcal{I} is also called a model of \mathcal{A} .
- Examples:

$$\mathcal{A} = \{ \textit{loves}(\textit{romeo}, \textit{juliet}), \textit{Lady}(\textit{juliet}), \textit{Lady} \sqsubseteq \textit{Person}, \\ \textit{loves} \sqsubseteq \textit{knows}, \textit{dom}(\textit{loves}, \textit{Lover}), \textit{rg}(\textit{loves}, \textit{Beloved}) \}$$

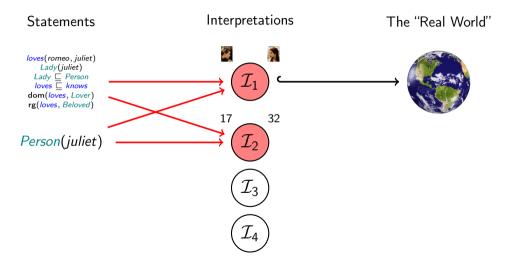
 $\bullet \ \, {\sf Then} \ \, {\cal I}_1 \models {\cal A} \ {\sf and} \ \, {\cal I}_2 \models {\cal A}$

Entailment

- \bullet Given a set of triples ${\cal A}$ (any of the six kinds)
- And a further triple T (also any kind)
- $\bullet \ \ {\mathcal T} \ \ {\rm is \ entailed} \ \ {\mathcal b} \ \ {\mathcal A}, \ {\rm written} \ \ {\mathcal A} \models \ {\mathcal T}$
- iff
 - $\bullet~$ For any interpretation $\mathcal I$ with $\mathcal I\models \mathcal A$
 - $\mathcal{I} \models T$.
- $\bullet \ \mathcal{A} \models \mathcal{B} \text{ iff } \mathcal{I} \models \mathcal{B} \text{ for all } \mathcal{I} \text{ with } \mathcal{I} \models \mathcal{A}$
- Example:
- $\mathcal{A} = \{\dots, Lady(juliet), Lady \sqsubseteq Person, \dots\}$ as before
- $\mathcal{A} \models Person(juliet)$ because...
- in any interpretation $\mathcal I$ with $\mathcal I \models \mathcal A_{\cdots}$
- $juliet^{\mathcal{I}} \in Lady^{\mathcal{I}}$ and $Lady^{\mathcal{I}} \subseteq Person^{\mathcal{I}}, \dots$
- so by set theory $juliet^{\mathcal{I}} \in Person^{\mathcal{I}}...$
- and therefore $\mathcal{I} \models Person(juliet)$

Simplified RDF semantics

Finding out stuff about Romeo and Juliet



Countermodels

- If $\mathcal{A} \not\models \mathcal{T}, \ldots$
- $\bullet\,$ then there is an ${\cal I}$ with
 - $\mathcal{I} \models \mathcal{A}$
 - $\mathcal{I} \not\models T$
- Vice-versa: if $\mathcal{I} \models \mathcal{A}$ and $\mathcal{I} \not\models \mathcal{T}$, then $\mathcal{A} \not\models \mathcal{T}$
- Such an \mathcal{I} is called a *counter-model* (for the assumption that \mathcal{A} entails \mathcal{T})
- To show that $\mathcal{A} \models \mathcal{T}$ does *not* hold:
 - Describe an interpretation \mathcal{I} (using your fantasy)
 - Prove that $\mathcal{I} \models \mathcal{A}$ (using the semantics)
 - Prove that $\mathcal{I} \not\models \mathcal{T}$ (using the semantics)

Countermodel Example

• \mathcal{A} as before:

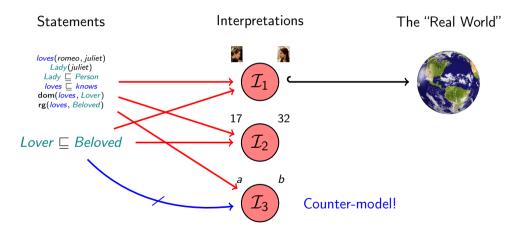
 $\mathcal{A} = \{ \textit{loves}(\textit{romeo}, \textit{juliet}), \textit{Lady}(\textit{juliet}), \textit{Lady} \sqsubseteq \textit{Person}, \\ \textit{loves} \sqsubseteq \textit{knows}, \textit{dom}(\textit{loves}, \textit{Lover}), \textit{rg}(\textit{loves}, \textit{Beloved}) \}$

- Does $\mathcal{A} \models Lover \sqsubseteq Beloved$?
- Holds in \mathcal{I}_1 and \mathcal{I}_2 .
- Try to find an interpretaion with $\Delta^{\mathcal{I}} = \{a, b\}$, $a \neq b$.
- Interpret $romeo^{\mathcal{I}} = a$ and $juliet^{\mathcal{I}} = b$
- Then $\langle a, b \rangle \in \mathit{loves}^{\mathcal{I}}$, $a \in \mathit{Lover}^{\mathcal{I}}$, $b \in \mathit{Beloved}^{\mathcal{I}}$.
- With $Lover^{\mathcal{I}} = \{a\}$ and $Beloved^{\mathcal{I}} = \{b\}$, $\mathcal{I} \not\models Lover \sqsubseteq Beloved!$
- Choose

$$\textit{loves}^{\mathcal{I}} = \textit{knows}^{\mathcal{I}} = \{ \langle a, b \rangle \} \qquad \textit{Lady}^{\mathcal{I}} = \textit{Person}^{\mathcal{I}} = \{ b \}$$

to complete the counter-model while satisfying $\mathcal{I} \models \mathcal{A}$

Countermodels about Romeo and Juliet



Take aways

- O Model-theoretic semantics yields an unambigous notion of entailment,
- 2 which is necessary in order to liberate data from applications.
- Shown today: A simplified semantics for parts of RDF
 - Only RDF/RDFS vocabulary to talk "about" predicates and classes
 - Literals and blank nodes next time

Supplementary reading on RDF and RDFS semantics:

- http://www.w3.org/TR/rdf-mt/
- Section 3.2 in Foundations of SW Technologies