
Tries for Approximate String MatchingH. Shang and T.H. Merrett�September 8, 1995AbstractTries o�er text searches with costs which are independent of thesize of the document being searched, and so are important for largedocuments requiring spelling checkers), case insensitivity, and lim-ited approximate regular secondary storage. Approximate searches,in which the search pattern di�ers from the document by k substitu-tions, transpositions, insertions or deletions, have hitherto been car-ried out only at costs linear in the size of the document. We presenta trie-based method whose cost is independent of document size.�H. Shang and T.H. Merrett are at the School of Computer Science, McGill University,Montr�eal, Qu�ebec, Canada H3A 2A7, Email: fshang, timg@cs.mcgill.ca100

Our experiments show that this new method signi�cantly outper-forms the nearest competitor for k=0 and k=1, which are arguablythe most important cases. The linear cost (in k) of the other methodsbegins to catch up, for our small �les, only at k=2. For larger �les,complexity arguments indicate that tries will outperform the linearmethods for larger values of k.Trie indexes combine su�xes and so are compact in storage. Whenthe text itself does not need to be stored, as in a spelling checker, weeven obtain negative overhead: 50% compression.We discuss a variety of applications and extensions, including bestmatch (for spelling checkers), case insensitivity, and limited approxi-mate regular expression matching.1 IntroductionThe need to �nd an approximate match to a string arises in many practicalproblems. For example, if an optical character reader interprets a \D" asan \O", an automatic checker would need to look up the resulting word, say\eoit" in a dictionary to �nd that \edit" matches it up to one substitution. Ora writer may transpose two letters at the keyboard, and the intended word,101

worst-case run preproc. time extra space ref.naive mnKMP 2n m m [13]BM 2n �m+ 1 O(m+ j�j) [6, 1]Shift-or O(n) O(m+ j�j) O(j�j) [4]Patricia O(m) O(n log n) O(n) [10]Figure 1: Exact Match Algorithmssay \sent", should be detected instead of the error, \snet". Applicationsoccur with strings other than text: strings of DNA base pairs, strings ofmusical pitch and duration, strings of edge lengths and displacements in adiagram, and so on. In addition to substitutions and transpositions, as above,errors can include insertions and deletions.The approximate match problem in strings is a development of the simplerproblem of exact match: given a text, Wn, of n characters from an alphabet�, and a string, Pm, of m characters, m < n, �nd occurrences of P inW . Baeza-Yates [2] reviews exact match algorithms, and we summarize inFigure 1. 102

Here, all algorithms except the naive approach require some preprocess-ing. The Knuth-Morris-Pratt (KMP), Boyer-Moore (BM), and Shift-or algo-rithms all preprocess the search string, P , to save comparisons. The Boyer-Moore algorithms are sublinear in practice, and better the bigger m is, butdepend on n. The Patricia method builds a trie and is truly sublinear.1 Thepreprocessing is on the text, not the search strings, and although substan-tially greater than for the linear algorithms, need be done only once for atext. Note that tries of size n can be built in RAM in time O(n), but thaton secondary storage, memory di�erences make it better to use an n log nmethod for all practical sizes of trie. So we quote that complexity.Trie-based methods are best suited for very large texts, which requiresecondary storage. We emphasize them in this paper, but will compare ourtrie-based method experimentally with the linear methods.Approximate string matching adds a parameter to the above, k: thealgorithm reports a match where the string di�ers from the text by not1The term \sublinear" in this literature has two meanings, which we distinguish assublinear and truly sublinear. Truly sublinear in n means O(f(n)) where f is a sublinearfunction, e.g., logn or 1. Sublinear means truly sublinear or O(n) where the multiplicativeconstant is less than 1. 103

more than k changes. A change can be a replacement (or substitution),an insertion, or a deletion. It can also be a transposition, as illustratedabove. Such operations were formulated by Damerau [8] and the notionof edit distances was given by Levenshtein [15]. A dynamic programming(DP) algorithm was shown by Wagner and Fischer [26] with O(mn) worstcase. Ukkonen [24] improved this to O(kn) (and clearly k � m) by �ndinga cuto� in the DP. Chang and Lawler [7] have the same worst case, but getsublinear expected time,O((n=m)k logm)) and onlyO(m) space, as opposedto O(m2) or O(n) for earlier methods. This they do by building a su�x tree[27, 16], which is just a \Patricia" trie (after Morrison [19]), on the patternas a method of detecting common substrings. Kim and Shawe-Taylor [12]propose an O(m log n) algorithm with O(n) preprocessing. They generate n-grams for the text and represent them as a trie for compactness. Baeza-Yatesand Perlberg [5] propose a counting algorithmwhich runs in time independentof k, O(n+R), where R is bounded O(n) and is zero if all characters in Pmare distinct. Figure 2 summarizes this discussion. Agrep [28] is a packagebased on related ideas, which also does limited regular expression matching,i.e., Pm is a regular expression.(Regular expression matching and k-approximate string matching solve104

worst-case run preproc. time extra space ref.DP O(mn) O(m) O(mn) [26]cuto� O(kn) O(k) O(kn) [24]su�x tree O(kn) O(m) O(m) [7]n-gram O(m log n) [12]Figure 2: k-Approximate Match Algorithmsdi�erent problems. The problem areas overlap | e.g., P5 = \a#a##", where# is a one-place wildcard, can be written as a regular expression, but is alsoa 3-approximate match | but they do not coincide.)A recent review of these techniques is in the book by Stephen [23]. Halland Dowling [11] give an early survey of approximate match techniques. Thework is all directed to searches in relatively small texts, i.e., those not toolarge to �t into RAM. For texts that require secondary storage, O(n) is fartoo slow, and we need O(log n) or faster methods, as with conventional �lescontaining separate records [17]. The price we must pay is to store an index,which must be built once for the whole text (unless the text changes). If weare interested in the text as an ordered sequence of characters, we must store105

the text as well, and the index represents an additional storage requirement.If we are interested in the text only for the substrings it contains, as in adictionary for spelling check, then we need only store the index, and we canoften achieve compression as well as retrieval speed.Tries have been used to index very large texts [10, 18] and are the onlyknown truly sublinear way to do so. Tries are trees in which nodes are emptybut have a potential subtree for each letter of the alphabet, �, encoding thedata (e.g., 0 and 1 for binary tries). The data is represented not in the nodesbut in the path from root to leaf. Thus all strings sharing a pre�x will berepresented by paths branching from a common initial path, and considerablecompression can be achieved.2 Substring matching just involves �nding apath, and the cost is O(m + log n) plus terms in the number of resultingmatches. (The log n component re
ects only the number of bits required tostore pointers to the text, and is unimportant.) Regular expression matching2Note that this compression is on the index, which may still be larger than the text.Typically, if we index every character in the text, as we do in Section 4, the index willbe �ve times the size of the text. If we index only every word, the index is smaller andcompression results.[18] If we do only dictionary searches, as in Section 6, there is greatcompression. 106

simulates the regular expression on the trie, [9] and is also fast O(logm(n) n�)where �<1.This paper proposes a k-approximate match algorithm using Damerau-Levenshtein DP on a text represented as a trie. The insight is that the trierepresentation of the text drastically shortens the DP. A m� n DP table isused to match a given Pm with the text, Wn. There would have to be a newtable for each su�x inW (of length n; n�1; : : :). But the trie representationofW compresses these su�xes into overlapping paths, and the correspondingcolumn need be evaluated only once. Furthermore, the Ukkonen cuto� can beused to terminate unsuccessful searches very early, as soon as the di�erencesexceed k. Chang and Lawler [7] showed Ukkonen's algorithm evaluated O(k)columns, which implies searching a trie down to depth O(k). If the fanoutof a trie is �, the trie method needs only to evaluate O(k j�jk) DP tableentries.We present this method in terms of full-text retrieval, for which both theindex and the text must be stored. In applications such as spelling checkers[14], the text is a dictionary, a set of words, and need not be stored separatelyfrom the index. These are special cases of what we describe. In such cases,our method o�ers negative storage overhead, by virtue of the compression,107

in addition to the very fast performance.We compare our work experimentally with agrep [28], and show that triesoutperform agrep signi�cantly for small k, the number of mismatches. Sinceagrep complexity is linear in k, and trie search complexity is exponential in k,agrep is expected to become better than tries for large k. Our experimentsshow that the breakeven occurs beyond the practically important case ofk = 1. Since the authors of agrep compare their work thoroughly with otherapproximate search techniques [28], we make no other comparisons here.This paper is organized as follows. The next section introduces Damerau-Levenshtein DP for approximate string matches. Section 3 brie
y describestrie data structures, and gives our new algorithm for approximate searchon text tries. Then we give experimental results comparing approximate triemethods with agrep. Sections 5 and 6 discuss extensions and advanced appli-cations of our method, including the important case of dictionary checking,where we attain both speedup and compression. We conclude and discussfurther possible research. 108

2 Dynamic ProgrammingLet Pm = p1p2:::pm and W` = w1w2:::w` be a pattern and a target stringrespectively. We use D(Pm;W`) for edit distance, the minimum number ofedit operations to change Pm to W`. Here, an edit operation is either toinsert wj after pi, delete pi, replace pi by wj , or to transpose two adjacentsymbols in Pm. We assume symbols are drawn from a �nite alphabet, �.Given an exampleP7 = exsambl andW7 = example. We haveD(P7;W7) =3 since changing P7 to W7 needs to: (1) delete p3 = s, (2) replace p3 = b byw5 = p, and (3) add w7 = e after p7 = l. The edit distance, D(Pi;Wj), canbe recursively de�ned as follows:D = 8>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>:
0 i=j=01 i<0 or j<0min0BBBBBBBBBBBBB@ D(Pi;Wj�1) + 1D(Pi�1;Wj) + 1D(Pi�1;Wj�1) + SijD(Pi�2;Wj�2) +Rij 1CCCCCCCCCCCCCA elsewhere pi = wj = � when i; j�0 (the null character), andSij = 8>>><>>>: 0 pi=wj1 else , Rij = 8>>><>>>: 1 pi�1=wj ^ pi=wj�11 else .109

To evaluate D(Pm;W`), we need to invoke D four times with both sub-scripts decreasing by no more than two. Thus, a brute force evaluation musttake O(2min(m;`)) calls. However, for D(Pm;W`), there are only (m+1)�(`+1)possible values. DP evaluates D(Pm;W`) by storing each possible D value ina m�` table. Table 1 shows a 3�4 DP table for P2=ab and W3=bbc.w0 = � w1 = b w2 = b w3 = cp0 0 1 2 3p1 1 D(P1;W1) D(P1;W2) D(P1;W3)p2 2 D(P2;W1) D(P2;W2) D(P2;W3) =)� b b cp0 = � 0 1 2 3p1 = a 1 1 2 3p2 = b 2 1 1 2Table 1: Dynamic ProgrammingFurthermore, it is not necessary to evaluate every D values (DP tableentries). Ukkonen [24] proposed an algorithm to reduce the table evalua-tions. His algorithm works as follows: Let Cj be the maximum i such thatD(Pi;Wj) � k for the given j (Cj=0 if no such i). Given Cj�1, compute110

D(Pi;Wj) up to i � Cj�1+1, and then set Cj to the largest i (0� i � Cj�1+1)such that D(Pi;Wj) � k. Chang [7] proved that this algorithm evaluatesO(k2) expected entries. As shown in Table 2, for P4=adfd and W7=acdfbdfof 5�8=40 entries, Ukkonen's algorithm evaluates only 23 entries for k=1.Ukkonen's algorithm sets D(P1;W0)=1, D(P2;W0)=2, and C0=1 at ini-tial time. It evaluates the �rst column up to row C0+1=2. Since the largestentry value of this column is at row 2, it sets C1=2. Then, it evaluates thesecond column up to row C1+1=3. Since the largest entry value of this col-umn is at at row 2, it sets C2=2. Similarly, it evaluates the third columnup to row C2+1=3 to get C3=2, the fourth column to get C4=3, and the�fth column to get C5=0, which indicates that it is impossible to changeany pre�x of adfd to acdfb in less than one edit operation. Thus, we knowD(P4;W7)>1. We can stop the evaluation if we do not want to know theexact value of D(P4;W7).3 Trie and Approximate SearchWe follow Gonnet et al. [9] in using semi-in�nite strings, or sistrings. Asistring is a su�x of the text starting at some position. A text consists111

of many sistrings. If we assume sistrings start at word boundaries, thetext, \echo enfold sample enface same example," will have six sistringsof this kind. Figure 3 shows these sistrings and an index trie constructedover these sistrings. To make Figure 3 simpler, we truncate sistrings afterthe �rst blank. To index full size sistrings, we simply replace leaf nodes bysistring locations in the text. To prevent a sistring being a proper su�x ofanother, we can append either arbitrary numbers of the null symbol afterthe text or a unique end-of-text symbol. The index trie has many distinctiveproperties:� When conducting a depth-�rst traverse, we not only get all sistrings,but also get them in lexicographical order.� When searching a string, say example, branching decisions at each nodeare given by each character of the string being sought. As the trie inFigure 3, we test the �rst letter e to get to the left branch, and thesecond letter x to get to the right branch. As a result, search time isproportional only to the length of the pattern string, and independentof the text size. 112

 Text:
 echo enfold sample enface same example

 Sistrings:
 echo enfold sample enface same example
 enfold sample enface same example
 sample enface same example
 enface same example
 same example
 example

e s

a

m

n

f

ho

c

ce ld

ample

x

a o

le

p e

 Trie:

Figure 3: Text, Sistring and Index Trie� The common pre�xes of all sistrings are stored only once in the trie.This gives substantial data compression, and is important when index-ing very large texts.Trie methods for text can be found in [10, 18, 22]. Here we describe themonly brie
y. When constructing a trie over a large number of and extremelylong sistrings, we have to consider the representation of a huge trie on sec-ondary storage. Tries could be represented as trees, with pointers to subtrees,113

as proposed by Morrison [19], who �rst came up with the Patricia trie fortext searches. Orenstein [21] has a very compact, pointerless representation,which uses two bits per node and which he adapted for secondary storage.Merrett and Shang [18, 22] re�ned this method and made it workable forPatricia tries with one bit per node. Essentially, both pointerless representa-tions would entail sequential searches through the trie, except that the bitsare partitioned into secondary storage blocks, with trie nodes and blockseach grouped into levels such that any level of nodes is either entirely on orentirely o� a level of blocks. With the addition of two integers per block, thesequential search is restricted to within the blocks, which may be searchedas a tree. For more details of this representation, see [22].3.1 Two ObservationsBefore introducing our approximate search algorithm, we give two observa-tions which will link the trie method with the DP technique.Observation IEach trie path is a pre�x shared by all sistrings in the subtrie. When evalu-ating DP tables for these sistrings, we will have identical columns up to the114

pre�x. Therefore, these columns need to be evaluated only once.Suppose we are searching for string sane in a trie shown in Figure 3. Tocalculate distances to each word, we need to evaluate six tables. Table 3shows three of them. For each table, entries of the ith column depend onlyon entries of the j�i th column, or the �rst i letters of the target word.Words sample and same have the same pre�x sam, and therefore, share thetable entries up to the third column. And so does the �rst column of wordsecho, enface, enfold and example, the �rst three columns of words enfaceand enfold. In general, given a path of length x, all DP entries of words inthe subtrie are identical up to the xth column.This observation tells us that edit distances to each indexed word (sistringin general) can be calculated by traversing the trie, and in the meantime,storing and evaluating one DP table. Sharing of common pre�xes in a triestructure saves us not only index space but also search time.Observation IIIf all entries of a column are > k, no word with the same pre�x can have adistance � k. Therefore, we can stop searching down the subtrie.For the last table of Table 3, all entries of the second column are > 1.115

If searching for words with k = 1 di�erences, we can stop evaluating stringsin the subtrie because for sure D(sane; en:::) > 1. For the same reason,after evaluating the fourth column of table sample, we �nd all entries of thecolumn are > 1, and therefore, stop the evaluation.This observation tells us that it is not necessary to evaluate every sistringin a trie. Many subtries will be bypassed. In an extreme case, the exactsearch, all but one of the subtries are trimmed.3.2 Search AlgorithmThe algorithm of Figure 4 shows two functions: DFSearch(TrieRoot, 1)traverses an index trie depth-�rst, and EditDist(j) evaluates the jth columnof the DP table for pattern string P and target string W . For the purposeof illustration, we start and stop evaluation at the word boundary in thefollowing explanation.Essentially, this algorithm is a trie walker with cuto�s (rejects beforereaching leaves). Given a node c, its root-to-c path, w1w2:::wx, is a pre�xshared by all strings in SubTrie(c). If changing w1w2:::wx to any possiblepre�x of P costs more than k, there will be no string in SubTrie(c) with116

T :array [�1::max;�1::max] of integer; /* [i; 0] = [0; j] = i+ j, [�1;] = [;�1] =1 */C :array [0::max] of integer; /* variables for Ukkonen's cuto�, C[0] = k */P,W :array [0::max] of character; /* pattern and target string, W [0] = P [0] = � */k :integer; /* number of allowable errors */Procedure DFSearch(TrieNode :Anode, Level :integer);begin /* depth-�rst trie search */if (TrieNode in a leaf node) thenfor each character in the node do /* retrieve characters one by one */W[Level] := the retrieved character;if (W[Level] = ' ') then /* �nd a target word */output W[1]W[2]...W[j-1];return;if (EditDist(Level) = 1) then /* more than k mistakes */return;Level := Level + 1;elsefor each child node do /* retrieve child node one by one */ChildNode := the retrieved node;W[Level] := the retrieved character;if (W[Level] = ' ') then /* �nd a target word */output W[1]W[2]...W[j-1];return;if (EditDist(Level) = 1) then /* cut o� here! don't search subtrie down */return;DFSearch(ChildNode, Level+1) /* search down the subtrie */end;Function EditDist(j :integer) :integer;begin /* evaluate one column of DP table */C[j] := 0;for i:=1 to Min(C[j-1]+1, length(p)) dos := if (P[i]=W[j]) then 0 else 1; /* evaluate one table entry */r := if (P[i-1]=W[j] and P[i]=W[j-1]) then 1 else 1;T[i,j] := Min(T[i,j-1]+1,T[i-1,j]+1,T[i-1,j-1]+s,T[i-2,j-2]+r);C[j] := if (T[i,j] <= k) then i else C[j];return (if (C[j]=0) then 1 else T[i-1,j]);end; Figure 4: Approximate Trie Search Algorithm

117

� k mismatches. Hence, there is no need to walk down Subtrie(c). A cuto�occurs. Each letter wj (1�j�x) on the path will cause a call to EditDist(j).We use Ukkonen's algorithm to minimize row evaluations.Suppose we have a misspelled word P=exsample and want all words withk=1 mismatches. Figure 5 shows the index trie and some intermediate resultsof the search. After evaluating D(P; ech), we �nd that entries on the thirdcolumn are all �2. According to observation II, no word W with the pre�xech can have D(P;W) � 1. We reject word echo and continue traversing.After evaluating D(P; enf), we know, once again, no word W with pre�x enfcan have D(P;W) � 1, and therefore, there is no need to walk down thissubtrie. We cut o� the subtrie. Since ech and enf share the same pre�x e,we copy the �rst column of ech when evaluating enf (observation I). Afterevaluating path 3, we �nd D(P; example) = 1 and accept the word. Thesearch stops after cutting at path 4, sa. Figure 5 shows some intermediateresults of the search.
118

Pattern String:

Search Path 1:

Search Path 2:

Search Path 3:

Search Path 4:

String Distance Action

exsample

ech

enf

example

sa

k ≤ 1

≥ 2

≥ 2
= 1

≥ 2

reject

cutoff

accept

cutoff

Depth First

e s

a

m

n

f

1
ho

c

ce ld

ample

x

a o

le

p e

3 4

2

Figure 5: Approximate Trie Search Example
119

4 Experimental ResultsWe built tries for �ve texts: (1) The King James' Bible retrieved from ak-bar.cac.washington.edu, (2) Shakespeare's complete works provided by Ox-ford University Press for NeXT Inc., (3) section one of UNIX manual pagesfrom Solbourne Computer Inc., (4) C source programs selected randomlyfrom a departmental teaching machine, and (5) randomly selected ftp �lenames provided by Bunyip Information System. Sistrings start at any char-acter except the word boundary, such as blank and tab characters. Table 4shows the sizes of the �ve texts and their index tries.4.1 Search TimeWe randomly picked up 5 substrings from each of the �ve texts, and thensearched for the substrings using both agrep [28] and our trie algorithm. Bothelapsed time and CPU time are measured on two 25MHz NeXT machines,one with 28MB RAM and the other with 8MB RAM. Table 5 shows measuredtimes, averaged on the �ve substrings, in seconds.The testing results show that our trie search algorithm signi�cantly out-performs agrep in exact match and approximate match with one error. For120

the exact match, trie methods usually give search time proportional only tothe length of the search string. Our measurements show that trie searchtimes for exact match do not directly relate to the text size. It requiresfew data transfers (only one search path), and therefore, is insensitive to theRAM size.Let �(k) be the average trie search depth. It is the average number ofcolumns to be evaluated before assuring that D(P;W) > k. It has beenproven that �(k) > k if k is less than the target string length, and �(k) =O(k) [24, 7]. For a complete trie, the worst case of a text trie, the trie searchalgorithm can �nd all substrings with k mismatches in O(k j�jk) expectedtime: there are j�jk paths up to depth k, and each column of the DP tablehas k rows. The time is independent of the trie size. In fact the trie algorithmis better than the agrep for small k, but not for large k, because agrep scanstext linearly but the trie grows exponentially. For our measured texts, whichare relatively small, the trie search brings more data into RAM than agrepwhen k � 2,When RAM size is larger than data size, measured CPU times are closerto the elapsed times. Since each query is tested repeatedly, most of data (textand trie) are cached in RAM, and therefore, the searches are CPU-bound.121

However, for a smaller RAM size (or larger text data), the searches have towait for data to be transferred from secondary storage. Since agrep scans theentire text, its search time is linearly proportional to the text size.File names are di�erent from the other tested texts. File names are allpairwise distinct. Any two substrings resemble each other less, which helpsagrep to stop evaluation more quickly. This does not help the trie searchbecause it makes the trie shallow (toward a complete trie) and takes moretime to scan the top trie levels.5 ExtensionsOur trie search algorithm can be extended in various ways. For example,spelling checkers are more likely to ask for the best matches, rather thanthe words with a �xed number of errors. The optical character recognizersmay search for words with substitutions only. When searching for telephonenumbers, license numbers, postal codes, etc., users require not only penaltiesfor certain types of edit operations, but also a combination of the exact searchand the approximate search because they often remember some numbers forsure. In text searching, patterns are more often expressed in terms of regular122

expressions. Extensions described in this section (except Section 5.5) havebeen discussed in [28]. We present them here using DP.5.1 Best MatchIn some applications, we do not know the exact number of errors beforea search. We want strings with the minimal number of mismatches, i.e.,strings with 0�k mismatches and no other string in the text having k0<kmismatches.To use our algorithm, we de�ne a preset k, which is a small number butno less than the minimal distance, i.e., there exists a string, s, in the textsuch that D(pattern; s) � k. A simple method to set k is to let s be anarbitrary string in the text, and then set k = D(pattern; s). A better wayis to search for the pattern using deletions (or insertions, or substitutions)only. This is to traverse the trie by following the pattern string. Wheneverno subtrie corresponds to a character of the pattern, we skip the characterin the pattern and look for a subtrie for the next character, and so on. Thenumber of skipped characters will be used as an initial k.During the traverse, we will have k0 = D(pattern,s) for a leaf node, where123

s is the path from the root to the leaf node. Whenever we have k > k0, we setk = k0 and clear the strings that have been found. For best match searching,k decreases monotonically.5.2 Weighted CostsThe distances evaluated before are assumed to have cost 1 for any edit op-eration. Sometimes, we may want to have a di�erent cost. For example, tohave substitution costs at least the same as one deletion and one insertion,or to disallow deletions completely.To make edit operations cost di�erently, we need only to modify thedistance function. Let I, D, S and R be the costs of an insertion, a deletion,a substitution, and a transposition respectively. We assume costs are all> 0. To disallow an operation, say insertions, we set I = 1. As before,D(P0;W0) = 0 and D(Pi;Wj) = 1 if i or j < 0. Otherwise, we rede�neD(Pi;Wj) as follows:
124

D(Pi;Wj) = min0BBBBBBBBBBBBB@ D(Pi;Wj�1) + IijD(Pi�1;Wj) +DijD(Pi�1;Wj�1) + SijD(Pi�2;Wj�2) +Rij 1CCCCCCCCCCCCCAHere Iij = I, Dij = D, andSij = 8>>><>>>: 0 pi=wjS else , Rij = 8>>><>>>: R pi�1=wj ^ pi=wj�11 else .Furthermore, we may add a cost, C, for changing the case. For example,for case insensitive searches, we set C = 0, and for case sensitive searches, weset C = 1. We may even disallow case changes by setting C =1. Let a ' bbe a = b without checking the case di�erence, and let a � b mean that a andb are of the same case. Now, we de�ne, Cij = 8>>><>>>: 0 pi�wjC else , and replace:Sij = Cij +8>>><>>>: 0 pi'wjS else ;Rij = Ci�1;j + Ci;j�1 +8>>><>>>: R pi�1'wj ^ pi'wj�11 else :The concept of changing cases can be extended even more generally. Forexample, when searching a white page for telephone numbers, we don't want125

an apartment number, such as 304B, to be recognized as a telephone number,i.e., do not replace a character unless it is a digit to a digit. For the samereason, we may not want to mix letters, digits and punctuation with eachother when searching for license plates, such as RMP-167, or postal codes,such as H3A 2A7. For those applications, we can use above de�nitions forSij and Rij, but give a new interpretation of C. We will not elaborate themhere.5.3 Combining Exact and Approximate SearchesWe sometimes know in advance that only certain parts of the pattern mayhave errors. For example, many spelling checkers may give no suggestionsfor garantee. But suppose we knew the su�x rantee was spelled right. Inthis case, we want to search part of the pattern exactly. By following agrepstandards [28], we denote this pattern as ga<rantee>. Characters inside a<> cannot be edited using any one of the four operations.To support both exact and approximate searches for the same pattern,we need only modify Iij, Dij , Cij, Sij and Rij. Let function j pi be a predicatethat determines whether pi is a member character inside an exact match <>.126

Let function ? pi be a predicate that tells whether pi is the last characterinside a <>. The new de�nitions are:Iij = 8>>><>>>: 1 j pi ^ 6?piI else ; Dij = 8>>><>>>: 1 j piD else ;Cij = 8>>>>>>>><>>>>>>>>: 1 j pi ^ pi 6=wjC pi 6�wj _ pi'wj ^ pi 6=wj0 else ;Sij = Cij +8>>><>>>: 0 pi'wjS else ;Rij = Ci�1;j + Ci;j�1 +8>>><>>>: R P1 else ;where P = (pi�1'wj ^ pi'wj�1) ^ 6 j pi�1 ^ 6 j pi.By above de�nitions, string guarantees also matches ga<rantee> withtwo insertions. To disallow insertions at the end of an exact match, weintroduce an anchor symbol, $ (borrowed from Unix standards). Patternga<rantee>$ means that target strings must have the su�x rantee. Whatneeds to be changed is to set ?pi false when there is a $ symbol followed pi,i.e., a pattern looks like : : :<: : : pi>$. In a similar way, we introduce anotheranchor symbol, ^, to prevent insertions at the beginning of an exact match.127

For example, ^<g>a<rantee>$means that target strings must start with theletter g and ended with the su�x rantee. This time, we set j p0 true.5.4 Approximate Regular Expression SearchThe ability to match regular expressions with errors is important in prac-tice. Regular expression matching and k-approximate string matching solvedi�erent problems. They may overlap but do not coincide. For example, theregular expression a#c, where # is a one-place wildcard, can be written as a1-approximate match with substitutions and insertions on the second char-acter only. Baeza-Yates [5] proposed an search algorithm for the full regularexpression on tries.In this section, we will extend our trie algorithm to deal with regularexpression operators with errors. However, the extension operators workonly for single characters, i.e., there is no group operator. For example, wemay search for a*b with mismatches, but not (ab)*. Searching tries for thefull regular expression with approximation is an open problem.128

5.4.1 Alternative OperatorSuppose we want to �nd all postal codes, H3A 2A?, where ? is either 1, 3,or 7. First, we introduce the notation, [137] (once again, borrowed fromUnix standard), to describe either 1, 3, or 7. Formally, operator [] de�nes aset of alternative characters. Thus, H3A 2A7 matches pattern H3A 2A[137]exactly; while H3A 2A4 matches the pattern with one mistake.Substituting one character with a set of allowable characters can be easilyachieved by rede�ning the = and ' operators of Section 2 and Section 5.2respectively. For pattern P7 =H3A 2A[137], we have p1 =H, p2 =3, ..., andp7 =[137]. We de�ne p7 = wj as either 1= wj, or 3= wj, or 7= wj. In otherwords, if pi is a set of allowable characters, pi = wj means wj matches one ofthe characters de�ned by the [] operator. ' is the case insensitive versionof =.As syntactic sugar (Unix standards), we may denote [a-z] for all lowercase letters, i.e., a range of characters; [^aeiou] for anything but vowels,i.e., a complement of the listed characters; and . for all characters, i.e., thewild card. 129

5.4.2 Kleen StarThe kleen star allows its associated characters to be deleted for free, or tobe replaced by more than one identical character for free. For example, ac,abc, abbc and abbbc all match pattern ab*c exactly. a[0-9]*c means thatan unbounded number of digits can appear between a and c.Let function �pi be a predicate which says there is a Kleen star associatedwith the pattern character pi. To support the Kleen star operator, we needonly to change Iij and Dij. Remember, pi� means that we can delete pi atno cost, and insert any number of w = pi after pi at no cost. We now givethe new de�nition as follows:Iij = 8>>>>>>>><>>>>>>>>: 1 6�pi ^ j pi ^ 6?piCij �pi ^ pi'wjI else ;Dij = 8>>>>>>>><>>>>>>>>: 1 6�pi ^ j pi0 �piD else :
130

5.5 CounterOur algorithm can also be extended to provide counters. Unlike a Kleen star,e.g., ab*c, which means that unbounded number of bs can appear betweena and c, pattern ab?c says that only ac and abc match exactly. If we wantthese strings abbc, abbbc, abbbbc and abbbbbc, i.e., two to �ve bs between aand c, we can write the pattern as abbb?b?b?c, or abf2,5gc (Unix syntax).To support counters, we need only to modifyDij since p? means characterp can deleted for free. Let us de�ne a function ?pi which says there isa counter symbol, ?, associated with the pattern character pi. The newde�nition is: Dij = 8>>>>>>>><>>>>>>>>: 1 6 ?pi ^ 6�pi ^ j pi0 ?pi _ �piD else :6 Dictionary SearchBy a dictionary, we mean a text �le which contains keywords only, i.e., aset of strings that are pairwise distinguishable. For dictionary searches, weare only interested in those keywords that relate to the pattern by somemeasurements (in our case, the edit distance). The orders (or locations) of131

those keywords are not important to us. For such applications, the text �lecan be stored entirely in a trie structure. The trie in Figure 3 is a dictionarytrie. Experimental results in [22] show that dictionary trie sizes are about50% of the �le sizes for English words. In other words, we are providingnot only an algorithm for both exact and approximate searches, but also adata structure for compressing the data up to 50%. Searches are done on thestructure without decompression operations.Searching soundex codes [20] is an example of the dictionary search. Byreplacing English words with their soundex codes and storing the codes inthe dictionary trie, we are able not only to search any given soundex codee�ciently (exact trie search) but also to reduce the soundex code size by half.Searching an inverted �le is another example of dictionary search. Aninverted �le is a sorted list of keywords in a text. The trie structure keepsthe order of its keys. By storing keywords in the dictionary trie, we can eithersearch for the keywords or for their location. Furthermore, our trie algorithmprovides search methods for various patterns with or without mismatches.132

7 ConclusionTries have been used to search for exact matches for a long time. In thispaper, we have expanded trie methods to solve the k approximate stringmatching problem. Our approximate search algorithm �nds candidate wordswith k di�erences in a very large set of n words in O(k j�jk) expected worsttime. The search time is independent of n. No other algorithmwhich achievesthis time complexity is known.Our algorithm searches a trie depth �rst with shortcuts. The smaller kis, the more subtries will be cut o�. When k = 0, all irrelevant subtries arecut o�, and this gives the exact string search in time proportional only to thelength of the string being sought. The algorithm can also be used to searchfull regular expressions [3].We have proposed a trie structure which uses two bits per node andhas no pointers. Our trie structure is designed for storing very large setsof word strings on secondary storage. The trie is partitioned by pages andneighboring nodes, such as parents, children and siblings, are clustered interms of pages. Pages are organized in a tree like structure and are searchedin time logarithmic the �le size. 133

Our trie method outperforms agrep, as our results show, by an order ofmagnitude for k=0, and by a factor of 4 for k=1. Only when k�2 does thelinear worst case performance of agrep begin to beat the trie method for themoderately large documents measured.8 Future WorkSpelling checkers based on searching minimal edit distance performs excel-lently for typographic errors and for some phonetic errors. For example,exsample to example has one di�erence, but sinary to scenery has threedi�erences. To deal with phonetic misspellings, we may follow Veronis's work[25] by giving weights to edit operations based on phonetic similarity, or us-ing non-integer distances to obtain �ner grained scores on both typographicand phonetic similarities. Another solution is to follow the convention whichassumes no mistakes in the �rst two letters, or gives higher penalty for the�rst few mistakes. Excluding the �rst few errors allows us to bypass manysubtries near the trie root. This not only gives quicker search time, but alsoreduces the number of possible candidates. With a small set of candidatewords, we can impose a linear phonetic check.134

Even with one di�erence, a short word, say of 2 letters, matches manyEnglish words. There are more short words than long words. This type oferror is di�cult to correct out of context.AcknowledgmentsThis work was supported by the Canadian Networks of Centres of Excellence(NCE) through the Institute of Robotics and Intelligent Systems (IRIS) un-der projects B-3 and IC-2, and by the Natural Sciences and EngineeringResearch Council of Canada under grant NSERC OGP0004365.References[1] A. Apostolico. The myriad virtues of su�x trees. In CombinatorialAlgorithms on Words, pages 85{96. Springer-Verlay, 1985.[2] R.A. Baeza-Yates. String searching algorithms. In W.B. Frakes andR.A. Baeza-Yates, editors, Information Retrieval: Data Structures andAlgorithms, pages 219{40. Prentice-Hall, 1992.135

[3] R.A. Baeza-Yates and G.H. Gonnet. E�cient text searching of regularexpressions. In G. Ausiello, M. Dezani-Ciancaglini, and S.R.D. Rocca,editors, Proceedings of 16th International Colloquium on Automata, Lan-guages and Programming, LNCS 372, pages 46{62, Stresa, Italy, July1989. Springer-Verlag.[4] R.A. Baeza-Yates and G.H. Gonnet. A new approach to text searching.Communications of the ACM, 35(10):74{82, 1992.[5] R.A. Baeza-Yates and C.H. Perleberg. Fast and practical approximatestring matching. In G. Goos and J. Hartmanis, editors, Proceedings of3rd Annual Symposium on Combinatorial Pattern Matching, LNCS 644,pages 185{92, Tucson, Arizona, April 1992. Springer-Verlag.[6] R.S. Boyer and J.S. Moore. A fast string searching algorithm. Commu-nications of the ACM, 20(10):762{72, 1977.[7] W.I. Chang and E.L. Lawler. Approximate string matching in sublinear-expected time. In 31st Annual Symposium on Foundations of ComputerScience, pages 116{24, St. Louis, Missouri, October 1990. IEEE Com-puter Society Press. 136

[8] F.J. Damerau. A technique for computer detection and correction ofspelling errors. Communications of the ACM, 7(3):171{6, 1964.[9] G.H. Gonnet. E�cient searching of text and pictures. Technical ReportOED-88-02, Centre for the New OED., University of Waterloo, 1988.[10] G.H. Gonnet, R.A. Baeza-Yates, and T. Snider. New indices for text:PAT trees and PAT arrays. In W.B. Frakes and R.A. Baeza-Yates, edi-tors, Information Retrieval: Data Structures and Algorithms, pages 66{82. Prentice-Hall, 1992.[11] P.A.V. Hall and G.R. Dowling. Approximate string matching. Comput-ing Surveys, 12(4):381{402, 1980.[12] J.Y. Kim and J. Shawe-Taylor. An approximate string-matching algo-rithm. Theoretical Computer Science, 92:107{17, 1992.[13] D.E. Knuth, J.H. Morris, and V.R. Pratt. Fast pattern matching instrings. Computer Journal, 6(2):323{50, 1977.[14] K. Kukich. Techniques for automatically correcting words in text. Com-puting Surveys, 24(4):377{439, 1992.137

[15] V. Levenshtein. Binary codes capable of correcting deletions, insertionsand reversals. Soviet Physics Dokl., 6:126{36, 1966.[16] E.M. McCreight. A space economical su�x tree construction algorithm.Journal of the ACM, 23(2):262{72, 1976.[17] T.H. Merrett. Relational Information Systems. Reston Publishing Co.,Reston, VA, 1983.[18] T.H. Merrett and H. Shang. Trie methods for representing text. InProceedings of 4th International Conference, FODO'93, LNCS 730, pages130{45, Chicago, Ill, October 1993. Springer-Verlag.[19] D.R. Morrison. PATRICIA { Practical Algorithm To Retrieve Informa-tion Coded In Alphanumeric. Journal of the ACM, 15(4):514{34, 1968.[20] M.K. Odell and R.C. Russell. U.S. Patent Numbers, 1,261,167 (1918)and 1,435,663, 1922. U.S. Patent O�ce, Washington, D.C.[21] J.A. Orenstein. Multidimensional tries used for associative searching.Information Processing Letters, 14(4):150{6, 1982.138

[22] H. Shang. Trie Methods for Text and Spatial Data on Secondary Stor-age. PhD Dissertation, School of Computer Science, McGill University,November 1994.[23] G.A. Stephen. String Searching Algorithms. Lecture Notes on Comput-ing. World Scienti�c Pub., 1994.[24] E. Ukkonen. Finding approximate patterns in strings. Journal of Algo-rithms, 6:132{7, 1985.[25] J. Veronis. Computerized correction of phonographic errors. Comput.Hum., 22:43{56, 1988.[26] R.A. Wagner and M.J. Fischer. The string-to-string correction problem.Journal of the ACM, 21(1):168{78, 1974.[27] P. Weiner. Linear pattern matching algorithms. In IEEE Symposiumon Switching and Automata Theory, pages 1{11, 1973.[28] S. Wu and U. Manber. Fast text searching. Communications of theACM, 35:83{91, 1992.Heping Shang received a B.S. degree in computer engineering fromChang-sha Institute of Technology, Changsha, Hunan, China, in 1981, an M.S.139

degree in computer science from Concordia University, Montr�eal, Qu�ebec,Canada in 1988, and a Ph.D degree in computer science from McGill Uni-versity, Montr�eal, Qu�ebec, Canada in 1995. His research interests includedata structures and searching techniques for very large textual and spa-tial database data, database programming languages, parallel processing andconcurrency control.Dr. Shang is now at Replication Server Engineering, Sybase Inc., Emeryville,California, USA.T. H. Merrett received a B.Sc. in mathematics and physics from Queen'sUniversity at Kingston, Ontario, Canada (1964) and a D.Phil. in theoreticalphysics from Oxford University (1968). After two years with IBM (U.K.), hejoined the School of Computer Science at McGill University, where he is aprofessor. His research interests are in database programming languages anddata structures and algorithms for secondary storage.Dr. Merrett initated and directs the Aldat Project at McGill University,which has been responsible for data structures for multidimensional data,such as multipaging and Z-order, and for trie-based structures for text andspatial data. The database programming language contributions of the Aldat140

Project have included the domain algebra; quanti�ed tuple (QT)-selectors;relational mechanisms for multidatabases, metadata, and inheritance; meth-ods for process synchronization and nondeterminism; and the computationmechanism, which uni�es relations, functions, and aspects of constraint pro-gramming.

141

� a c d f b d f� 0 1 2 3 4 5 6 7a 1 0 1 2 3 4 5 6d 2 1 1 1 2 3 4 5f 3 2 2 2 1 2 3 4d 4 3 3 2 2 2 2 3 =)� a c d f b d f� 0 1 2 3 4 5a 1 0 1 2 3 4d 2 1 1 1 2 3f 2 2 1 2d 2C0 C1 C2 C3 C4 C5 C6 C7Table 2: Ukkonen's Cuto�142

� s a m p l e� 0 1 2 3 4 5 6s 1 0 1 2 3 4 5a 2 1 0 1 2 3 4n 3 2 1 1 2 3 4e 4 3 2 2 2 3 3column: 1 2 3 4 5 6� s a m e� 0 1 2 3 4s 1 0 1 2 3a 2 1 0 1 2n 3 2 1 1 2e 4 2 2 2 11 2 3 4
� e n f � � �� 0 1 2 3 � � �s 1 1 2a 2 2 2n 3 3 2e 4 3 31 2 3 � � �Table 3: Dynamic Programming Tables143

Text Text Size #Sistrings #Trie NodesBible 4.5MB 3.4 M 46.0 MShakespeare 6.4MB 4.4 M 47.9 MUnix Manual 7.6MB 4.8 M 107.0 MC Program 8.4MB 5.3 M 157.0 MFile Names 8.4MB 6.6 M 76.9 MTable 4: Text File and Index Trie
144

NeXT with 28MB RAM NeXT with 8MB RAMText elapsed (CPU), sec: elapsed (CPU), sec:agrep trie agrep trieBible 4.45 (4.32) 0.68 (0.43) 5.98 (4.57) 0.82 (0.43)Shakespeare 7.90 (7.76) 0.63 (0.41) 17.50 (9.53) 0.90 (0.42)k = 0 Unix Manual 7.53 (7.43) 1.07 (0.58) 18.72 (9.51) 1.37 (0.58)C Program 12.63 (12.50) 0.68 (0.35) 24.13 (14.62) 0.85 (0.37)File Names 5.80 (5.68) 0.53 (0.38) 16.82 (7.43) 0.75 (0.37)Bible 7.48 (7.37) 2.78 (2.67) 8.58 (7.48) 2.77 (2.55)Shakespeare 13.52 (13.37) 2.78 (2.67) 23.53 (15.16) 8.42 (8.20)k = 1 Unix Manual 28.48 (28.29) 4.42 (4.32) 39.58 (30.20) 4.15 (3.90)C Program 22.18 (21.93) 4.63 (4.49) 34.08 (23.95) 8.25 (4.68)File Names 9.10 (8.86) 7.17 (7.05) 21.07 (11.34) 13.63 (7.48)Bible 13.53 (13.21) 22.52 (22.19) 16.42 (13.51) 40.12 (24.32)Shakespeare 24.83 (24.50) 28.57 (28.16) 33.90 (26.40) 66.18 (32.93)k = 2 Unix Manual 46.50 (45.87) 41.63 (40.91) 57.22 (47.58) 80.12 (44.17)C Program 35.83 (35.40) 62.87 (61.40) 47.87 (37.41) 138.75 (67.59)File Names 14.22 (13.77) 98.00 (97.41) 36.40 (16.42) 176.53 (99.20)Table 5: Approximate Search Time145

