
How to squeeze a lexicon
Marcin G. Ciura, Sebastian Deorowicz

May 8, 2002

This is a preprint of an article published in
Software—Practice and Experience 2001; 31(11):1077–1090

Copyright c 2001 John Whiley & Sons, Ltd.
http://www.interscience.wiley.com

Abstract

Minimal acyclic deterministic finite automata (ADFAs) can be used as a compact representation of fi-
nite string sets with fast access time. Creating them with traditional algorithms of DFA minimization
is a resource hog when a large collection of strings is involved. This paper aims to popularize an effi-
cient but little known algorithm for creating minimal ADFAs recognizing a finite language, invented
independently by several authors. The algorithm is presented for three variants of ADFAs, its minor
improvements are discussed, and minimal ADFAs are compared to competitive data structures.

KEY WORDS: static lexicon; static dictionary; trie compaction; directed acyclic graph; acyclic finite automaton

INTRODUCTION

Many applications involve accessing a database, whose keys are variable-length finite sequences of char-
acters from a fixed alphabet (strings). Such databases are known as symbol tables or dictionaries. Some-
times no data are associated with the keys, we need only to know whether a string belongs to a given set.
Following Revuz [23], we call a set of bare strings a lexicon to distinguish it from a complete dictionary.

In spelling checkers and other software that deals with natural language the lexicons often contain
hundreds of thousands words, yet they need no frequent updates. Knowing all the keys in advance allows
to prepare a static data structure that outperforms dynamic ones in size or time of searching. At least
several ways to construct such a data structure are conceivable.

Hashing
Perfect hashing, a classical solution to the static dictionary problem [5], requires storage for all the strings;
at most they can be compressed with a static method. When they are just words, affix stripping [13, 17]
reduces the space requirements. It can be applied to many languages, but for languages more inflective
and irregular than English the accurate morphological rules are complex, and grammatical classification
of corpus-based word lists demands either human labour or sophisticated software.

A sparse hash table allows discarding the strings entirely, at the cost of occasional false matches,
and can be encoded compactly yielding a Bloom filter [17]. Sometimes, though, absolute certainty is de-
sired. Moreover, once the strings are dropped, it is impossible to reconstruct them.

Tries
A character tree, also known as a trie [11, Chapter 6.3], is an oriented tree, in which every path from
the root to a leaf corresponds to a key and branching is based on successive characters. Tries are some-
times preferable to hashing, because they detect unsuccessful searches faster and answer partial match or
nearest neighbour queries effectively.

Tries are found in two varieties: abbreviated and full. The former comprise only the shortest prefixes
necessary to distinguish the strings; finding a string in themmust be confirmed by a comparison to a suffix
stored in a trie leaf. The latter comprise entire strings, character by character, up to a string delimiter, as
shown in Figure 1.

1

Administrator
grammatical



d
¶

e
i

s
¶

f
¶

d

e

y
i

n g ¶

d
¶

e
i

s
¶n

¶
y

i
n g ¶

¶

i
e ¶dt

r ¶
s

¶
y

i
n g ¶

Figure 1: A full trie for a contrived set of strings.

a
b
c
d
e
f

a b c d e f

d b f a c e

Figure 2: A sample node and its representations as a static list and a static complete binary tree. Dashed
arrows indicate implicit links.

In a plain trie the set of arcs coming from each node is represented as an array of size equal to the al-
phabet size, whose elements are either pointers to child nodes or null pointers. This technique needs
excessive amounts of storage for large collections of strings. Memory usage decreases at the cost of re-
trieval time by eliminating null pointers and arranging the remaining pointers into a list or a binary search
tree. Furthermore, static lists and static complete binary trees occupying subsequent memory locations
can get along with one bit instead of an explicit link to a successor, as shown in Figure 2. An alternative
approach, which does not compromise the search time, is to overlap the nodes, so that all the non-null
pointers retain their positions within a node and occupy empty locations of the other nodes [2].

Path compression generalizes the concept of abbreviated tries: a path-compressed trie replaces sin-
gle paths with single arcs, using strings for branching. In our example trie in Figure 1, the paths d-e
and t-r, as well as i-e, i-n-g- , d- , and s- (thrice) could be compressed. Still other methods of reduc-
ing the trie size, such as C-trie [16] and Bonsai [8], lower the space occupied by a node, ingeniously
using only one bit per pointer or one pointer to all the offspring nodes.

Finite automata
We concentrate on yet another technique that consists in merging all equivalent subtries of a full trie
and can coexist with any method of node packing that preserves distinct pointers to child nodes. Com-
paring the trie in Figure 1 with the directed acyclic graph in Figure 3 clears this idea. Intuitively, it is
especially attractive when the keys come from a natural language, since they are likely to share many
suffixes, and indeed we shall see that such lexicons can be substantially compacted this way. The ob-
tained structure, which can be viewed as a minimal deterministic finite automaton that recognizes a given
set of strings, used to be named directed acyclic word graph (DAWG) in some publications, but DAWG
is actually another concept [4]. From now on we call it a recognizer for short [1, Section 3.6], and use
the terms states and transitions from automata theory rather than nodes and arcs from graph theory.

Recognizers have been successfully employed to store routing tables [28], hyphenation rules

2



START:

d
e f

n
i
y

e d
s

t r y
i

i
¶

n
g ¶

e d
s

¶

Figure 3: Transition diagram of a simple recognizer.

in TEX [12, Part 43], and large lexicons for speech recognition [14], word game programs [3, 9],
and spelling checkers [15]. Recognizers inherit the advantages of tries, but cannot associate distinct
information with the keys, which seems to limit their applications to lexicons. However, augmenting
their states with numeric data provides a minimal perfect hash function of the given strings [15], making
recognizers a proper dictionary structure.

This paper discusses static recognizers; dynamic recognizers, which can be updated without rebuild-
ing them from scratch, are dealt by Park et al. [21] and Sgarbas, Fakotakis & Kokkinakis [24].

THE RECOGNIZERS AND THEIR CONSTRUCTION

The straightforward method of constructing a static recognizer: minimizing an incrementally built dy-
namic trie, either with generic DFA minimization algorithms [25], or algorithms specialized for acyclic
automata [12], can consume a large amount of memory even if the output is relatively small. Revuz [22]
and Watson [27] have developed incremental algorithms that produce a partially minimized automaton
instead of a full trie. A direct, both space-efficient and fast algorithm to construct a minimal acyclic au-
tomaton has been independently invented several times, with secondary differences, by Jan Daciuk [6],
Stoyan Mihov [18, 19], Bruce W. Watson & Richard E. Watson (see Reference [7]), and the first author.

Simple recognizers
To ease the explanation, we begin with what we tentatively call a simple recognizer (see Figure 3). Let us
treat transitions as pairs attribute character destination state and states as sets of their out-transitions.
Two transitions are equal if both of their elements are equal. Informally, two states are equivalent if
joining them, i.e. pointing all their in-transitions to one of them and removing the other state, does
not change the set of strings recognized by the automaton. In particular, states with equal sets of out-
transitions are equivalent. As the recognizer is a minimal finite automaton, it contains no equivalent
states.

There is a distinguished start state, without in-transitions, equivalent to the root of a trie. As in a full
trie, the alphabet of a simple recognizer includes a string delimiter to distinguish the strings that are
prefixes of other strings. All the transitions tagged with go to a terminal state, which has an empty set
of out-transitions. Due to the minimality of the automaton, it contains exactly one terminal state.

Figure 4 shows the algorithm for constructing a simple recognizer. It uses a temporary variable
new_state, three integer variables , , and , two character arrays and —both of range ,
and an array of sets of transitions larval_state , where stands for the maximal possible
length of input string (without delimiter). The point of the algorithm, first noticed by Mihov [19], lies
in such an order of adding states to the recognizer that once a state is formed, it need not be updated.
Therefore, any external representation of the recognizer is supported.

The algorithm is sequentially fed with strings. For each prefix of strings in the lexicon, the strings
beginning with it shall appear consecutively; otherwise a non-deterministic automaton is constructed
instead of a deterministic one. The most natural way to meet this condition is to sort the strings lexico-
graphically. The presented version fails if the same string occurs more than once, but a trivial modification
of line 05, which finds the length of a common prefix of two strings, would immunize it against this case.
In the set union operation in lines 07 and 14, it is unnecessary to check if the transition already be-
longs to larval_state , because it can never happen. For this reason, we can implement the elements
of larval_state not as generic sets, but simply as arrays of as many elements as the alphabet has (includ-
ing the sentinel character ) coupled with length-of-array counters. Also, lines 13–15 are superfluous if
we ensure that the empty string is read after all the keys.

As soon as it is known that no more transitions will be added to a larval state, it is passed to the func-
tion make_state. Given a larval state, this function searches the portion of the recognizer built so far

3



01 ’ ’; ; larval_state ;
02 while not eof do
03 read next string into , and set to its length;
04 ’ ’; ;
05 while do ; end while;
06 while do new_state make_state larval_state ;
07 ; larval_state larval_state new_state ;
08 end while;
09 while do ;
10 ; larval_state ;
11 end while;
12 end while;
13 while do new_state make_state larval_state ;
14 ; larval_state larval_state new_state ;
15 end while;
16 start_state make_state larval_state ;

Figure 4: The algorithm for creating a simple recognizer.

p
q

i

larval_state s s0 1

0 t t
1 r r
2 i y
3 e ¶
4 s
5 ¶
6

e f

n

i

y

e
d

s
i ¶n g

¶

d

¶

d

Figure 5: A snapshot of the algorithm at work.

4



START:

d
e f

n
i
y

e d
s

t r y
i

i n g

e d
s

Figure 6: Transition diagram of a Moore recognizer. Double circles indicate terminal states.

START:

d
e f

n
i

e

t r
i

i n

e
y

y g

d
s

Figure 7: Transition diagram of a Mealy recognizer. Thick arrows indicate terminal transitions.

for a state equal to it or else adds such a state to the recognizer. It returns a descriptor of the found or
added state, which is an index of its first transition or a pointer to it in a most natural representation of
a recognizer. It turns out that joining equal states at this moment yields a minimized recognizer without
any equivalent states.

The algorithmmaintains an auxiliary data structure, not mentioned explicitly in Figure 4. It is updated
and searched by the function make_state and stores information about already created states. Of course,
it is not needed for using the recognizer when its construction finishes. The number of states in the
recognizer is bounded by , where denotes the total length of strings in the lexicon (usually,
it is at least an order of magnitude less than ). Therefore, a hash table with buckets has
expected time of retrieval and insertion when used as this auxiliary structure. When the size of the hash
table is chosen so that is small, the expected overall time complexity of the algorithm is linear in the
number of characters in the lexicon. A naive implementation missing the hash table can linearly search
the recognizer, achieving quadratic running time.

Figure 5 shows the values of the variables in the course of an example construction, between the lines
05 and 06 of the algorithm. The reader is advised to execute the loop 06–08 by hand to digest its method
of operation. To this end, we can imagine larval_state dragged below the dashed line, even though the
function make_state need not destroy its contents. Whereas this function finds in the recognizer a state
equal to the given one using its hash table, we have to find it below the dotted line with our eyes. In the
initial two iterations, it is there; in the remaining two iterations, it is not.

Other types of recognizers
This section treats recognizers with fewer states and transitions than their simple counterparts.

Finite automata with output encoded in their states are called Moore machines [10, Chapter 2.7].
Changing our definition of a state to a pair set of transitions, terminality bit yields a specimen of acyclic
Moore machine with one-bit output. Such a Moore recognizer for the sample set of strings is presented
in Figure 6. It has one state fewer than an equivalent simple recognizer and misses all the transitions
labelled with .

There are alsoMealy machines that have their output encoded in the transitions. Defining a transition
as a triple attribute character destination state terminality bit , equality of transitions as equality of
triples, and a state again as a set of transitions, we get a Mealy recognizer (see Figure 7). The only
distinction in using them is rather of theoretical interest: Mealy recognizers cannot recognize the empty
string, Moore (and simple) recognizers can.

Direct algorithms creating Moore and Mealy recognizers are presented in Figure 8. They work under
the same assumptions about the input as the algorithm for creating a simple recognizer in Figure 4 and use
analogical data structures (except larval_state that needs only the elements ), plus a Boolean
array is_terminal .

One can imagine also dual automata with attribute characters encoded in states instead of transitions,
and writing algorithms creating minimal acyclic automata of this kind is an easy exercise. However,
using such automata requires twice as many memory reads as using conventional ones, and, moreover,
they have in general more states and transitions.

5



01 macro generic_make_state var integer ;
02-Moore new_state make_state larval_state is_terminal ;
03-Moore ; larval_state larval_state new_state ;
02-Mealy new_state make_state larval_state ;
03-Mealy ; larval_state larval_state new_state is_terminal ;
04 end macro;
05 ’ ’; ; larval_state ; is_terminal false;
06 while not eof do
07 read next string into , and set to its length;
08 ’ ’; ;
09 while do ; end while;
10 while do generic_make_state ; end while;
11 while do ;
12 ; larval_state ; is_terminal false;
13 end while;
14 ’ ’; is_terminal true;
15 end while;
16 while do generic_make_state ; end while;
17-Moore start_state make_state larval_state is_terminal ;
17-Mealy start_state make_state larval_state ;

Figure 8: The algorithms for creating Moore and Mealy recognizers.

We experimented also with automata that have distinct start states for strings of different length
and thus need no explicit terminal states. Curiously, neither has a minimal recognizer of this type to
be unique and acyclic, nor does the presented algorithm guarantee a minimal construction. The recog-
nizer for the six-character string ‘banana’ that could have only three transitions instead of six illustrates
this phenomenon. Anyhow, the acyclic instances obtained with the direct algorithm have many more
states and transitions than ordinary automata.

As a final remark for this section, we note that the presented algorithms can be easily modified
to handle several types of string delimiters or several bits of terminality. For example, consider a spelling
checker for any language written with an alphabet that distinguishes the case of letters. The lexicon
contains common, all-minusculewords, capitalized Proper Names, ACRONYMS, and a few irregularities
like ‘PhD’ or ‘PostScript’. Although all the words can be stored in a recognizer as they are usually written,
it is wiser to convert them to one case and let the terminal state or transition determine the canonical
spelling of a word (the irregularities being a class on their own with a mask of capitals attached). This
way the recognizer needs to be consulted exactly once for each word checked, regardless of its nontypical
capitalization, e.g. starting a sentence. Also, as a rule it contains slightly fewer states and transitions than
a recognizer with a potpourri of lowercase and uppercase characters.

Another application of recognizers for more than one class of strings is discussed in the next section.

Comparison of the representations
The three types of automata presented above differ in size. To compare them in practice, we used several
lexicons:

English, Esperanto, French, German, Polish, Russian and Spanish lexicons for the spelling checker
Ispell [13].

ENABLE (Enhanced North American Benchmark Lexicon), a list of English words used as a ref-
erence in word games (see http://personal.riverusers.com/~thegrendel/enable2k.zip).

DIMACS—Harvard Library call numbers from the DIMACS Implementation Challenge (see
http://theory.stanford.edu/~csilvers/libdata/). Each string contains up to 30 characters like
LJA__ _ _84_C_63_A_57_X_1982 orWSOC_____ _5305_ _ _370_ _ _ _5.

Pathnames that represent the whole contents of ftp://ftp.funet.fi/pub/. This lexicon comprises
the leaves of the directory tree, i.e. besides files, also symbolic links and empty directories.
In a search engine, reversed pathnames would be more useful, so we include also results for them.

6



Table 1: Parameters of test lexicons.

Lexicon Raw size
[KB]

Number of
strings

Number of
base forms

Average
string length

Median
string length

Alphabet
size

English 688 74 317 35 063 8.47 8.25 53
Esperanto 11 205 957 965 17 588 10.98 10.90 62
French 2 418 221 376 47 618 10.19 10.09 69
German 2 661 219 862 40 174 11.40 11.26 58
Polish 16 647 1 365 467 92 368 11.48 11.31 64
Russian 8 911 808 310 80 241 10.29 10.12 60
Spanish 7 187 642 014 52 870 10.46 10.38 56
ENABLE 1 709 173 528 9.08 8.74 26
DIMACS 6 831 309 360 21.61 20.44 40
Pathnames 202 414 2 744 641 75.52 73.82 111
Random 1 027 100 000 9.51 9.54 26

Table 2: Number of states and transitions in the three types of automata.

States Transitions
Lexicon Simple Moore (terminal) Mealy Simple Moore Mealy (terminal)

English 33 671 33 670 (5 192) 33 141 74 934 69 742 69 056 (14 693)
Esperanto 21 508 21 507 (3 325) 21 259 61 960 58 635 58 184 (21 406)
French 27 492 27 491 (3 610) 27 204 66 905 63 295 62 771 (14 095)
German 46 436 46 435 (4 027) 46 050 90 737 86 710 86 266 (9 960)
Polish 67 486 67 485 (10 615) 66 268 199 397 188 782 185 952 (53 197)
Russian 50 846 50 845 (8 742) 49 761 148 936 140 194 137 716 (47 625)
Spanish 34 778 34 777 (5 303) 34 321 111 345 106 042 105 170 (33 895)
ENABLE 54 336 54 335 (9 064) 53 767 132 515 123 451 122 645 (28 439)
DIMACS 442 986 442 985 (2 418) 441 856 706 781 704 363 703 207 (25 449)
Pathnames 3163 283 3163 282 (41 492) 3155 636 4192 514 4151 022 4143 076 (56 988)
Rev. pathnames 3356 173 3356 172 (9) 3356 167 4361 963 4361 954 4361 949 (9)
Random 328 915 328 914 (1 488) 328 625 428 766 427 278 426 989 (9 840)

Random strings. Their length is uniformly distributed between 4 and 15 characters; each character
is independently chosen from a 26-character alphabet.

Table 1 contains some relevant parameters of the lexicons listed above, and Table 2 shows the number
of states and transitions in the recognizers constructed for them. As was expected, the Mealy recognizers
are superior to the others in this view.

On the other hand, the virtue of simple recognizers is their clean structure. They can prove use-
ful when a few dozen types of strings exist, i.e. each string has a few bits of data connected with
it. Their sample application are lexicons that comprise word bases for the morphological analysis of
text. Classes of affixes allowed for a base are encoded in terminal states or transitions of an automaton.
Words with the same base can take different affixes, as shown by Latin secur-[us,a,um,. . . ] ‘secure’ and
secur-[is,is,. . . ] ‘an axe’, or Spanish dur-[o,as,. . . ] ‘to last’ and dur-[o,os,. . . ] ‘hard’. The number of
terminal state/transition types needed in a Moore or Mealy recognizer equals the number of possible sets
of classes that can be exponential in the number of different terminal states needed in a simple recognizer.
In these circumstances maintaining a simple recognizer is less cumbersome.

The reader, however, should not become convinced that acyclic automata, which are the subject of this
paper, are a panacea for natural language processing. For an account of using automata with cycles to
store the potentially infinite lexicons of agglutinative languages, see e.g. Reference [20].

IMPLEMENTATION DETAILS

Below we describe our implementation of Mealy recognizers. The implementation of the other varieties
can be easily deduced from it. A C program can be downloaded from http://www-zo.iinf.polsl.gliwice.pl/

7



~sdeor/pub.htm. Another implementation by Jan Daciuk, featuring also construction from unsorted data,
is available at http://www.eti.pg.gda.pl/~jandac/fsa.html.

The recognizer is stored in an array, whose consecutive subarrays represent the out-transitions of rec-
ognizer states. Each transition occupies four bytes of memory divided into the following fields:

8 bits for the attribute character;

22 bits for the index of a destination state;

1 bit to distinguish terminal transitions from non-terminal ones;

1 bit to mark the last out-transition of the given state.

Such a representation can store recognizers that have up to transitions, which suffices for almost all
lexicons used by us. For storing the reversed pathnames, the index field is 30 bits long, making the tran-
sitions occupy five bytes each. The element at index zero represents the state that has no out-transitions,
but must occupy space, lest the next state should be mistaken for it. This otherwise unused location is a
convenient place to store the index of the start state.

Our implementation of the construction algorithm remembers information on the states in hash
buckets, implemented as linear lists. The elements of the lists are records with three fields:

the index of the first transition of a state;

the number of transitions in this state (dispensable at the cost of running time);

a link to the next element.

Memory for these records is allocated in large chunks to decrease the time and space overhead of library
allocation routines. On a typical 32-bit machine, the hash table occupies one megabyte for the list heads
plus a megabyte for each roughly 87 thousand states.

On a UltraSPARC II clocked at 250MHz, our program processes between 3 and 6 megabytes
of strings in a second, and its speed is mostly I/O bound. The average speed of successful lookups,
measured by searching all the strings in a lexicon, is between 2 and 4 megabytes per second when the
transitions of each state are alphabetically ordered. Storing the states in static complete binary trees
based on the alphabetical order decreases the searching time by at most , protracting the construction
by about for our data sets.

Another way to accelerate searching is to sort the transitions of each state with decreasing frequency
of use [26]. It can be done with a training collection of strings, assuming that it is typical for future
searches. Recognizing the training strings and counting howmany times each transition is taken allows to
reorganize the order of transitions in each state.

SQUEEZING A RECOGNIZER STILLMORE

Besides shortening the fields allocated for the attribute character or destination index, which would make
the transitions occupy fractional parts of bytes, there are also other ad hoc ways to decrease somewhat
the space occupied by a recognizer.

A binary recognizer that branches on bits of the ASCII code or a static Huffman code of the strings
is several times bigger than a recognizer with a 256-character alphabet. Conversely, the way to reduce
the size of recognizers, at least for some lexicons, is to substitute single symbols for frequent groups
of characters. It is however obscure which groups should be replaced. Among several heuristics tried
by us, no method to determine feasible substitutions produces consistent results for different lexicons.
The following simple one decreases the size of recognizers for English and German by 10–12%: every
pair of successive characters of each string, except the last pair, scores ; the last pairs score ;
replace 100-odd pairs with the highest score. For other lexicons, though, it proves better to refrain from
the replacement or to do it for only a few character pairs.

A more general way to save a little memory is to include some states in larger ones if the former
are their subsets. It is practicable when the states are represented as lists, and needs only modifying
the make_state function. Our first-fit algorithm for doing the inclusion slows down the construction
at most twice in our tests, which seems an acceptable tradeoff for shrinking the recognizers by 4–5%.

To this end, we distinguish fresh states, whose transitions are alphabetically ordered, and frozen states
that have been reordered to contain a smaller state at the end of the transition list.

8



Table 3: Size in kilobytes of various data structures storing the sample lexicons.

Lexicon Raw Mealy
recognizer

Path-compressed
trie

Bonsai C-trie Ispell

English 688 270 467 645 1 070 729
Esperanto 11 205 227 3 841 4 001 11 462 837
French 2 418 245 1 245 1 571 3 397 1 248
German 2 661 337 1 028 1 398 3 327 1 048
Polish 16 647 726 8 467 8 280 18 893 3 627
Russian 8 911 538 3 893 4 432 10 438 2 269
Spanish 7 187 411 3 190 4 085 7 910 2 399
ENABLE 1 709 479 981 1 369 1 779
DIMACS 6 831 2 747 3 507 6 853 5 371
Pathnames 202 414 16 184 42 272 109 745 115 725
Rev. pathnames 202 414 21 299 141 515 623 741 596 557
Random 1 027 1 668 1 096 2 317 895

with 30-bit index fields

While searching a hash bucket for a state identical to a given larval state, states of matching size
are considered: fresh states are compared to it transition by transition; frozen states are compared to it
by a simple algorithm, whose time complexity is quadratic in the number of transitions. For our data,
frozen states are rare and rather short, so implementing more elaborate methods is not worth the effort.

If no state equal to the given one is found, we prepare a short list of fresh states that could embody it,
using an additional hash table indexed by all the transitions created so far—a directory of their source
states. All the transitions of the larval state are examined to find one that hashes to a bucket with the
fewest entries. The fresh states from this bucket that are larger than the larval state are scanned in order
of increasing size for the larval transitions (all the buckets are not kept sorted all the time, since only a
fraction of them is ever searched). The scan is pretty fast, as the transitions of both fresh and larval states
are alphabetically ordered. If some state contains all the needed transitions, they are moved to its end and
considered a fresh state, and the larger state is frozen. Otherwise, a fresh state is created the usual way.

COMPARING RECOGNIZERSWITH OTHER DATA STRUCTURES

Table 3 compares the size of automata and other data structures that store the sample lexicons.
The columns contain size in kilobytes of the following data structures:

Raw lexicon, i.e. strings separated with a single character.

Mealy recognizer using four bytes per transition, without any additional squeezing.

Path-compressed trie. Unlike in the trie from Figure 1, no string delimiters are used: the alphabet
size is restricted to , and each character has a one-bit marker to determine if a string ends at it.
This way multicharacter arcs need not be split at string ends. Arcs labelled with one character
occupy four bytes; longer labels consist of a 7-bit length followed by 7-bit characters. Such arcs
labelled with characters occupy bytes. For some lexicons, it was necessary to expand
the index field of each arc by 8 bits, so that the arcs occupy bytes.

Bonsai [8], a hashing technique for storing tries that uses three bytes per node (we assume 80%
occupancy of the hash table). String ends are marked in nodes, too. Bonsai is a dynamic data
structure, only by 10% smaller than a static (non-path-compressed) trie that uses four bytes per arc
and encodes string ends in a Moore fashion.

C-trie, a trie compaction scheme proposed by Maly [16].

Ispell lexicon file. This file, tailored to spell checking, contains a hash table, a list of base words
and allowed affixes, and a few kilobytes of other information.

From these structures, the recognizers occupy the least memory for almost all data sets. The exception
of random data, where common prefixes and suffixes are rare, shows that they work best for lexicons that

9



exhibit similarities, such as natural languages. The lookup speed in all the trie-derived data structures is
comparable. In Ispell hash tables it is slower and depends more on the properties of a language.

CONCLUSIONS

This paper presents an algorithm to construct minimal acyclic deterministic finite automata recognizing
a given set of strings, whose particular variants were described formerly by Daciuk, Mihov, Watson,
and Watson. Speed of operation and frugal use of memory distinguish it from universal minimization
algorithms applied to acyclic automata.

The algorithm is shown in three variations for automata that mark string ends in different ways.
The automata using terminal transitions occupy the least memory, the automata using string delimiters
suit some applications better. Particular techniques to decrease the size of automata and accelerate search-
ing them are also discussed.

A comparison for real-world data sets shows that the automata, while retaining attractive properties
of tries, usually occupy several times less memory than alternative data structures.

Acknowledgements

We are grateful to Zbigniew J. Czech, Bruce W. Watson, and the anonymous referees for their critical
comments on this paper. Free lexicons that we used for benchmarks are maintained by Geoff Kuen-
ning, Sergei B. Pokrovsky, Martin Boyer, Heinz Knutzen, Piotr Gackiewicz, Włodzimierz Macewicz,
Mirosław Prywata, Alexander Lebedev, Santiago Rodríguez, Jesús Carretero, and Mendel Cooper. The
work was partially financed by a State Committee for Scientific Research grant no. 8T11C 007 17.

References

[1] Aho A, Sethi R, Ullman JD. Compilers: Principles, Techniques and Tools. Addison–Wesley, 1985.

[2] Al-Suwaiyel M, Horowitz E. Algorithms for trie compaction. ACM Transactions on Database Sys-
tems 1984; 9(2):243–263.

[3] Appel AW, Jacobson GJ. The world’s fastest Scrabble program.Communications of the ACM 1988;
31(5):572–578, 585.

[4] Blumer A, Blumer J, Haussler D, McConnell R, Ehrenfeucht A. Complete inverted files for efficient
text retrieval and analysis. Journal of the ACM 1987; 34(3):578–595.

[5] Czech ZJ, Havas G, Majewski BS. Perfect hashing. Theoretical Computer Science 1997; 182(1–
2):1–143.

[6] Daciuk J. Incremental Construction of Finite-State Automata and Transducers, and their Use in the
Natural Language Processing. PhD thesis, Politechnika Gdańska, 1998. http://www.eti.pg.gda.pl/
~jandac/thesis.ps.gz

[7] Daciuk J, Mihov S, Watson BW, Watson RE. Incremental construction of minimal acyclic finite-
state automata. Computational Linguistics 2000; 26(1):3–16.

[8] Darragh JJ, Cleary JG, Witten IH. Bonsai: a compact representation of trees. Software—Practice
and Experience 1993; 23(3):277–291.

[9] Gordon SA. A faster Scrabble move generation algorithm. Software—Practice and Experience
1994; 24(2):219–232.

[10] Hopcroft JE, Ullman JD. Introduction to Automata Theory, Languages, and Computation. Addison–
Wesley, 1979.

[11] Knuth DE. The Art of Computer Programming, vol. 3: Sorting and Searching. Addison–Wesley,
1998.

[12] Knuth DE. Computers & Typesetting, vol. C: TEX: The Program. Addison–Wesley, 1986.

[13] Kuenning GH. International Ispell. http://ficus-www.cs.ucla.edu/ficus-members/geoff/ispell.html

10



[14] Lacouture R, De Mori R. Lexical tree compression. In Proceedings of the Second European Con-
ference on Speech Communication and Technology. Genoa, 1991; 581–584.

[15] Lucchesi C, Kowaltowski T. Applications of finite automata representing large vocabularies.
Software—Practice and Experience 1993; 23(1):15–30.

[16] Maly K. Compressed tries. Communications of the ACM 1976; 19(7):409–415.

[17] McIlroy MD. Development of a spelling list. IEEE Transactions on Communications 1982;
COM-30(1):91–99.

[18] Mihov S. Direct building of minimal automaton for given list. Annuaire de l’Université de Sofia
1997; 91(1):33–40. http://www.lml.bas.bg/~stoyan/tagie.ps.gz

[19] Mihov S. Direct construction of minimal acyclic finite states automata. Annuaire de l’Université de
Sofia 1998; 92. http://www.lml.bas.bg/~stoyan/anu2.ps

[20] Oflazer K. Error-tolerant finite state recognition with applications to morphological analysis and
spelling correction. Computational Linguistics 1996; 22(1):73–89.

[21] Park K-H, Aoe J-I, Morimoto K, Shishibori M. An algorithm for dynamic processing of DAWG’s.
International Journal of Computational Mathematics 1994; 54(3–4):155–173.

[22] Revuz D. Minimisation of acyclic deterministic automata in linear time. Theoretical Computer Sci-
ence 1992; 92(1):181–189.

[23] Revuz D. Dictionnaires et lexiques—méthodes et algorithmes. PhD thesis, Université Paris VII,
1991.
http://www-igm.univ-mlv.fr/~dr/thdr/

[24] Sgarbas KN, Fakotakis ND, Kokkinakis GK. Two algorithms for incremental construction
of directed acyclic word graphs. International Journal on Artificial Intelligence Tools 1995;
4(3):369–381.

[25] Watson BW. Taxonomies and Toolkits of Regular Language Algorithms. PhD thesis, Technische
Universiteit Eindhoven, 1995.

[26] Watson BW. Practical optimizations for automata. Lecture Notes in Computer Science 1997;
1436:232–240.

[27] Watson BW. A fast new semi-incremental algorithm for construction of minimal acyclic DFAs.
Lecture Notes in Computer Science 1998; 1660:91-98.

[28] Watson BW. Private communication, November 2000.

11


