UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Exam in INF3800/INF4800 Search Technology Day of exam: June 10th, 2014 Exam hours: 14:30-18:30 (4 hours) This examination paper consists of 4 page(s) Appendices: None Permitted materials: None

Make sure that your copy of this examination paper is complete before answering.

QUERY PROCESSING (20%)

- a) [8 points] For a conjunctive query (AND), is processing postings lists in order of size guaranteed to be optimal? Explain why it is, or give an example where it isn't.
- b) [12 points] We have a two-word conjunctive query. For one term the postings list has the 16 entries [4,6,10,12,14,16,18,20,22,32,47,81,120,122,157,180], and for the other it is the one-entry postings list [47]. Work out how many comparisons would be done to intersect the two postings lists with the following two strategies. Briefly justify your answers.
 - i. Using standard postings lists.
 - ii. Using postings lists stored with skip pointers, with a skip length of \sqrt{P} where *P* is the length of the postings list.

HEAPS' LAW (20%)

- a) [5 points] Heaps' law is given as $M = kT^b$. Explain what M, k, T and b are.
- b) [15 points] Looking at a collection of web pages, you find that there are 3,000 different terms in the first 10,000 tokens and 30,000 different terms in the first 1,000,000 tokens. Assume a search engine indexes a total of 20,000,000,000 (2× 10¹⁰) pages, containing 200 tokens on average. What is the size of the vocabulary of the indexed collection as predicted by Heaps' law?

LOOKUP FUN (20%)

- a) [10 points] Write down the entries in a permuterm index that are generated by the term *sting*. If you wanted to search for *s*ng* in a permuterm wildcard index, what key(s) would one do the lookup on?
- b) [10 points] Consider the term *mississippi*. Write down the suffix array for this term, and explain how you can use this to efficiently locate all occurrences of the substring *is*.

COSINE SCORES, PAGERANK AND CLASSIFICATION (40%)

You want to automatically classify web documents according to their relevance to a given query. The documents contain both text and links to other documents. The classifier should rely on only two features:

- 1. The cosine score between a document and a query.
- 2. The PageRank of a document.

To build this classifier, you are given an example of query q

q: speech dialogue system

as well as four training documents $\{d_1, d_2, d_3, d_4\}$ manually annotated as relevant or not relevant for the query q.

	-	Document content	Relevant for q ?
Training	d ₁	A spoken dialogue system is a dialogue system [<i>link to</i> d_3] delivered through voice. It has two components that do not exist in a text-based dialogue architecture: a speech recognizer [<i>link to</i> d_5] and a text to speech module.	Relevant
	d ₂	Chatterbots are sometimes referred to as talk bots or chatterboxes. Chatterbots are often integrated into a dialogue agent [<i>link to</i> d_3] for practical purposes.	Not relevant
	d ₃	A dialogue system is a computer system intended to converse with a human. They have employed speech [<i>link to</i> d_{5}], graphics, haptics, gestures and other modes for communication on both the input and output channel.	Relevant
	d ₄	The core issue in such a speech system is the dialogue manager which is the element of system that determines what the system should say next.	Not relevant

Based on this training data, the objective is to classify the new document d_5 as being relevant or not to the query q.

Testing	d ₅	A speech recognition system may be speaker independent or trained by an individual speaker reading sections of text to the speech recogniser.	?
---------	-----------------------	---	---

Questions:

a) [8 points] Determine the cosine scores between each of the five documents and the query *q*. To simplify your calculations, you can ignore the vector normalization and assume the following weighting:

 $w_{t,q} = tf_{t,q} / df_t$ $w_{t,d} = tf_{t,d}$

Take the five documents into account for the document frequency.

- b) [8 points] Determine the PageRank of each document, given the links between the five documents. Use a teleportation rate of 0.5 and assume the random walk starts at d_1 . You can stop the calculations after 2 iterations. Hint: The final result should be [0.145 0.145 0.22 0.145 0.345].
- c) [4 points] Draw a two-dimensional plot with the cosine score on one axis and the PageRank score on the other axis. Place the five documents in this plot.
- d) [15 points] Classify the new document d_5 as relevant or not relevant to q, using the three following classifiers trained on $\{d_1, d_2, d_3, d_4\}$:
 - i. Rocchio classifier.
 - ii. 3-nearest neighbour.
 - iii. Linear SVM, given that the optimization solution returns the multipliers $\alpha_1=0$, $\alpha_2=0$, $\alpha_3=20$, $\alpha_4=20$ and the term b = -4.65.

To simplify the calculations, use the "Manhattan" metric below as a distance measure between vectors (instead of the Euclidean metric):

 $\|\vec{x} - \vec{y}\| = \sum_i |x_i - y_i|$ where $|\cdot|$ is the absolute value.

e) [5 points] Can you think of other features (besides the cosine score and the PageRank score) that could be useful for this classification task? Name at least two other features.