UiO : University of Oslo

Classification for Information Retrieval

Pierre Lison University of Oslo, Dep. of Informatics

> INF3800: Søketeknologi April 9, 2014

> > UiO : University of Oslo

Outline of the lecture

- The classification task
- Naive Bayes
- Feature selection
- Evaluation of classifiers
- Conclusion

• The classification task

- Naive Bayes
- Feature selection
- Evaluation of classifiers
- Conclusion

- **Classification** is the process of analyzing a particular *input* and assigning it to (one or more) category
- The set of possible categories is discrete and finite
 - If the output is continuous, the task is a regression problem
 - Classification may be *one-of* (exactly one category allowed per input) or *any-of* (multiple categories allowed)

3

- Classification is one of the core areas in machine learning
 - Numerous applications, in computer vision, speech & language processing, bioinformatics, data mining etc.
- Within **information retrieval**, classification is used in various subtasks of the search pipeline
 - Preprocessing, content filtering, sorting, ranking, etc.

UiO: University of Oslo

Examples of classification

Tasks	Input	Output	
Spam filtering	an email	Spam or not spam	
Sentiment detection	A product review	Positive or negative	
Topic classification	A document	A set of topics for the document	
Language identification	A document	nt The language(s) used in the document	
Truecasing	A word	true/false (should the word be capitalized or not)	
Retrieval of standing queries	A document	true/false (does the document match the query)	

Classification approaches

	Manual classification	Rule-based classification (based on hand- crafted rules)	Statistical classification (based on training data)
+	High-quality	Can encode complex decision strategies	Robust, adaptive, scalable
•	Slow, expensive	Need domain expertise	Need training data!
	Focus in this course		

UiO : University of Oslo

7

Formalisation

- Space X of possible inputs
- Set $\mathbb{C} = \{c_1, c_2, \dots c_J\}$ of possible classes or categories
- Classifier γ maps inputs to categories:

$$\gamma: \mathbb{X} \to \mathbb{C}$$

Goal: estimate this classifier with a training set \mathbb{D} composed of *n* examples $\{(\mathbf{x}_i, \mathbf{c}_i) : | \le i \le n\}$

where \mathbf{x}_i is the *i*th example and c_i its category

Formalisation

- This type of learning procedure is an instance of supervised learning
 - The classifier is estimated on the basis of training examples annotated by a "supervisor"
 - The result of the learning process is a particular classifier
 - Goal: find a classifier that achieves high accuracy on new data

UiO: University of Oslo

Formalisation

- The inputs $\mathbf{x} \in \mathbb{X}$ are often represented as feature vectors:
 - Each vector position corresponds to a particular feature, with a discrete or continuous range
 - For instance, a "bag-of-words" representation of a document may be encoded as a vector

 $[w_1, w_2, w_3 \dots, w_N]^T$ where w_i is the number of occurrences of the term i

• The categories $c \in \mathbb{C}$ must be discrete labels

- The classification task
- Naive Bayes
- Feature selection
- Evaluation of classifiers
- Conclusion

П

- Numerous supervised learning algorithms:
 - Naive Bayes, decision trees, logistic regression, neural networks, k-nearest neighbor, support vector machines, etc.
- In this and the next two lectures, we will examine some of the algorithms, with a particular focus on their use for IE tasks
- We start with a simple but powerful probabilistic approach: Naive Bayes

- Assume you have a set of documents which can be grouped in a set of categories {c1,...cj}
 - The classes can e.g. correspond to document topics
 - (To keep things simple, we only consider *one-of* classification)
- You want to build a classifier which will assign each document d_i to its most likely class
- To this end, you are given a training set of manually classified documents: {(d_i,c_i), I < i < n}

UiO **Content** University of Oslo

the document

Naive Bayes classification

 The classification of a document d is a search for the class c* such that

$$c^* = \operatorname*{argmax}_{c} P(c|d)$$

- But the probability P(c|d) is hard to determine!
- Using Bayes rule, we can rewrite the probability:

$$P(c|d) = \frac{P(d|c)P(c)}{P(d)} \xrightarrow{} prior \text{ of the class}}$$

$$posterior \text{ probability} \text{ of the class given}$$

likelihood of the document given the class

Naive Bayes classification

- We further simplify the problem by representing the document as a bag of words d_i = {w₁, w₂, ... w_n}
- ... and assuming that the words are conditionally independent from each other (*naive* Bayes):

$$P(d|c) = P(w_1, ..., w_n|c) \approx P(w_1|c)...P(w_n|c)$$

• We can then rewrite our probability:

$$P(c|d) \propto \underbrace{P(w_1|c)...P(w_n|c)}_{\text{likelihood}} \underbrace{P(c)}_{\text{prior}}$$

15

UiO: University of Oslo

Naive Bayes classification

• To classify a document d, we can thus compute

$$c^* = \underset{c}{\operatorname{argmax}} P(w_1|c) \dots P(w_n|c) P(c)$$

=
$$\underset{c}{\operatorname{argmax}} \log \left(P(w_1|c) \dots P(w_n|c) P(c) \right)$$

=
$$\underset{c}{\operatorname{argmax}} \sum_{i=1}^n \log(P(w_i|c)) + \log(P(c))$$

• The conversion to logs is not strictly necessary, but simplifies the computation: addition is easier and less prone to floating-point errors than multiplication

- We are now able to classify documents
- ... but we still don't know how to statistically estimate the probability distributions P(w_i|c) and P(c)!
- We can use the training set D = {(d_i,c_i),
 I < i < n} to compute good empirical estimates for these distributions

17

UiO **: University of Oslo**

Naive Bayes estimation

• For the prior P(c), we simply count the relative frequency of each class in the training set:

$$P(c) = \frac{N_c}{N}$$

where Nc is the number of documents of class c N is the total number of documents

 We proceed similarly for the class-specific word likelihood P(wi|c):

$$P(w_i|c) = \frac{C_{c,w_i}}{C_c}$$

- C_{c,wi} is the number of occurrences of the word w_i in documents of class c
- C_c is the total number of words in documents of class c

19

Naive Bayes estimation

- We now have basic estimates for both the prior P(c) and the likelihood P(w_i|c)
- These estimates are called Maximumlikelihood estimates, since they assign a maximum likelihood to the training data
- But they have some disadvantages...

Naive Bayes classification

- Maximum-likelihood estimation has a problem with low-frequency counts
 - If a word wi never occurs for a document of class d, the probability P(w_i|d) will be = 0
 - This is not reasonable, especially if we work with limited training data
 - We can partially alleviate the problem by using smoothing techniques

21

UiO **Conversity of Oslo**

Naive Bayes estimation

• Add-one or Laplace smoothing

$$P(w_i|c) = \frac{C_{w_i,c} + 1}{C_c + |V|}$$

- |V| is the vocabulary size, for normalisation
- Simply add one to the counts
- Note: such smoothing technique is more than a «trick», it can be derived mathematically using specific statistical assumptions

- The model described so far is called multinomial Naive Bayes
 - An alternative is the *Bernoulli model*, based on presence/ absence of terms in the document
 - See section 13.3 in the textbook for details
- Naive Bayes assumes that the features are conditionally independent (given the class)
 - This assumption rarely holds in real-world applications
 - ... but NB classifiers are often surprisingly robust

- The classification task
- Naive Bayes
- Feature selection
- Evaluation of classifiers
- Conclusion

Feature selection

- Most classification methods allow for arbitrary numbers of features
 - Some methods can scale to millions of features!
- Designing the right feature representation is a question of *trade-offs*
 - Not enough features: information loss
 - Too many features: not enough data to accurately estimate their corresponding parameters (data sparsity)

25

UiO : University of Oslo

Mutual information

- Key idea: find features that are correlated with the classification output
 - Uncorrelated features will not help the classification
- Mutual information measures how much information the feature value contributes to making the correct classification decision

$$I(X,C) = \sum_{c \in C} \sum_{x \in X} P(x,c) \log \left(\frac{P(x,c)}{P(x)P(c)}\right)$$

where X is a particular feature (and x a particular value for it) C the classification decision (and c a particular category)

Feature selection

- Many other techniques for feature selection are available
 - The statistical test χ^2 provides another method (see textbook for details)
 - Feature selection can be performed iteratively (hill-climbing techniques)
- Feature selection is important for dimensionality reduction

27

- The classification task
- Naive Bayes
- Feature selection
- Evaluation of classifiers
- Conclusion

- High accuracy on training examples does not necessarily translate into good results on new data
 - Phenomenon of "overfitting"
 - (especially for high-dimensional spaces and/or non-linear models)

Under-fitting

(too simple to explain the variance)

Appropriate-fitting

Over-fitting

(forcefitting -- too good to be true)

29

UiO: University of Oslo

Evaluation

- Must evaluate performance on a separate data set, called the test set
 - The test set must be kept isolated from the training set
 - We often divide the full data set into a training and testing part (typically 80% 20% split)
 - When experiments are repeatedly made on the same data set, we first work on a *development set*, and only use the final (held-out) *test set* at the end

• Precision (for each class c):

 $Precision = \frac{number of items correctly labelled as c}{number of items labelled as c}$

• Recall (for each class c):

 $\text{Recall} = \frac{\text{number of items correctly labelled as } c}{\text{number of items that actually belong to } c}$

• (balanced) F-score (for each class c):

 $F = 2 \times \frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}$

31

UiO : University of Oslo

Evaluation metrics

We can also draw a confusion matrix:

$$\begin{array}{c|c} \mbox{Gold standard} \\ \hline \mbox{Positive} & \mbox{Negative} \\ \hline \mbox{Actual classification:} & \mbox{positive measure (true positive (tp))} & \mbox{False positive (fp)} \\ \hline \mbox{Negative} & \mbox{False negative (fn)} & \mbox{True negative (tn)} \\ \hline \mbox{Precision} & = \frac{tp}{tp+fp} & \mbox{Recall} & = \frac{tp}{tp+fn} \\ \hline \mbox{Accuracy} & = \frac{tp+tn}{tp+tn+fp+fn} \\ \hline \end{tabular}$$

- For tasks with > 2 categories, we can compute averages:
 - Macro-averaging: mean of the measures for each class

Evaluation metrics

Example: The macro-precision for the two classes is simply: (10/20 + 90/100)/2 = 0.7

NB: averages can also be calculated for other metrics (recall, F-score, accuracy etc.)

33

- The classification task
- Naive Bayes
- Feature selection
- Evaluation of classifiers

Conclusion

35

- Classification is a crucial part of IE systems
- Supervised learning used to automatically estimate classifiers from data
 - Based on a *training* set of labelled examples
 - Evaluated on a separate test set
 - Inputs represented as feature vectors
 - Example of learning algorithm: Naive Bayes
 - Challenges with overfitting & data sparsity