UiO University of Oslo

Web search

Pierre Lison University of Oslo, Dep. of Informatics

INF3800: Søketeknologi May 14, 2014

[Note: Some slide diagrams borrowed from C. Manning, P. Nayak and P. Raghavan]

Outline of the lecture

UiO: University of Oslo

- Basics of web search
- Web crawling & indexing
- Link analysis
- Conclusion

Outline of the lecture

- Basics of web search
- Web crawling & indexing
- Link analysis
- Conclusion

UiO * University of Oslo

- Web search creates a number of challenges to "traditional" IR:
 - Scale (billions of web pages)
 - Heterogeneous content
 - Trust becomes a key factor in ranking
 - Web users different from "traditional" IR users
 - Business aspects (e.g. sponsored search)

Types of web queries

Informational: general info on topic [~50%]

Italian cuisine

Britney Spears family life

Types of nuclear fusion reactions

Navigational: search specific entity [~20%]

University of Oslo in Norway

cxense AS

Research webpage of Pierre Lison

Transactional: want to do something [~30%]

Car rental from Gardemoen

"House of Cards" online streaming

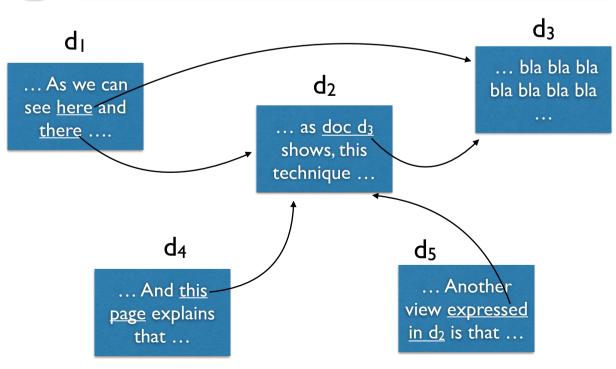
Iphone 4S Norway

5

Web queries

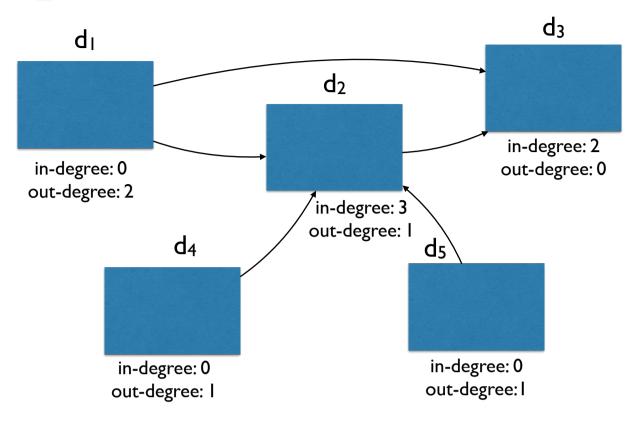
UiO : University of Oslo

- Precision often more important than recall!
 - Especially precision on top results
 - Necessary to filter untrusted pages / spam
 - Need to consider other qualities than relevance (trustworthiness, recency of content, etc.)
 - Recall only matters if number of matches very small
- Query language must be lightweight (mostly phrase queries)



- Massively distributed creation of content
- Need to assess the trustworthiness of pages (obsolete information, duplicates, spam, etc.)
- Content may be unstructured (text), semi-structured (XML), structured (databases)
- Mixture of multiple *media* (text, images, video, etc.)
- Dynamically generated webpages (by querying an application server with backend database)

AFOCCC TI


The web graph

UiO: University of Oslo

The web graph

9

Spamdexing

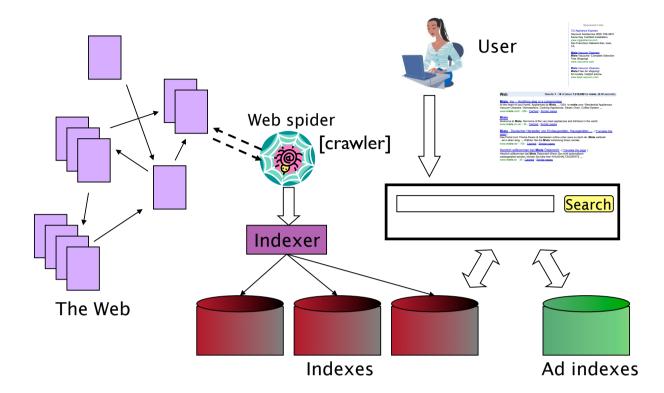
- UiO: University of Oslo
- **Spamdexing**: "manipulation of web content to appear artificially high on search results for particular keywords"
 - Continuous battle between spammers and search engines (adversarial information retrieval)
- Common spamming techniques:
 - Keyword stuffing, invisible text
 - Cloaking: server returns fake content to web crawlers
 - Doorways: dummy start page carefully crafted for keywords
 - Optimisation of metadata on the page (notably URLs)

Conter-measures:

- Exploit "quality signals" (from web & from users) to determine whether a webpage is trustworthy
- Limits on meta-keywords
- Analysis of web graph to detect suspicious linkages
- Machine learning to classify spam
- Editorial intervention (blacklists etc.)

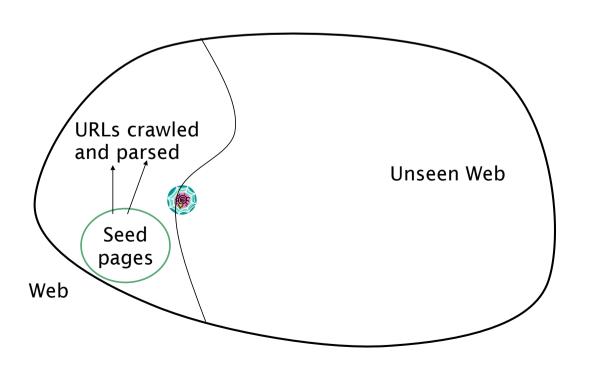
Outline of t

UiO: University of Oslo


П

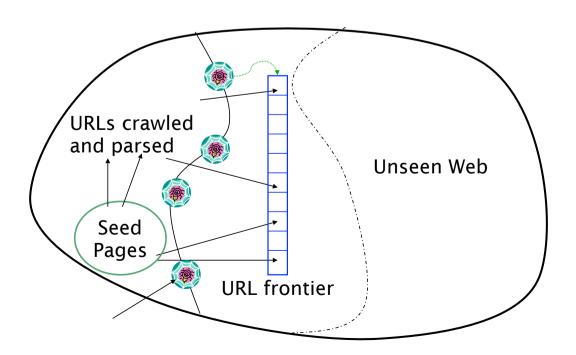
Outline of the lecture

- Basics of web search
- Web crawling & indexing
- Link analysis
- Conclusion


Search architecture

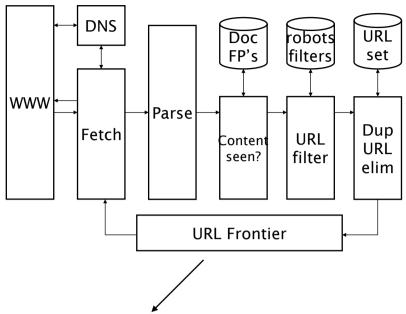
13

UiO: University of Oslo


Requirements for web crawlers

- Distributed, scalable, efficient (obviously)
- Robust to all types of content
 - Malicious or ill-constructed pages
 - Dynamically generated pages
- Polite
 - avoid flooding servers
 - only crawl allowed pages
- Able to prioritise content

ASTRAS OSTOPINIS


Web crawling

UiO: University of Oslo

Crawling workflow

URL frontier: data structure containing the set of URLs that have been detected but not yet crawled

robots

filters

URL

filter

Doc FP's

Content

seen?

URL Frontier

URL

set

Dup

URL

elim

17

WWW

Crawling workflow

Parse

3

Pick URL from frontier

Petch document

UiO: University of Oslo

Parse its content

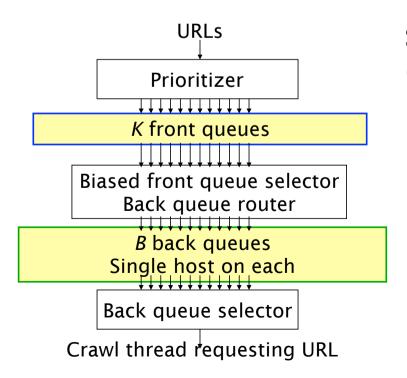
4 Check if content already seen (if not, add it to index)

DNS

2

Fetch

Filter outgoing URLs (enforce politeness, remove duplicates) and add to frontier



- URL frontier must be able to sort the next URLs to crawl
- Two criteria:
 - Politeness: do not flood web servers with too many requests in short periods of time
 - **Prioritisation**: crawl webpages that are of highquality and/or are frequently updated more often
 - Conflicts between these two criteria!

19

System of two (FIFO) queues:

- Front queues
 for prioritisation
 (each queue = a
 priority level)
- Back queues for politeness (each queue = a specific host)

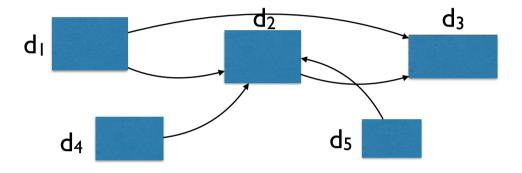
- Two types of index partitioning:
 - Partitioning by terms: index terms divided in subsets, and each subset is allocated to a node
- Greater concurrency (in theory)

- Must exchange & merge long posting lists across nodes
- Load-balancing
- Partitioning by documents: each node is responsible for a local index for subset of all documents (query sent to each node and the results are merged back)
- Often easier to
 distribute, more efficient
 I/O on posting lists

- More disk seeks
- Need to calculate global statistics separately

21

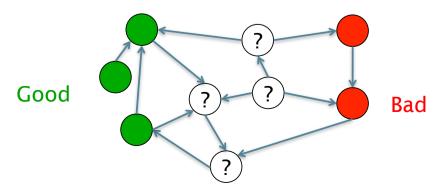
Outline of the lecture


UiO : University of Oslo

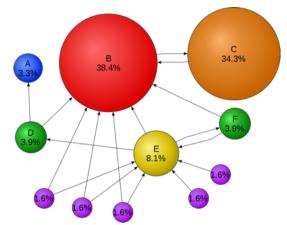
- Basics of web search
- Web crawling & indexing
- Link analysis
- Conclusion

Link analysis

- Document trustworthiness at least as important as relevance for web search!
 - How to determine it?
- Link structure between documents provides powerful indicators of quality and trust

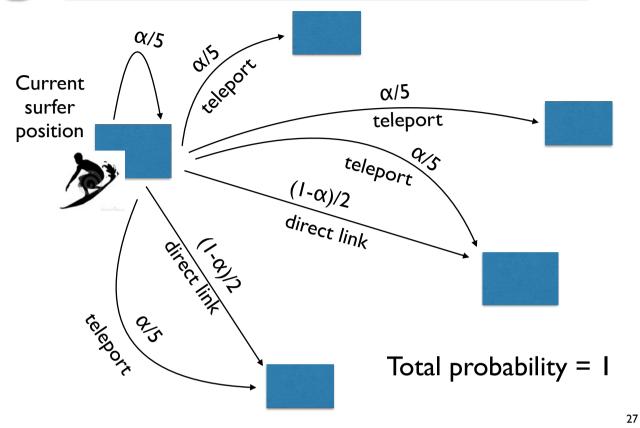


23


Link analysis

- UiO : University of Oslo
- Key idea: the quality of a webpage can be determined by looking at its neighboring links
 - Link from node A to node B = "conferral of authority" from A to B
 - Can be interpreted as a quality signal from A to B
 - Good nodes will tend to point to good nodes, and bad nodes to bad nodes

- Most well-known algorithm for ranking the quality of webpages according to their link structure is PageRank
 - Used (among many other algorithms) by Google Search
 - Assigns a numerical score (between 0 and 1) to each page

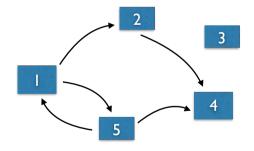

25

PageRank

- UiO: University of Oslo
- Imagine a web surfer that randomly surfs the web for an infinite amount of time
- Two ways of moving from A to B:
 - Follow an explicit link from A to B
 (all links are equally likely to be followed)
 - Teleport from A to B, for example by typing URL in browser (all possible webpages are equally likely)
- Teleportation rate α defines the relative probability of teleport versus link following

UiO: University of Oslo

- PageRank for d: if the surfer was allowed to continue surfing indefinitely, what would be the fraction of the time where he is on page d?
- This random walk can be represented as a Markov Chain
 - the state is the current position of the surfer
 - the transition matrix P encodes the probability of going from document i to document j for all pairs i,j


- Several ways to calculate this PageRank
- One simple technique is the power iteration method:
 - Start with some initial distribution x_{t0} over possible states (documents)
 - Calculate the probability vector for the next state $x_{t1} = x_{t0} P$ (matrix multiplication)
 - And continue the iteration until convergence

PageRank example

UiO : University of Oslo

29

Assume a rate $\alpha = 0.5$

Transition matrix P =

	1	2	3	4	5
1	0.1	0.35	0.1	0.1	0.35
2	0.1	0.1	0.1	0.6	0.1
3	0.2	0.2	0.2	0.2	0.2
4	0.2	0.2	0.2	0.2	0.2
5	0.35	0.1	0.1	0.35	0.1

Let us start with distribution $\mathbf{x}_{t0} = [1 \ 0 \ 0 \ 0]^T$

$$\rightarrow$$
 $\mathbf{x}_{t1} = \mathbf{x}_{t0} P = [0.1 \ 0.35 \ 0.1 \ 0.1 \ 0.35]^T$

$$\mathbf{x}_{t2} = \mathbf{x}_{t1} P = [0.2075 \quad 0.145 \quad 0.12 \quad 0.3825 \quad 0.145]^{\mathsf{T}}$$

$$\rightarrow$$
 $\mathbf{x}_{\infty} \approx [0.19 \ 0.19 \ 0.144 \ 0.286 \ 0.19]^{\mathsf{T}}$

Outline of the lecture

- Basics of web search
- Web crawling & indexing
- Link analysis
- Conclusion

Conclusion

UiO: University of Oslo

- Challenges for web search
 - Precision more important than recall
 - Huge variations in document content and quality
 - Trustworthiness of pages must be assessed
 - Need to scale to huge amounts of data (crawling must follow specific priorities)
- Link analysis (for instance PageRank) allows us to score the importance of each page according to its link structure