
Support Vector Machines +
Classification for IR

Pierre Lison!
University of Oslo, Dep. of Informatics!

!
INF3800: Søketeknologi!

April 30, 2014

Outline of the lecture

• Recap’ of last week!

• Support Vector Machines!

• Classification for IR!

• Practical aspects!

• Relevance ranking!

• Conclusion

2

Outline of the lecture

• Recap’ of last week

• Support Vector Machines!

• Classification for IR!

• Practical aspects!

• Relevance ranking!

• Conclusion

3

Rocchio classification

• Finds the “center of mass” for each class!

• A new point x will be classified in class c
if it is closest to the centroid for c

4

?

k-nearest neighbour (k-NN)

• k-NN adopts a different approach!

• Rely on local decisions based on the closest neighbors!

• k = number of neighbours to consider

55

?

Linear vs. non-linear classification

6

Linear classifier Non-linear classifier

Function Linear combination of
features: .

Arbitrary non-linear
function

Decision
boundary Hyperplane Non-linear, possibly

discontinuous

Examples
Naive Bayes, Rocchio,

logistic regression, linear
SVMs

k-NN, multilayer neural
networks, non-linear

SVMs

Pros Often robust, fast Can express complex
dependencies

Cons Can fail if problem is not
linearly separable Prone to overfitting

y = f(wT
x)

Bias-variance trade-off

• The learning error of a classification
method is the expectation (averaged)
over the possible training sets:

7

learning-error(�) = ED
⇥
E

x

[�(x)� P (c|x)]2
⇤

…
= E

x

[bias(�, x) + variance(�, x)]

how often the classifier
prediction deviates from
the “true” class

amount of variation in the
classifier prediction depending
on the training data

Outline of the lecture

• Recap’ of last week!

• Support Vector Machines

• Classification for IR!

• Practical aspects!

• Relevance ranking!

• Conclusion

8

Support Vector Machines

• State-of-the-art classification method!

• Both linear and non-linear variants!

• Non-parametric & discriminative!

• Good generalisation properties (quite resistant to
overfitting)!

• Extensions for multiclass classification, structured
prediction, regression

9

SVMs: linear case

• We have seen that linear classifiers (such as Rocchio,
NB, etc.) create a hyperplane separating the classes!

• But there is an infinite number of possible hyperplanes!

10

SVMs: linear case

• Are some hyperplanes better than others?!

• A “good” boundary should be as far as possible from the training points!

• SVM idea: find the hyperplanes with a maximum margin of separation

11

input
vectors

that
“support”
the margin!
(cf. next
slides)

SVMs: linear case

• Why maximise the margin?!

• Points close to the boundary are very uncertain!!

• Small margins between the boundary and the training
points make the classifier very sensitive to variations
in the training data (= high variance, cf. last week)!

• … and we want to keep the variance as low as
possible to ensure the classifier generalizes well to
new data (= is resistant to overfitting)

12

SVMs: linear case

• Classification function:!
!

!

!

!

• Training data ! is composed of n examples
{(xi,yi) : 1 ≤ i ≤ n}, where yi={+1-1}

13

f(x) = sign
�
w

T
x+ b

�

Input vector

Classification
output: !
{+1,-1}

bias term

sign(x) =

8
><

>:

1 if x > 0

0 if x = 0

-1 if x < 0

Weight vector

Note: !Math conventions for SVMs slightly different !
! ! than for other classification techniques

SVMs: linear case

• The goal is to find the values for the vector
w and bias b that will maximize the margin!

• It can be shown (cf. textbook) that this goal
is equivalent to the following problem:

14

!

! Find w and b such that:!

• wTw/2 is minimized!

• for all {(xi,yi)}, yi(wTxi + b) ≥ 1!

Quadratic optimisation problem!

SVMs: linear case

• Many algorithms are available for solving such
class of optimisation problems!

• The resulting weight vector can be expressed
as a combination of the training points:

15

w =
X

i

↵iyixi

Lagrange multipliers (determined
during the optimisation)

Most αi will be zero. The
points (xi,y) which have a
non-zero αi are precisely
the support vectors for

the margin!

[the bias term b can be inferred from
the weight vector, cf. textbook]

SVMs: linear case

• The classification function for the SVM can be
rewritten as:!

!

!

• Combination of dot products between the vector x to
classify and the vectors xi from the training data!

• Multipliers αi calculated by solving the optimization problem!

• Only the vectors with αi ≠ 0 (the support vectors) need to
be considered in the classification!

16

f(x) = sign

X

i

↵yix
T
i x+ b

!

SVMs with soft margin

• Real-world classification problems are not
always 100% linearly separable!

• Causes: Noise in the data set, outliers, etc.!

• Extension of SVMs with a “soft” margin !

• Allows a few training points to be misclassified!

• But the misclassification of each point has a cost!

17

SVMs with soft margin

• Idea: introduce slack variables ξi!

• The slack variable ξi measures the degree of
misclassification of the point xi!

• Corresponding optimisation problem:

18

!

! Find w and b such that:!

• wTw/2 + C Σ ξi is minimized!

• for all {(xi,yi)}, yi(wTxi + b) ≥ 1 - ξi !

C is a parameter that controls the “softness” of the margin

Non-linear SVMs

• The algorithms presented so far are purely linear!

• But SVMs can also solve non-linear problems!!

• Key idea: map each point from the initial input space into a higher-
dimensional space in which the training data is linearly separable!

• … and do linear classification in this hyperspace

19

Non-linear SVMs

• How is this mapping performed?!

• First idea: Create a mapping function Φ(x)
from the original space to the hyperspace,
and rewrite the classifier as!

!

!

• Problem: this is not very efficient!!

• Need to perform the mapping for every point

20

f(x) = sign

X

i

↵yi�(xi)
T�(x) + b

!

Non-linear SVMs

• Kernel trick: replace the dot product Φ(xi)
TΦ(x)

by a kernel function K(xi, x)!

• No need to use (or even specify) a mapping function Φ!!

• Numerous kernels can be employed!

• Classifier becomes:!
!

!

• High-dimensional space “embedded” by the kernel

21

f(x) = sign

X

i

↵yiK(xi,x) + b

!

(resulting space may even be infinite-dimensional!)

Non-linear SVMs

• The kernel function must satisfy some properties
(be continuous, symmetric, and positive definite)!

• Popular kernels:!

• Polynomial kernels: K(xi,xj) = (xi
Txj + 1)d!

• Gaussian kernels: K(xi,xj) = exp(-(xi-xj)2/2σ2)!

• String and tree kernels for NLP tasks!

• Need to find the most appropriate kernel to use
for a given classification task

22

Outline of the lecture

• Recap’ of last week!

• Support Vector Machines!

• Classification for IR

• Practical aspects

• Relevance ranking

• Conclusion

23

Classification: Practical aspects

• How to practically choose a classifier?!

• Key question: where can I get data (and how much)?!

!

!

!

!

!

• Computational complexity also an important factor!

• Classifiers can be combined (“ensemble learning”)

24

No data: !
design hand-
crafted rules

Fairly little data:
high-bias (e.g. linear)

classifier

Tons of (good) data:!
Log. regression or SVMS

often good choice

Classification: Practical aspects

• Assembling data resources is often the
real bottleneck in classification!

• Collect, store, organise, quality-check the data!

• Financial and legal aspects (ownership, privacy)!

• ML-based classifiers must sometimes
be overlaid with hand-crafted rules!

• To enforce particular business rules, or allow the
user to control the classification

25

Classification: Practical aspects

• Which features to use?!

• Designing the right features is often key to success!

• If too few features: not informative enough!

• If too many features: data sparseness!!

• In text classification, the most basic features
are the document terms:!

• But preprocessing is important to filter/modify some tokens!

• Other features, such as document length, zones, links, etc.

26

Relevance ranking

• Many tasks in information retrieval are
classification problems!

• Document preprocessing (segmentation etc.)!

• Determining whether a document is relevant or not!

• Simple way to calculate the relevance of a
document d to a query q:!

• Extract features from (d,q), such as cosine score, proximity
window ω, static quality, document age, etc.!

• Two categories: relevant or non-relevant

27

Relevance ranking

• But classification as relevant/non-relevant
is a crude way to solve the problem!

• What we want is to rank the relevance of documents!

• Ranking is an ordinal regression problem !

• The exact “score” of each document is not important,
what counts is the relative ordering!

• Midway between classification and regression

28

Relevance ranking

• SVMs can be applied on ranking problems!

• We first collect training data, where each query q is
mapped to a list of documents ordered by relevance!

• To build the classifier, we construct a feature vector ψ
for each document/ query pair (di, q)!

• Then create a vector Φ(di,dj,q) of feature differences:
Φ(di,dj,q) = ψ(di,q) - ψ(dj,q)!

• Finally, we can build a classifier on this vector:

29

wT�(di, dj , q) > 0 i↵ di precedes dj

Outline of the lecture

• Recap’ of last week!

• Support Vector Machines!

• Classification for IR!

• Practical aspects!

• Relevance ranking!

• Conclusion

30

Conclusion

• Support Vector Machines constitute a powerful
classification method!

• Maximum-margin classifiers, solved by quadratic programming!

• Slack variables to allow for “softer” margins!

• Kernel functions for capture non-linear problems!

• Data collection and feature engineering are crucial
questions to build practical classifiers!

• Ranking classifiers can be employed to order
documents by order of relevance to a query

31

