UiO : University of Oslo

Support Vector Machines + Classification for IR

Pierre Lison University of Oslo, Dep. of Informatics

> INF3800: Søketeknologi April 30, 2014

> > UiO : University of Oslo

Outline of the lecture

- Recap' of last week
- Support Vector Machines
- Classification for IR
 - Practical aspects
 - Relevance ranking
- Conclusion

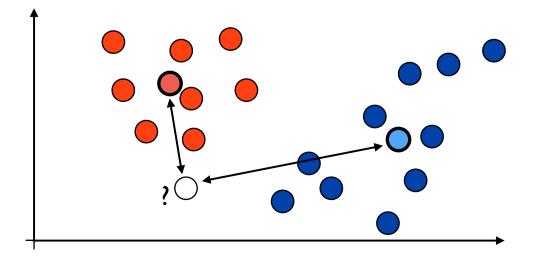
Recap' of last week

- Support Vector Machines
- Classification for IR
 - Practical aspects
 - Relevance ranking
- Conclusion

3

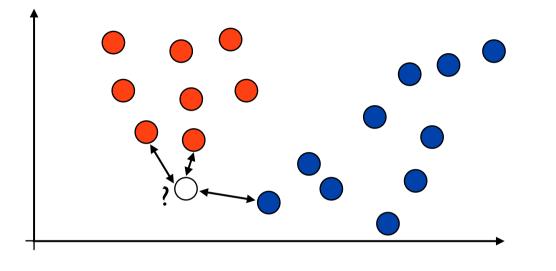
Rocchio classification

- Finds the "center of mass" for each class
- A new point x will be classified in class c if it is closest to the centroid for c



k-nearest neighbour (k-NN)

- k-NN adopts a different approach
 - Rely on *local* decisions based on the closest neighbors
 - k = number of neighbours to consider

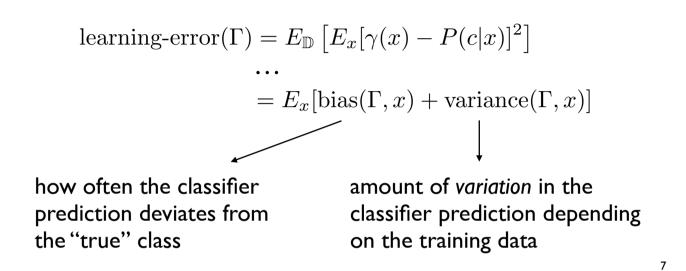


Linear vs. non-linear classification

	Linear classifier	Non-linear classifier
Function	Linear combination of features: $y = f(\mathbf{w}^{\mathrm{T}}\mathbf{x})$.	Arbitrary non-linear function
Decision boundary	Hyperplane	Non-linear, possibly discontinuous
Examples	Naive Bayes, Rocchio, logistic regression, linear SVMs	k-NN, multilayer neural networks, non-linear SVMs
Pros	Often robust, fast	Can express complex dependencies
Cons	Can fail if problem is not linearly separable	Prone to overfitting

5

 The learning error of a classification method is the expectation (averaged) over the possible training sets:



UiO : University of Oslo

- Recap' of last week
- Support Vector Machines
- Classification for IR
 - Practical aspects
 - Relevance ranking
- Conclusion

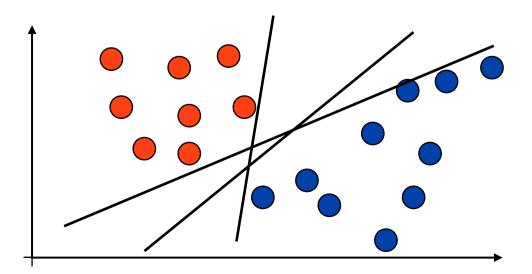
State-of-the-art classification method

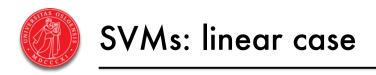
- Both linear and non-linear variants
- Non-parametric & discriminative
- Good generalisation properties (quite resistant to overfitting)
- Extensions for multiclass classification, structured prediction, regression

9

UiO : University of Oslo

- We have seen that linear classifiers (such as Rocchio, NB, etc.) create a hyperplane separating the classes
- But there is an infinite number of possible hyperplanes!





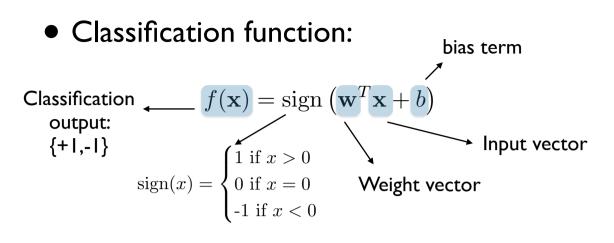
- Are some hyperplanes better than others?
 - A "good" boundary should be as far as possible from the training points
 - SVM idea: find the hyperplanes with a maximum margin of separation



UiO **University of Oslo**

SVMs: linear case

- Why maximise the margin?
 - Points close to the boundary are very uncertain!
 - Small margins between the boundary and the training points make the classifier very sensitive to variations in the training data (= high variance, cf. last week)
 - ... and we want to keep the variance as low as possible to ensure the classifier generalizes well to new data (= is resistant to overfitting)



• Training data \mathbb{D} is composed of *n* examples $\{(\mathbf{x}_i, \mathbf{y}_i) : | \le i \le n\}$, where $\mathbf{y}_i = \{+| - 1\}$

Note: Math conventions for SVMs slightly different than for other classification techniques

13

UiO: University of Oslo

SVMs: linear case

- The goal is to find the values for the vector
 w and bias b that will maximize the margin
- It can be shown (cf. textbook) that this goal is equivalent to the following problem:

Find w and b such that:

- w^Tw/2 is minimized
- for all $\{(\mathbf{x}_i, y_i)\}, y_i(\mathbf{w}^T \mathbf{x}_i + b) \geq 1$

Quadratic optimisation problem!

- Many algorithms are available for solving such class of optimisation problems
- The resulting weight vector can be expressed as a combination of the training points:

$$\mathbf{w} = \sum_{i} lpha_{i} y_{i} \mathbf{x}_{i}$$

Lagrange multipliers (determined during the optimisation)

Most α_i will be zero. The points $(\mathbf{x}_i, \mathbf{y})$ which have a non-zero α_i are precisely the **support vectors** for the margin!

[the bias term b can be inferred from the weight vector, cf. textbook]

15

UiO **Conversity of Oslo**

SVMs: linear case

• The classification function for the SVM can be rewritten as:

$$f(\mathbf{x}) = \operatorname{sign}\left(\sum_{i} \alpha y_i \mathbf{x}_i^T \mathbf{x} + b\right)$$

- Combination of dot products between the vector x to classify and the vectors x_i from the training data
- Multipliers α_i calculated by solving the optimization problem
- Only the vectors with $\alpha_i \neq 0$ (the support vectors) need to be considered in the classification!

- Real-world classification problems are not always 100% linearly separable
 - Causes: Noise in the data set, outliers, etc.
- Extension of SVMs with a "soft" margin
 - Allows a few training points to be misclassified
 - But the misclassification of each point has a cost!

17

UiO **Conversity of Oslo**

SVMs with soft margin

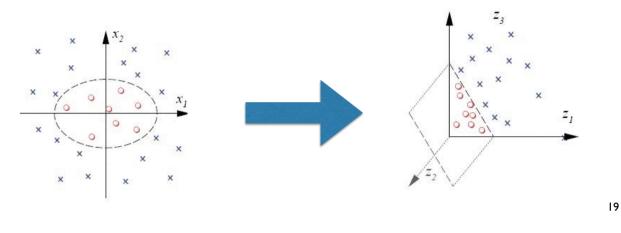
- Idea: introduce slack variables ξ_i
 - The slack variable ξi measures the degree of misclassification of the point x_i
- Corresponding optimisation problem:

Find w and b such that:

- $w^Tw/2 + C \Sigma \xi_i$ is minimized
- for all $\{(\mathbf{x}_i, y_i)\}, y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1 \xi_i$

C is a parameter that controls the "softness" of the margin

- The algorithms presented so far are purely linear
- But SVMs can also solve non-linear problems!
 - Key idea: map each point from the initial input space into a higherdimensional space in which the training data is linearly separable
 - ... and do linear classification in this hyperspace



UiO : University of Oslo

Non-linear SVMs

- How is this mapping performed?
- First idea: Create a mapping function Φ(x) from the original space to the hyperspace, and rewrite the classifier as

$$f(\mathbf{x}) = \operatorname{sign}\left(\sum_{i} \alpha y_{i} \phi(\mathbf{x}_{i})^{T} \phi(\mathbf{x}) + b\right)$$

- Problem: this is not very efficient!
 - Need to perform the mapping for every point

- Kernel trick: replace the dot product $\Phi(\mathbf{x}_i)^T \Phi(\mathbf{x})$ by a kernel function $K(\mathbf{x}_i, \mathbf{x})$
 - No need to use (or even specify) a mapping function Φ !
 - Numerous kernels can be employed
- Classifier becomes:

$$f(\mathbf{x}) = \operatorname{sign}\left(\sum_{i} \alpha y_i K(\mathbf{x}_i, \mathbf{x}) + b\right)$$

• High-dimensional space "embedded" by the kernel (resulting space may even be infinite-dimensional!)

21

UiO : University of Oslo

Non-linear SVMs

- The kernel function must satisfy some properties (be continuous, symmetric, and positive definite)
- Popular kernels:
 - Polynomial kernels: $K(\mathbf{x}_i, \mathbf{x}_j) = (\mathbf{x}_i^T \mathbf{x}_j + 1)^d$
 - Gaussian kernels: $K(\mathbf{x}_i, \mathbf{x}_j) = \exp(-(\mathbf{x}_i \mathbf{x}_j)^2/2\sigma^2)$
 - String and tree kernels for NLP tasks
- Need to find the most appropriate kernel to use for a given classification task

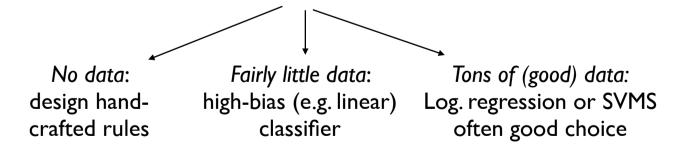
- Recap' of last week
- Support Vector Machines
- Classification for IR
 - Practical aspects
 - Relevance ranking
- Conclusion

23

UiO : University of Oslo

Classification: Practical aspects

- How to practically choose a classifier?
- Key question: where can I get data (and how much)?



- Computational complexity also an important factor
- Classifiers can be combined ("ensemble learning")

Classification: Practical aspects

- Assembling data resources is often the real bottleneck in classification
 - Collect, store, organise, quality-check the data
 - Financial and legal aspects (ownership, privacy)
- ML-based classifiers must sometimes be overlaid with hand-crafted rules
 - To enforce particular business rules, or allow the user to control the classification

UiO **Content** University of Oslo

Classification: Practical aspects

- Which features to use?
 - Designing the right features is often key to success
 - If too few features: not informative enough
 - If too many features: data sparseness!
- In text classification, the most basic features are the document terms:
 - But preprocessing is important to filter/modify some tokens
 - Other features, such as document length, zones, links, etc.

- Many tasks in information retrieval are classification problems
 - Document preprocessing (segmentation etc.)
 - Determining whether a document is relevant or not
- Simple way to calculate the relevance of a document d to a query q:
 - Extract features from (d,q), such as cosine score, proximity window ω, static quality, document age, etc.
 - Two categories: relevant or non-relevant

UiO **University of Oslo**

- But classification as relevant/non-relevant is a crude way to solve the problem
 - What we want is to *rank* the relevance of documents
- Ranking is an ordinal regression problem
 - The exact "score" of each document is not important, what counts is the relative ordering
 - Midway between classification and regression

- SVMs can be applied on ranking problems
 - We first collect training data, where each query q is mapped to a list of documents ordered by relevance
 - To build the classifier, we construct a feature vector $\boldsymbol{\psi}$ for each document/ query pair (d_i, q)
 - Then create a vector $\Phi(d_i,d_j,q)$ of feature differences: $\Phi(d_i,d_j,q) = \Psi(d_i,q) - \Psi(d_j,q)$
 - Finally, we can build a classifier on this vector:

$$\mathbf{w}^T \Phi(d_i, d_j, q) > 0$$
 iff d_i precedes d_j

29

UiO **: University of Oslo**

Outline of the lecture

- Recap' of last week
- Support Vector Machines
- Classification for IR
 - Practical aspects
 - Relevance ranking

- Support Vector Machines constitute a powerful classification method
 - Maximum-margin classifiers, solved by quadratic programming
 - Slack variables to allow for "softer" margins
 - Kernel functions for capture non-linear problems
- Data collection and feature engineering are crucial questions to build practical classifiers
- *Ranking* classifiers can be employed to order documents by order of relevance to a query