Tries for Approximate String Matching

H. Shang and T.H. Merrett*

September 8, 1995

Abstract

Tries offer text searches with costs which are independent of the
size of the document being searched, and so are important for large
documents requiring spelling checkers), case insensitivity, and lim-
ited approximate regular secondary storage. Approximate searches,
in which the search pattern differs from the document by % substitu-
tions, transpositions, insertions or deletions, have hitherto been car-
ried out only at costs linear in the size of the document. We present

a trie-based method whose cost is independent of document size.

*H. Shang and T.H. Merrett are at the School of Computer Science, McGill University,

Montréal, Québec, Canada H3A 2A7, Email: {shang, tim}@cs.mcgill.ca

100

Our experiments show that this new method significantly outper-
forms the nearest competitor for k=0 and k=1, which are arguably
the most important cases. The linear cost (in k) of the other methods
begins to catch up, for our small files, only at k=2. For larger files,
complexity arguments indicate that tries will outperform the linear
methods for larger values of k.

Trie indexes combine suffixes and so are compact in storage. When
the text itself does not need to be stored, as in a spelling checker, we
even obtain negative overhead: 50% compression.

We discuss a variety of applications and extensions, including best
match (for spelling checkers), case insensitivity, and limited approxi-

mate regular expression matching.

1 Introduction

The need to find an approximate match to a string arises in many practical
problems. For example, if an optical character reader interprets a “D” as
an “07, an automatic checker would need to look up the resulting word, say
“eoit” in a dictionary to find that “edit” matchesit up to one substitution. Or

a writer may transpose two letters at the keyboard, and the intended word,

101

worst-case run preproc. time extra space ref.
naive mn
KMP 2n m m [13]
BM 2n—m+1 O(m+[X]) 6, 1]
Shift-or O(n) O(m + |X)) O(|%)) [4]
Patricia O(m) O(nlogn) O(n) [10]

Figure 1: Exact Match Algorithms

say “sent”, should be detected instead of the error, “snet”. Applications
occur with strings other than text: strings of DNA base pairs, strings of
musical pitch and duration, strings of edge lengths and displacements in a
diagram, and so on. In addition to substitutions and transpositions, as above,
errors can include insertions and deletions.

The approximate match problem in strings is a development of the simpler
problem of exact match: given a text, W,,, of n characters from an alphabet
Y, and a string, P,, of m characters, m < n, find occurrences of P in
W. Baeza-Yates [2] reviews exact match algorithms, and we summarize in

Figure 1.

102

Here, all algorithms except the naive approach require some preprocess-
ing. The Knuth-Morris-Pratt (KMP), Boyer-Moore (BM), and Shift-or algo-
rithms all preprocess the search string, P, to save comparisons. The Boyer-
Moore algorithms are sublinear in practice, and better the bigger m is, but
depend on n. The Patricia method builds a trie and is truly sublinear.! The
preprocessing is on the text, not the search strings, and although substan-
tially greater than for the linear algorithms, need be done only once for a
text. Note that tries of size n can be built in RAM in time O(n), but that
on secondary storage, memory differences make it better to use an nlogn
method for all practical sizes of trie. So we quote that complexity.

Trie-based methods are best suited for very large texts, which require
secondary storage. We emphasize them in this paper, but will compare our
trie-based method experimentally with the linear methods.

Approximate string matching adds a parameter to the above, k: the

algorithm reports a match where the string differs from the text by not

!The term “sublinear” in this literature has two meanings, which we distinguish as
sublinear and truly sublinear. Truly sublinear in n means O(f(n)) where f is a sublinear
function, e.g., logn or 1. Sublinear means truly sublinear or O(n) where the multiplicative

constant is less than 1.

103

more than k changes. A change can be a replacement (or substitution),
an insertion, or a deletion. It can also be a transposition, as illustrated
above. Such operations were formulated by Damerau [8] and the notion
of edit distances was given by Levenshtein [15]. A dynamic programming
(DP) algorithm was shown by Wagner and Fischer [26] with O(mn) worst
case. Ukkonen [24] improved this to O(kn) (and clearly & < m) by finding
a cutoff in the DP. Chang and Lawler [7] have the same worst case, but get
sublinear expected time, O((n/m)klogm)) and only O(m) space, as opposed
to O(m?) or O(n) for earlier methods. This they do by building a suffiz tree
[27, 16], which is just a “Patricia” trie (after Morrison [19]), on the pattern
as a method of detecting common substrings. Kim and Shawe-Taylor [12]
propose an O(m logn) algorithm with O(n) preprocessing. They generate n-
grams for the text and represent them as a trie for compactness. Baeza-Yates
and Perlberg [5] propose a counting algorithm which runs in time independent
of k, O(n + R), where R is bounded O(n) and is zero if all characters in P,
are distinct. Figure 2 summarizes this discussion. Agrep [28] is a package
based on related ideas, which also does limited regular expression matching,
i.e., P, is a regular expression.

(Regular expression matching and k-approximate string matching solve

104

worst-case run preproc. time extra space ref.
DP O(mn) O(m) O(mn) [26]
cutoft O(kn) O(k) O(kn) [24]
suffix tree O(kn) O(m) om) 1]
n-gram O(mlogn) 12]

Figure 2: k-Approximate Match Algorithms

different problems. The problem areas overlap — e.g., Ps = “atta##”, where
is a one-place wildcard, can be written as a regular expression, but is also
a 3-approximate match — but they do not coincide.)

A recent review of these techniques is in the book by Stephen [23]. Hall
and Dowling [11] give an early survey of approximate match techniques. The
work is all directed to searches in relatively small texts, .e., those not too
large to fit into RAM. For texts that require secondary storage, O(n) is far
too slow, and we need O(logn) or faster methods, as with conventional files
containing separate records [17]. The price we must pay is to store an index,
which must be built once for the whole text (unless the text changes). If we

are interested in the text as an ordered sequence of characters, we must store

105

the text as well, and the index represents an additional storage requirement.
It we are interested in the text only for the substrings it contains, as in a
dictionary for spelling check, then we need only store the index, and we can
often achieve compression as well as retrieval speed.

Tries have been used to index very large texts [10, 18] and are the only
known truly sublinear way to do so. Tries are trees in which nodes are empty
but have a potential subtree for each letter of the alphabet, ¥, encoding the
data (e.g., 0 and 1 for binary tries). The data is represented not in the nodes
but in the path from root to leaf. Thus all strings sharing a prefix will be
represented by paths branching from a common initial path, and considerable
compression can be achieved.? Substring matching just involves finding a
path, and the cost is O(m + logn) plus terms in the number of resulting
matches. (The logn component reflects only the number of bits required to

store pointers to the text, and is unimportant.) Regular expression matching

?Note that this compression is on the indez, which may still be larger than the text.
Typically, if we index every character in the text, as we do in Section 4, the index will
be five times the size of the text. If we index only every word, the index is smaller and
compression results.[18] If we do only dictionary searches, as in Section 6, there is great

compression.

106

simulates the regular expression on the trie, [9] and is also fast O(log™(n) n®)
where a<1.

This paper proposes a k-approximate match algorithm using Damerau-
Levenshtein DP on a text represented as a trie. The insight is that the trie
representation of the text drastically shortens the DP. A m x n DP table is
used to match a given P,, with the text, W,. There would have to be a new
table for each suffix in W (of length n,n—1,...). But the trie representation
of W compresses these suffixes into overlapping paths, and the corresponding
column need be evaluated only once. Furthermore, the Ukkonen cutoff can be
used to terminate unsuccessful searches very early, as soon as the differences
exceed k. Chang and Lawler [7] showed Ukkonen’s algorithm evaluated O(k)
columns, which implies searching a trie down to depth O(k). If the fanout
of a trie is ¥, the trie method needs only to evaluate O(k |X|*) DP table
entries.

We present this method in terms of full-text retrieval, for which both the
index and the text must be stored. In applications such as spelling checkers
[14], the text is a dictionary, a set of words, and need not be stored separately
from the index. These are special cases of what we describe. In such cases,

our method offers negative storage overhead, by virtue of the compression,

107

in addition to the very fast performance.

We compare our work experimentally with agrep [28], and show that tries
outperform agrep significantly for small k£, the number of mismatches. Since
agrep complexity is linear in &k, and trie search complexity is exponential in k,
agrep is expected to become better than tries for large k. Our experiments
show that the breakeven occurs beyond the practically important case of
k = 1. Since the authors of agrep compare their work thoroughly with other
approximate search techniques [28], we make no other comparisons here.

This paper is organized as follows. The next section introduces Damerau-
Levenshtein DP for approximate string matches. Section 3 briefly describes
trie data structures, and gives our new algorithm for approximate search
on text tries. Then we give experimental results comparing approximate trie
methods with agrep. Sections 5 and 6 discuss extensions and advanced appli-
cations of our method, including the important case of dictionary checking,
where we attain both speedup and compression. We conclude and discuss

further possible research.

108

2 Dynamic Programming

Let P, = pips...p, and W, = wqws,...wy be a pattern and a target string

respectively. We use D(P,,, W;) for edit distance, the minimum number of

edit operations to change P, to W,. Here, an edit operation is either to

insert w; after p;, delete p;, replace p; by w;, or to transpose two adjacent

symbols in P,,. We assume symbols are drawn from a finite alphabet, .
Given an example P; = exsambl and W7 = example. We have D(P;, W7) =

3 since changing P; to Wr needs to: (1) delete p3 = s, (2) replace ps = b by

ws = p, and (3) add w; = e after p; = 1. The edit distance, D(P;, W;), can

be recursively defined as follows:

0 1=75=0

0 1<0or <0

D(P,W;_1) +1

D(Pi_1,W;) 41

min else

D(Pi—1,W;_1)+ Sy

D(Pi_3,Wi_2) + R;;
where p; = w; = ¢ when ¢, 7 <0 (the null character), and

0 pi=w; L pa=w; Api=wj

1 else oo else

109

To evaluate D(P,,, W;), we need to invoke D four times with both sub-
scripts decreasing by no more than two. Thus, a brute force evaluation must
take O(2mn(m9) calls. However, for D(P,,, W,), there are only (m-+1)x ({+1)
possible values. DP evaluates D(FP,,, W;) by storing each possible D value in

a mx/{ table. Table 1 shows a 3x4 DP table for ,=ab and W5=bbc.

Po 0 1 2 3

1 1 D(P,Wh) | D(Py, W) | D(Pr, Ws)

P2 2 D(P, Wh) | D(Py, Ws) | D(Py, W3)

pp=a |1 ||1|2]3

p=b |2 |1]1]2

Table 1: Dynamic Programming

Furthermore, it is not necessary to evaluate every D values (DP table
entries). Ukkonen [24] proposed an algorithm to reduce the table evalua-
tions. His algorithm works as follows: Let C; be the maximum ¢ such that

D(P;,W;) < k for the given j (C;=0 if no such ¢). Given C;_1, compute

110

D(P;,W;)up toi < C;_1+1, and then set C; to the largest ¢ (0< 1 < Cj_1+41)
such that D(P;, W;) < k. Chang [7] proved that this algorithm evaluates
O(k?) expected entries. As shown in Table 2, for P;=adfd and Wr=acdfbdf
of 5x8=40 entries, Ukkonen’s algorithm evaluates only 23 entries for k=1.
Ukkonen’s algorithm sets D(Py, Wo)=1, D(P2, Wy)=2, and Cp=1 at ini-
tial time. It evaluates the first column up to row Cy+1=2. Since the largest
entry value of this column is at row 2, it sets C1=2. Then, it evaluates the
second column up to row C14+1=3. Since the largest entry value of this col-
umn is at at row 2, it sets Cy,=2. Similarly, it evaluates the third column
up to row Cy+1=3 to get C3=2, the fourth column to get (;=3, and the
fifth column to get Cs=0, which indicates that it is impossible to change
any prefix of adfd to acdfb in less than one edit operation. Thus, we know
D(Py, W7)>1. We can stop the evaluation if we do not want to know the

exact value of D(Py, Wr).

3 Trie and Approximate Search

We follow Gonnet et al. [9] in using semi-infinite strings, or sistrings. A

sistring is a suffix of the text starting at some position. A text consists

111

of many sistrings. If we assume sistrings start at word boundaries, the
text, “echo enfold sample enface same example,” will have six sistrings
of this kind. Figure 3 shows these sistrings and an index trie constructed
over these sistrings. To make Figure 3 simpler, we truncate sistrings after
the first blank. To index full size sistrings, we simply replace leaf nodes by
sistring locations in the text. To prevent a sistring being a proper suffix of
another, we can append either arbitrary numbers of the null symbol after
the text or a unique end-of-text symbol. The index trie has many distinctive

properties:

o When conducting a depth-first traverse, we not only get all sistrings,

but also get them in lexicographical order.

o When searching a string, say example, branching decisions at each node
are given by each character of the string being sought. As the trie in
Figure 3, we test the first letter e to get to the left branch, and the
second letter x to get to the right branch. As a result, search time is
proportional only to the length of the pattern string, and independent

of the text size.

112

Text :
echo enfold sanpl e enface sane exanpl e

Si strings:
echo enfold sanpl e enface sane exanpl e
enfol d sanpl e enface sane exanpl e
sanpl e enface sane exanpl e
enface sane exanple
sane exanpl e
exanpl e

0 o
a/qo pﬁ)\e
i

Figure 3: Text, Sistring and Index Trie

S\Qa

e The common prefixes of all sistrings are stored only once in the trie.
This gives substantial data compression, and is important when index-

ing very large texts.

Trie methods for text can be found in [10, 18, 22]. Here we describe them
only briefly. When constructing a trie over a large number of and extremely
long sistrings, we have to consider the representation of a huge trie on sec-

ondary storage. Tries could be represented as trees, with pointers to subtrees,

113

as proposed by Morrison [19], who first came up with the Patricia trie for
text searches. Orenstein [21] has a very compact, pointerless representation,
which uses two bits per node and which he adapted for secondary storage.
Merrett and Shang [18, 22] refined this method and made it workable for
Patricia tries with one bit per node. Essentially, both pointerless representa-
tions would entail sequential searches through the trie, except that the bits
are partitioned into secondary storage blocks, with trie nodes and blocks
each grouped into levels such that any level of nodes is either entirely on or
entirely off a level of blocks. With the addition of two integers per block, the
sequential search is restricted to within the blocks, which may be searched

as a tree. For more details of this representation, see [22].

3.1 Two Observations

Before introducing our approximate search algorithm, we give two observa-

tions which will link the trie method with the DP technique.

Observation 1

Each trie path is a prefix shared by all sistrings in the subtrie. When evalu-

ating DP tables for these sistrings, we will have identical columns up to the

114

prefix. Therefore, these columns need to be evaluated only once.

Suppose we are searching for string sane in a trie shown in Figure 3. To
calculate distances to each word, we need to evaluate six tables. Table 3
shows three of them. For each table, entries of the :th column depend only
on entries of the 7<z th column, or the first ¢ letters of the target word.
Words sample and same have the same prefix sam, and therefore, share the
table entries up to the third column. And so does the first column of words
echo, enface, enfold and example, the first three columns of words enface
and enfold. In general, given a path of length x, all DP entries of words in
the subtrie are identical up to the xth column.

This observation tells us that edit distances to each indexed word (sistring
in general) can be calculated by traversing the trie, and in the meantime,
storing and evaluating one DP table. Sharing of common prefixes in a trie

structure saves us not only index space but also search time.

Observation II

It all entries of a column are > k, no word with the same prefix can have a
distance < k. Therefore, we can stop searching down the subtrie.

For the last table of Table 3, all entries of the second column are > 1.

115

It searching for words with k£ = 1 differences, we can stop evaluating strings
in the subtrie because for sure D(sane,en...) > 1. For the same reason,
after evaluating the fourth column of table sample, we find all entries of the
column are > 1, and therefore, stop the evaluation.

This observation tells us that it is not necessary to evaluate every sistring
in a trie. Many subtries will be bypassed. In an extreme case, the exact

search, all but one of the subtries are trimmed.

3.2 Search Algorithm

The algorithm of Figure 4 shows two functions: DFSearch(TrieRoot, 1)
traverses an index trie depth-first, and FditDist(j) evaluates the jth column
of the DP table for pattern string P and target string W. For the purpose
of illustration, we start and stop evaluation at the word boundary in the
following explanation.

Essentially, this algorithm is a trie walker with cutoffs (rejects before
reaching leaves). Given a node ¢, its root-to-¢ path, wyws...w,, is a prefix
shared by all strings in SubT'rie(c). If changing wiws...w, to any possible

prefix of P costs more than k, there will be no string in SubT'rie(c) with

116

P,W

rarray [—1..max, —1..max| of integer; /* [:,0]=[0.9] =i+ 7, [-1,]=[,—1]=0c *
Al : g : 2J 7y [=1L1=1

:array [0..max] of integer;

/* variables for Ukkonen’s cutoff, C'[0] = &k */

:array [0..max] of character; /* pattern and target string, W[0] = P[0] = ¢ */

:integer;

/* number of allowable errors */

Procedure DFSearch(TrieNode :Anode, Level :integer);

begin

if (TrieNode in a leaf node) then
for each character in the node do
W[Level] := the retrieved character;
if (W[Levell = ? ’) then
output W[1lW[2]...W[j-11;
return;
if (EditDist(Level) = oo) then
return;
Level := Level + 1;
else
for each child node do
ChildNode := the retribbéd node;
W[Level] := the retrieved character;
if (W[lLevell =

’) then

output W[1lw[2]...W[j-1];

/* depth-first trie search */

/* retrieve characters one by one */

/* find a target word */

/* more than k mistakes */

/* retrieve child node one by one */

/* find a target word */

< k mismatches. Hence, there is no need to walk down Subtrie(c). A cutoff
occurs. Each letter w; (1<5<x) on the path will cause a call to EditDist(j).
We use Ukkonen’s algorithm to minimize row evaluations.

Suppose we have a misspelled word P=exsample and want all words with
k=1 mismatches. Figure 5 shows the index trie and some intermediate results
of the search. After evaluating D(P, ech), we find that entries on the third
column are all >2. According to observation II, no word W with the prefix
ech can have D(P,W) < 1. We reject word echo and continue traversing.
After evaluating D(P, enf), we know, once again, no word W with prefix enf
can have D(P,W) < 1, and therefore, there is no need to walk down this
subtrie. We cut off the subtrie. Since ech and enf share the same prefix e,
we copy the first column of ech when evaluating enf (observation I). After
evaluating path 3, we find D(P, example) = 1 and accept the word. The
search stops after cutting at path 4, sa. Figure 5 shows some intermediate

results of the search.

118

1 ‘C n X 3 a 4
] ¢ ke
a o p e
i
Pattern String: | exsample | k<1 |
Depth First String Distance Action
Search Path 1: ech >2 reject
Search Path 2: enf >2 cutoff
SearchPath3: | example =1 accept
Search Path 4: sa >2 cutoff

Figure 5: Approximate Trie Search Example

119

4 Experimental Results

We built tries for five texts: (1) The King James’ Bible retrieved from ak-
bar.cac.washington.edu, (2) Shakespeare’s complete works provided by Ox-
ford University Press for NeXT Inc., (3) section one of UNIX manual pages
from Solbourne Computer Inc., (4) C source programs selected randomly
from a departmental teaching machine, and (5) randomly selected ftp file
names provided by Bunyip Information System. Sistrings start at any char-
acter except the word boundary, such as blank and tab characters. Table 4

shows the sizes of the five texts and their index tries.

4.1 Search Time

We randomly picked up 5 substrings from each of the five texts, and then
searched for the substrings using both agrep [28] and our trie algorithm. Both
elapsed time and CPU time are measured on two 25MHz NeXT machines,
one with 28MB RAM and the other with SMB RAM. Table 5 shows measured
times, averaged on the five substrings, in seconds.

The testing results show that our trie search algorithm significantly out-

performs agrep in exact match and approximate match with one error. For

120

the exact match, trie methods usually give search time proportional only to
the length of the search string. Our measurements show that trie search
times for exact match do not directly relate to the text size. It requires
few data transfers (only one search path), and therefore, is insensitive to the
RAM size.

Let p(k) be the average trie search depth. It is the average number of
columns to be evaluated before assuring that D(P,W) > k. It has been
proven that p(k) > k if k is less than the target string length, and p(k) =
O(k) [24, T]. For a complete trie, the worst case of a text trie, the trie search
algorithm can find all substrings with & mismatches in O(k |%|*) expected
time: there are |X|F paths up to depth k, and each column of the DP table
has k rows. The time is independent of the trie size. In fact the trie algorithm
is better than the agrep for small k, but not for large k, because agrep scans
text linearly but the trie grows exponentially. For our measured texts, which
are relatively small, the trie search brings more data into RAM than agrep
when k > 2,

When RAM size is larger than data size, measured CPU times are closer
to the elapsed times. Since each query is tested repeatedly, most of data (text
and trie) are cached in RAM, and therefore, the searches are CPU-bound.

121

However, for a smaller RAM size (or larger text data), the searches have to
wait for data to be transferred from secondary storage. Since agrep scans the
entire text, its search time is linearly proportional to the text size.

File names are different from the other tested texts. File names are all
pairwise distinct. Any two substrings resemble each other less, which helps
agrep to stop evaluation more quickly. This does not help the trie search
because it makes the trie shallow (toward a complete trie) and takes more

time to scan the top trie levels.

5 Extensions

Our trie search algorithm can be extended in various ways. For example,
spelling checkers are more likely to ask for the best matches, rather than
the words with a fixed number of errors. The optical character recognizers
may search for words with substitutions only. When searching for telephone
numbers, license numbers, postal codes, etc., users require not only penalties
for certain types of edit operations, but also a combination of the exact search
and the approximate search because they often remember some numbers for

sure. In text searching, patterns are more often expressed in terms of regular

122

expressions. Extensions described in this section (except Section 5.5) have

been discussed in [28]. We present them here using DP.

5.1 Best Match

In some applications, we do not know the exact number of errors before
a search. We want strings with the minimal number of mismatches, i.e.,
strings with 0<k mismatches and no other string in the text having &<k
mismatches.

To use our algorithm, we define a preset k, which is a small number but
no less than the minimal distance, i.e., there exists a string, s, in the text
such that D(pattern,s) < k. A simple method to set k is to let s be an
arbitrary string in the text, and then set & = D(pattern,s). A better way
is to search for the pattern using deletions (or insertions, or substitutions)
only. This is to traverse the trie by following the pattern string. Whenever
no subtrie corresponds to a character of the pattern, we skip the character
in the pattern and look for a subtrie for the next character, and so on. The
number of skipped characters will be used as an initial k.

During the traverse, we will have &' = D(pattern,s) for a leaf node, where

123

s is the path from the root to the leaf node. Whenever we have k& > k', we set
k = k" and clear the strings that have been found. For best match searching,

k decreases monotonically.

5.2 Weighted Costs

The distances evaluated before are assumed to have cost 1 for any edit op-
eration. Sometimes, we may want to have a different cost. For example, to
have substitution costs at least the same as one deletion and one insertion,
or to disallow deletions completely.

To make edit operations cost differently, we need only to modify the
distance function. Let I, D, S and R be the costs of an insertion, a deletion,
a substitution, and a transposition respectively. We assume costs are all
> 0. To disallow an operation, say insertions, we set I = oo. As before,
D(Py,Wy) = 0 and D(P;,W;) = oo if t or j < 0. Otherwise, we redefine

D(P;,W;) as follows:

124

D(P;,W;_1) + 1;j

D(P_y,W;) + Dy
D(PZ, W]) = min

D(P;_1,W;i_1) + Sy

D(Piy, Wi_2) + Ry
Here I;; = I, D;; = D, and
0 pi=w; R pioa=w; Npi=w;_y

S else oo else

Furthermore, we may add a cost, (', for changing the case. For example,
for case insensitive searches, we set C' = 0, and for case sensitive searches, we
set ' =1. We may even disallow case changes by setting C' = co. Let a ~ b

be a = b without checking the case difference, and let @ ~ b mean that a and

0 pi~w;
b are of the same case. Now, we define, C;; = , and replace:
C else
0 Pi = w;
Sy = s +)
S else

R Pi-1 = w; /\piﬁw]‘_l
Rij=Cica;+Cija + :
oo else
The concept of changing cases can be extended even more generally. For

example, when searching a white page for telephone numbers, we don’t want

125

an apartment number, such as 304B, to be recognized as a telephone number,
i.e., do not replace a character unless it is a digit to a digit. For the same
reason, we may not want to mix letters, digits and punctuation with each
other when searching for license plates, such as RMP-167, or postal codes,
such as H3A 2A7. For those applications, we can use above definitions for
Si; and R;;, but give a new interpretation of C'. We will not elaborate them

here.

5.3 Combining Exact and Approximate Searches

We sometimes know in advance that only certain parts of the pattern may
have errors. For example, many spelling checkers may give no suggestions
for garantee. But suppose we knew the suffix rantee was spelled right. In
this case, we want to search part of the pattern exactly. By following agrep
standards [28], we denote this pattern as ga<rantee>. Characters inside a
<> cannot be edited using any one of the four operations.

To support both exact and approximate searches for the same pattern,
we need only modify I;;, D;;, Ci;, Sij and R;;. Let function | p; be a predicate

that determines whether p; is a member character inside an exact match <>.

126

Let function — p; be a predicate that tells whether p; is the last character
inside a <>. The new definitions are:
oo |pi AN Api 0 | pi

]’L] _= 5 2] _= 5

I else D else

oo | pi ApiFw;

Cij =4 C pi%ijpizwj/\pi%wja
0 else
0 Pi = wy
Sy = Chj + ;
S else
R P

Rij=Cica;+Cija + ;

oo else

where P = (pi_1 ~w; Api~w;—1) N [pi-1 N fpi.

By above definitions, string guarantees also matches ga<rantee> with
two insertions. To disallow insertions at the end of an exact match, we
introduce an anchor symbol, $ (borrowed from Unix standards). Pattern
ga<rantee>$ means that target strings must have the suffix rantee. What
needs to be changed is to set — p; false when there is a $ symbol followed p;,
i.e., a pattern looks like .. .<...p;>$. In a similar way, we introduce another

anchor symbol, ~, to prevent insertions at the beginning of an exact match.

127

For example, "<g>a<rantee>$ means that target strings must start with the

letter g and ended with the suffix rantee. This time, we set | py true.

5.4 Approximate Regular Expression Search

The ability to match regular expressions with errors is important in prac-
tice. Regular expression matching and k-approximate string matching solve
different problems. They may overlap but do not coincide. For example, the
regular expression a#c, where # is a one-place wildcard, can be written as a
l-approximate match with substitutions and insertions on the second char-
acter only. Baeza-Yates [5] proposed an search algorithm for the full regular
expression on tries.

In this section, we will extend our trie algorithm to deal with regular
expression operators with errors. However, the extension operators work
only for single characters, i.e., there is no group operator. For example, we
may search for axb with mismatches, but not (ab)*. Searching tries for the

full regular expression with approximation is an open problem.

128

5.4.1 Alternative Operator

Suppose we want to find all postal codes, H3A 2A7, where 7 is either 1, 3,
or 7. First, we introduce the notation, [137] (once again, borrowed from
Unix standard), to describe either 1, 3, or 7. Formally, operator [] defines a
set of alternative characters. Thus, H3A 2A7 matches pattern H3A 2A[137]
exactly; while H3A 2A4 matches the pattern with one mistake.

Substituting one character with a set of allowable characters can be easily
achieved by redefining the = and =~ operators of Section 2 and Section 5.2
respectively. For pattern P; =H3A 2A[137], we have p; =H, p, =3, ..., and
pr =[137]. We define p; = w; as either 1= w;, or 3= w;, or 7= w,. In other
words, if p; is a set of allowable characters, p; = w; means w; matches one of
the characters defined by the [] operator. ~~ is the case insensitive version
of =.

As syntactic sugar (Unix standards), we may denote [a-z] for all lower
case letters, i.e., a range of characters; [Taeiou] for anything but vowels,
i.e., a complement of the listed characters; and . for all characters, i.e., the

wild card.

129

5.4.2 Kleen Star

The kleen star allows its associated characters to be deleted for free, or to
be replaced by more than one identical character for free. For example, ac,
abc, abbc and abbbce all match pattern ab*c exactly. a[0-9]*c means that
an unbounded number of digits can appear between a and c.

Let function *p; be a predicate which says there is a Kleen star associated
with the pattern character p;. To support the Kleen star operator, we need
only to change I;; and D;;. Remember, p;* means that we can delete p; at
no cost, and insert any number of w = p; after p; at no cost. We now give

the new definition as follows:

oo #pi N pi N £

Lij =94 Cy *pi Api~w;
I else
0o #pi A pi
Dij=100 p
D else

130

5.5 Counter

Our algorithm can also be extended to provide counters. Unlike a Kleen star,
e.g., ab*c, which means that unbounded number of bs can appear between
a and c, pattern ab?c says that only ac and abc match exactly. If we want
these strings abbc, abbbc, abbbbc and abbbbbec, i.e., two to five bs between a
and c, we can write the pattern as abbb?b?b?c, or ab{2,5}c (Unix syntax).

To support counters, we need only to modify D;; since p? means character
p can deleted for free. Let us define a function ?p; which says there is
a counter symbol, 7, associated with the pattern character p;. The new

definition is:
oo pi N Fpi N pi

Dij=9 0 7p;V*pi

D else

6 Dictionary Search

By a dictionary, we mean a text file which contains keywords only, i.e., a
set of strings that are pairwise distinguishable. For dictionary searches, we
are only interested in those keywords that relate to the pattern by some

measurements (in our case, the edit distance). The orders (or locations) of

131

those keywords are not important to us. For such applications, the text file
can be stored entirely in a trie structure. The trie in Figure 3 is a dictionary
trie. Experimental results in [22] show that dictionary trie sizes are about
50% of the file sizes for English words. In other words, we are providing
not only an algorithm for both exact and approximate searches, but also a
data structure for compressing the data up to 50%. Searches are done on the
structure without decompression operations.

Searching soundex codes [20] is an example of the dictionary search. By
replacing English words with their soundex codes and storing the codes in
the dictionary trie, we are able not only to search any given soundex code
efficiently (exact trie search) but also to reduce the soundex code size by half.

Searching an inverted file is another example of dictionary search. An
inverted file is a sorted list of keywords in a text. The trie structure keeps
the order of its keys. By storing keywords in the dictionary trie, we can either
search for the keywords or for their location. Furthermore, our trie algorithm

provides search methods for various patterns with or without mismatches.

132

7 Conclusion

Tries have been used to search for exact matches for a long time. In this
paper, we have expanded trie methods to solve the k approximate string
matching problem. Our approximate search algorithm finds candidate words
with & differences in a very large set of n words in O(k |X|*) expected worst
time. The search time is independent of n. No other algorithm which achieves
this time complexity is known.

Our algorithm searches a trie depth first with shortcuts. The smaller k&
is, the more subtries will be cut off. When k& = 0, all irrelevant subtries are
cut off, and this gives the exact string search in time proportional only to the
length of the string being sought. The algorithm can also be used to search
full regular expressions [3].

We have proposed a trie structure which uses two bits per node and
has no pointers. Our trie structure is designed for storing very large sets
of word strings on secondary storage. The trie is partitioned by pages and
neighboring nodes, such as parents, children and siblings, are clustered in
terms of pages. Pages are organized in a tree like structure and are searched

in time logarithmic the file size.

133

Our trie method outperforms agrep, as our results show, by an order of
magnitude for k=0, and by a factor of 4 for k=1. Only when £>2 does the
linear worst case performance of agrep begin to beat the trie method for the

moderately large documents measured.

& Future Work

Spelling checkers based on searching minimal edit distance performs excel-
lently for typographic errors and for some phonetic errors. For example,
exsample to example has one difference, but sinary to scenery has three
differences. To deal with phonetic misspellings, we may follow Veronis’s work
[25] by giving weights to edit operations based on phonetic similarity, or us-
ing non-integer distances to obtain finer grained scores on both typographic
and phonetic similarities. Another solution is to follow the convention which
assumes no mistakes in the first two letters, or gives higher penalty for the
first few mistakes. Excluding the first few errors allows us to bypass many
subtries near the trie root. This not only gives quicker search time, but also
reduces the number of possible candidates. With a small set of candidate

words, we can impose a linear phonetic check.

134

Even with one difference, a short word, say of 2 letters, matches many
English words. There are more short words than long words. This type of

error is difficult to correct out of context.

Acknowledgments

This work was supported by the Canadian Networks of Centres of Excellence
(NCE) through the Institute of Robotics and Intelligent Systems (IRIS) un-
der projects B-3 and IC-2, and by the Natural Sciences and Engineering

Research Council of Canada under grant NSERC OGP0004365.

References

[1] A. Apostolico. The myriad virtues of suffix trees. In Combinatorial

Algorithms on Words, pages 85-96. Springer-Verlay, 1985.

[2] R.A. Baeza-Yates. String searching algorithms. In W.B. Frakes and
R.A. Baeza-Yates, editors, Information Retrieval: Data Structures and

Algorithms, pages 219-40. Prentice-Hall, 1992.

135

3]

R.A. Baeza-Yates and G.H. Gonnet. Efficient text searching of regular
expressions. In G. Ausiello, M. Dezani-Ciancaglini, and S.R.D. Rocca,
editors, Proceedings of 16th International Colloqguium on Automata, Lan-
guages and Programming, LNCS 372, pages 4662, Stresa, Italy, July

1989. Springer-Verlag.

R.A. Baeza-Yates and G.H. Gonnet. A new approach to text searching.

Communications of the ACM, 35(10):74-82, 1992.

R.A. Baeza-Yates and C.H. Perleberg. Fast and practical approximate
string matching. In G. Goos and J. Hartmanis, editors, Proceedings of
3rd Annual Symposium on Combinatorial Pattern Matching, LNCS 644,

pages 185-92, Tucson, Arizona, April 1992. Springer-Verlag.

R.5. Boyer and J.S. Moore. A fast string searching algorithm. Commu-

nications of the ACM, 20(10):762-72, 1977.

W.I. Chang and E.L. Lawler. Approximate string matching in sublinear-
expected time. In 31st Annual Symposium on Foundations of Computer
Science, pages 116-24, St. Louis, Missouri, October 1990. IEEE Com-

puter Society Press.

136

[8] F.J. Damerau. A technique for computer detection and correction of

spelling errors. Communications of the ACM, 7(3):171-6, 1964.

[9] G.H. Gonnet. Efficient searching of text and pictures. Technical Report

OED-88-02, Centre for the New OED., University of Waterloo, 1988.

[10] G.H. Gonnet, R.A. Baeza-Yates, and T. Snider. New indices for text:
PAT trees and PAT arrays. In W.B. Frakes and R.A. Baeza-Yates, edi-
tors, Information Retrieval: Data Structures and Algorithms, pages 66—

82. Prentice-Hall, 1992.

[11] P.A.V. Hall and G.R. Dowling. Approximate string matching. Comput-

ing Surveys, 12(4):381-402, 1980.

[12] J.Y. Kim and J. Shawe-Taylor. An approximate string-matching algo-

rithm. Theoretical Computer Science, 92:107-17, 1992.

[13] D.E. Knuth, J.H. Morris, and V.R. Pratt. Fast pattern matching in

strings. Computer Journal, 6(2):323-50, 1977.

[14] K. Kukich. Techniques for automatically correcting words in text. Com-

puting Surveys, 24(4):377-439, 1992.

137

[15] V. Levenshtein. Binary codes capable of correcting deletions, insertions

and reversals. Soviet Physics Dokl., 6:126-36, 1966.

[16] E.M. McCreight. A space economical suffix tree construction algorithm.

Journal of the ACM, 23(2):262-72, 1976.

[17] T.H. Merrett. Relational Information Systems. Reston Publishing Co.,

Reston, VA, 1983.

[18] T.H. Merrett and H. Shang. Trie methods for representing text. In
Proceedings of 4th International Conference, FOD0O’93, LNCS 730, pages

13045, Chicago, Ill, October 1993. Springer-Verlag.

[19] D.R. Morrison. PATRICIA — Practical Algorithm To Retrieve Informa-

tion Coded In Alphanumeric. Journal of the ACM, 15(4):514-34, 1968.

[20] M.K. Odell and R.C. Russell. U.S. Patent Numbers, 1,261,167 (1918)

and 1,435,663, 1922. U.S. Patent Office, Washington, D.C.

[21] J.A. Orenstein. Multidimensional tries used for associative searching.

Information Processing Letters, 14(4):150-6, 1982.

138

[22] H. Shang. Trie Methods for Text and Spatial Data on Secondary Stor-
age. PhD Dissertation, School of Computer Science, McGill University,

November 1994.

[23] G.A. Stephen. String Searching Algorithms. Lecture Notes on Comput-

ing. World Scientific Pub., 1994.

[24] E. Ukkonen. Finding approximate patterns in strings. Journal of Algo-

rithms, 6:132-7, 1985.

[25] J. Veronis. Computerized correction of phonographic errors. Comput.

Hum., 22:43-56, 1988.

[26] R.A. Wagner and M.J. Fischer. The string-to-string correction problem.

Journal of the ACM, 21(1):168-78, 1974.

[27] P. Weiner. Linear pattern matching algorithms. In [EEE Symposium

on Switching and Automata Theory, pages 1-11, 1973.

[28] S. Wu and U. Manber. Fast text searching. Communications of the

ACM, 35:83-91, 1992.

Heping Shang received a B.S. degree in computer engineering from Chang-
sha Institute of Technology, Changsha, Hunan, China, in 1981, an M.S.

139

degree in computer science from Concordia University, Montréal, Québec,
Canada in 1988, and a Ph.D degree in computer science from McGill Uni-
versity, Montréal, Québec, Canada in 1995. His research interests include
data structures and searching techniques for very large textual and spa-
tial database data, database programming languages, parallel processing and
concurrency control.

Dr. Shang is now at Replication Server Engineering, Sybase Inc., Emeryville,
California, USA.

T. H. Merrett received a B.Sc. in mathematics and physics from Queen’s
University at Kingston, Ontario, Canada (1964) and a D.Phil. in theoretical
physics from Oxford University (1968). After two years with IBM (U.K.), he
joined the School of Computer Science at McGill University, where he is a
professor. His research interests are in database programming languages and

data structures and algorithms for secondary storage.

Dr. Merrett initated and directs the Aldat Project at McGill University,
which has been responsible for data structures for multidimensional data,
such as multipaging and Z-order, and for trie-based structures for text and

spatial data. The database programming language contributions of the Aldat

140

Project have included the domain algebra; quantified tuple (QT)-selectors;
relational mechanisms for multidatabases, metadata, and inheritance; meth-
ods for process synchronization and nondeterminism; and the computation
mechanism, which unifies relations, functions, and aspects of constraint pro-

gramming.

141

2

Co Ci Cy Cs Cy C5 (Cg (7

Table 2: Ukkonen’s Cutoff

142

o 0 213 14]15]|6
s |1 11231415
a | 2 011234
ni| 3 1111234
e | 4 2012 12(3]3
column: 2 3 4 5 6
¢ s a m e 6 e n f--
Of1{23 4] ¢[00 |1 |2]3-:
LYo (1|23 s|1|1]2
2011011 (2] a|2|2]2
32111 (2] n|3 |32
40212121 el 433
1 2 3 4 1 2 3--

Table 3: Dynamic Programming Tables

143

Text Text Size #Sistrings #Trie Nodes
Bible 4.5MB 3.4 M 46.0 M
Shakespeare 6.4MB 4.4 M 479 M
Unix Manual 7.6MB 4.8 M 107.0 M
C Program 8.4MB 5.3 M 157.0 M
File Names 8.4MB 6.6 M 76.9 M

Table 4: Text File and Index Trie

144

NeXT with 28MB RAM

NeXT with SMB RAM

Text elapsed (CPU), sec. elapsed (CPU), sec.
agrep trie agrep trie
Bible 4.45 (4.32) 0.68 (0.43) 5.98 (4.57) 0.82 (0.43)
Shakespeare 7.90 (7.76) 0.63 (0.41) 17.50 (9.53) 0.90 (0.42)
k=0 | Unix Manual 7.53 (7.43) 1.07 (0.58) 18.72 (9.51) 1.37 (0.58)
C Program 12.63 (12.50) 0.68 (0.35) 24.13 (14.62) 0.85 (0.37)
File Names 5.80 (5.68) 0.53 (0.38) 16.82 (7.43) 0.75 (0.37)
Bible 7.48 (7.37) 2.78 (2.67) 8.58 (7.48) 2.77 (2.55)
Shakespeare | 13.52 (13.37) 2.78 (2.67) 23.53 (15.16) 8.42 (8.20)
k=11 Unix Manual | 28.48 (28.29) 4.42 (4.32) 39.58 (30.20) 4.15 (3.90)
C Program 22.18 (21.93) 4.63 (4.49) 34.08 (23.95) 8.25 (4.68)
File Names 9.10 (8.86) 7.17 (7.05) 21.07 (11.34) | 13.63 (7.48)
Bible 13.53 (13.21) | 22.52 (22.19) | 16.42 (13.51) | 40.12 (24.32)
Shakespeare | 24.83 (24.50) | 28.57 (28.16) | 33.90 (26.40) | 66.18 (32.93)
k=2 | Unix Manual | 46.50 (45.87) | 41.63 (40.91) | 57.22 (47.58) | 80.12 (44.17)

C Program

35.83 (35.40)

62.87 (61.40)

A7.87 (37.41)

138.75 (67.59)

Irile Names

14.22 (13.77)

98.00 (97.41)

36.40 (16.42)

176.53 (99.20)

Table 5: Approxi#date Search Time

