Efficient Query Processing in Web Search Engines

Simon Lia-Jonassen
Uio, 12/04/16

Outline
N

0 Introduction and Motivation

0 Query Processing and Optimizations

0 Caching

0 Parallel and Distributed Query Processing

0 Hardware Trends and Their Impact

Search Engines

World’s Largest File
Has Traveling Desks

CLERKS ride up and down on ‘“elevator

desks” to consult the gigantic corre-
. spondence file of a Czechoslovakian in-
surance organization. Said to be the
largest in the world, the huge letter file
consists of 3,000 drawers, each ten feet
long, covering 4,000 square feet of wall
space and extending sixteen feet up
from the floor. Clerks press control
. levers to move their desks up, down, or
~ | sidewise until they reach the desired
file drawer, which opens automatically.

August 1937.

© pro.clubic.com

Popular

Clerks examining correspondence in the
mammoth file of an insurance company

v A4 page is ~.005 cm thick. 3000 drawers x 304.8 cm/drawer x 200 pages/cm
gives 182.9 million pages. A4 page fits 350 — 400 words.

v Indexed Web contains at least 4.57 billion pages. An avg. page is 478 words.

v Google has more than 1 billion global visitors and annually spends billions of USD
on data centers.

Web-Search in a Nutshell

\\\\\\

A

'S
3

e
Crawling }\\\\\ \\\\{ Indexing

0 Query processing basics

o Given an indexed collection of textual documents D and a textual query q,

find the k documents with largest similarity score.

0 Some similarity model alternatives

Boolean model.
Vector space models, e.g., TFxIDF, Okapi BM25.

Term proximity models.

Link analysis models, e.g., PageRank, HITS, Salsa.

Bayesian and language models.

Machine learned models.

R\‘\\\ \»\\\\

|\

A\

Query SN
Processing \\\\\\

J
Y User

Effectiveness (quality and relevance)
B

0 Boolean, not ranked

O Precision — how many selected items are relevant.
O Recall — how many relevant items are selected.

o F1 — weighted harmonic mean of precision and recall.

0 Boolean, ranked

O Precision and recall at 5, 10, ...k.

O Average Precision and Mean Average Precision.

0 Graded, ranked
O Cumulative Gain (CG), Discounted CG (DCG) and Normalized DCG (NDCG).
O Mean Reciprocal Rank (MRR).

Efficiency (volume, speed and cost)
B

0 Index and Collection Size
o Number of documents and document size.

O Index granularity, size and freshness.

0 Infrastructure Cost
0 Number of machines, memory /disk size, network speed, etc.

O Resource utilization and load balancing.

0 Queries and Time

O Latency — time per query.

O Throughput — queries per time unit.

O Query volume (offline) and arrival rate (online).
O Query degradation rate (online).
a

Result freshness (cached results).

Query Processing with Inverted Index

D1: Because I'm
Slim Shady, yes

Y

I'm the real Shady.

Tokenize
D2: All you other
Slim Shadys are
just imitating,
D3: So won't the Normalize

real Slim Shady
please stand up,

D4: Please stand
up, please stand
up?

Remove
Stopwords

stopwords: Index
all are because i'm

just other please so
the up won't yes you

Inverted Index:

imitate 1:1
real 0:1 2:1
shady 0:2 1:1 2:1
slim 0:1 1:1 2:1
stand 2:1 3:2

F N

Tokenize

Normalize

Remove
Stopwords

Query:
Real Slim
Shady

; Results: =
' D1 D3 D2

Query Processing with Inverted Index
B

Document Dictionary

doclD description length
0 D1 4
. 1 D2 3
Score(d, q) = E Wiq - Wi d
teq
Term Lexicon
1 (k3 4+ 1) - fi.q/ max(fiq) termID token docFreq | colFreq |endOffset
'”f.q - i
A_.; 4 f!.q/ nla‘\(ft.q) 0 imitate 1 1 2
1 real 2 2
pa— . 2 shad 3 4
we.q = TF(t,d) - IDF(t) Y
. l) Inverted File
TF(t,d) = fua(<doclID, termFreg> | <1, 1> | <0, 1> <2, 1>
Sta+ki-((L=5b)+b-laflavg) Ak
y - Index Options and
. N - t + 0.5 i isti
IDF (1) =1 Og(f -) Collection Statistics
‘ ft + 0.5 entry value
numberOfDocuments 4
numberOfUniqueTerms 5
We could use k; = 1.2, b = 8, k;= 0.75, but note that numberOfTokens 12
IDFs would be quite strange in this particular example. numberOfPointers 11
useSkips false

Posting Lists (doc. ids and frequencies)
B

0 Usually represented as one or two integer lists ordered by document id.

o Alternatives:

®m bitmaps instead of document ids, weights instead of frequencies, or impact ordered lists.

0 For better compression document ids are replaced by differences (deltas),
and the ids can also be remapped/reordered to minimize resulting deltas.

0 Usually accessed via an iterator (get and next) and an auxiliary index/set
of pointers can be used to skip forward in the inverted file.

Original postings:
(5,1)(8,1)(12,2)(13,3)(15,1)(18,1)(23,2)(28,1)...
Encoded postings:
((5,02)) (5, 1)(3, 1)(4,2) (13, 03)) (1, 3)(2, 1)(3,1)((23, 04)) (5, 2)(5,1) . .

Posting List Compression
N

R R Value | Unary Elias-~
0 Bit-Aligned Methods o o
2| 10 100
o E.g., Unary, Elias, Golomb, Rice, Interpolative, etc. 3| 110 101
4| 1110 110 00
» Space efficient but require less efficient bit arithmetic. 5| 11110 11001
6 | 111110 110 10
7 | 1111110 1011
8 | 11111110 | 1110000
9 | 111111110 | 1110001
10 | 1111111110 | 1110010

0 Byte-Aligned Methods
o Eg VByte (VB)

:1000 0001
13 :1000 1101
133 :0000 0001 1000 0101 Managmg

1337 :0000 1010 1011 1001

Glgabytes

» Fast but less space efficient.

Posting List Compression
N

0 Word-Aligned Methods
o E.g., Simple? (left) and NewPFoR (right)

Selector | Number of codes | Code length (bits)
é 28 1
; 14 " 128 values encoded with b bit each exception indexes compressed
N and stored as b*4 integers i i -
¢ 9 3 g j with Simple-9 j
d ; ‘; Control Word [E@{efe[=N:~1qs Exception Values | Exception Indexes
e
f 4 7 5 bit bitwidth t overflow bits compressed
. 3 9 7 bit exc. count with Simple-9
& 20 bit reference
h 2 14
1 1 28

» Branch-free and superscalar, can be tuned for compression/speed.

> In the rest, we consider NewPFoR with chunks of 128 deltas followed by 128 frequencies.

> Alternatives: 32/64 or variable size chunks.

Posting list:
_______ [block]blockblock|block|block]block|block].....
~ DC#O n..;:::-....."..:.u‘—--—--—--—--—--—..;GI-E)-.CE

128 dgap]128 freqd | (oczo Joc#1 .|..h<;£1210.cx121::

Posting List Layout with Skips

e e Logical View
128 dgap128 offseth .. E SC140

@czo Joc#1 Joce2)IIIIIIIIIIIIIIIIIIIIIII(DC#1zIDC#1zioC#129'IIIZZIIIIIIIIIIIIZ(DC#25I><=#2SIDC#ZSIIZIIZIIIZ
|Tev'e'| lofisets ___ block]| Physical View
IWM I MSQ#-L)""ID&&ZM:::
H I T Current State - docID's:
Level 0 offsets I sc1#0 [l . 7293, 435080

SCO#0 : 273, 553@1 . e s 340
DC#2 : 554537, 591, ..., 831

Query Evaluation and Pruning
I
0 Disjunctive (OR) and Conjunctive (AND) Evaluation

o OR — The documents that match any query term will be considered.

® Slower, lower precision, higher recall.

O AND — Only the documents that match all query terms will be considered.

m Faster, higher precision, lower recall.

0 Static Pruning — aka Index Pruning
O Term Pruning — remove less important terms from the index.

O Document Pruning — remove less important documents from the index.

0 Dynamic Pruning — aka Early Exit Optimization
O Avoid scoring postings for some of the candidates under evaluation.
v Safe pruning — guarantees the same result as a full evaluation (score, rank or set safe).

v Unsafe pruning — does not guarantee the same result as a full evaluation.

Term- vs Document-At-A-Time Evaluation
I
0 Term-At-A-Time (DAAT)

0 Score all postings in the same list and merge with the partial result set (accumulators).

v Need to iterate only one posting list at a time, but store all possible candidates.

0 Document-At-A-Time (DAAT)

O Score all postings for the same document and add to the result head.

v Need to iterate all posting lists at once, but store only the k best candidates.

Term-At-A-Time Evaluation (TAAT)

miami 9:8.0 13:5.1 15:0.1 » 9:8.0 13:5.1 15:0.1
white 4:3.0 9:1.0 10:3.0 m)
pages 1:0.34 4:0.2 5:0.62 1:0.34 4:3.2 5:0.62 » 9:9.0 13:8.7 15:6.0

O Some optimizations
O AND - Evaluate query in conjunctive mode, starting with shortest posting list.
O Quit/Continue — Stop adding new accumulators when a target size is reached.
O Lester — Dynamically scale a frequency threshold based on the accumulator set size.
(m]

MaxScore — Ignore postings and remove candidates for documents that are guaranteed
not to be in the result set (need to track the k best candidates seen so far).

Document-At-A-Time Evaluation (DAAT)

miami f---------------------- 9:8.0

\4
white F-------+ 430 [f------- 9:1.0

S —
pages 1:0.34 4:.0.2 5:062 f---F---
—
\
9:9.0 43.2 5:0.62

O Some optimizations
0 And — Don’t score unless all pointers align, skip to the largest document id.
O MaxScore — Stop candidate evaluation when it is guaranteed not to be in the result set.

o WAND - Similar to MaxScore but a bit different (see the next slide).

DAAT MaxScore and WAND
S

] MG Xscore term doc maxSc | maxAg | optional
. . miami 13 6.3 10.37 false
o Evaluate lists in maxScore order.
white 12 3.4 4.07 false |«
k) . .
o Don’'t advance optional term pointers. vages 10 067 067 oo
. e —
® Must match at least one term with maxAg >= thres.
O Discard when score + maxAg < thres. top-3 9:90 | 1038 | 4:3.2
e —

s(white@12): 1.0 + 0.67 = 1.67 (<3.2 --> discard!)

o WAND

o Evaluate lists in the current document id order.

o Pivot by first pointer with maxAg >= thres.

. . . term doc maxSc maxA
o If first pointer and pivot are equal, evaluate. i
. . . . ages 10 0.67 0.67
Otherwise, skip using the pivot. Pas
white 12 3.4 4.07 < pivot
miami 13 6.3 10.37

v Both methods can be improved with
block-wise maximum scores. top-3

9:9.0 10:3.8 4:3.2

Post-processing and Multistep Processing
N

0 Traditional post-processing

o Generate snippets.
O Retrieve page screenshots.

O Result clustering and /or faceting.

0 Two-phase processing
1. Use a simple ranking model to generate a pool of candidates.

2. Refine the results using a more expensive model.

m E.g., machine learned model, phrase matching, etc.

0 Query refinement

o Suggest another query based on the found results.

Caching

R. Ozcan et al./ information Processing and Management 48 (2012) 828-840

0 Two-level (Saraiva et al.)

I YN
O Result cache and posting list cache. Y st ey Tosuitpage
0 Three-level (Long and Suel) Check resuit Step 5: Snippet | __ doc __
cache computation data data
O Adds intersection cache. , 1 .
Miss Hit (doc data) fetch request

o Five-level (Ozcan et al. Hit Chock :
() (to;;k docu?ncent == Miss =~ - Step 4: Fetch

. document data
hy
0 Adds document cache and score cache. docids) —
. Miss top k doc ids
o Other alternatives '
- T Ht Step 3: Document
. intersection (dOCidS) - scoring
O Projections instead of intersections. cache " it -
i i e W
o . o ting list -~ (doc id: < '
O Blocks instead of posting lists. (posing Sl | o--=77 00 gocids
""""" RN : :
1 Hit Step 2: Posting l N
__"_ (posting list) "~~~ ™| list intersection d°°l ids
o Static, dynamic and hybrid caches T e] - :
MisS -~ pos‘tingjist E
o Static — rebuilt once in a while. T e
------------ fetch request S = Step 1: Fetch
o Dynamic —updated on each access. ~ \ index _feeoooeeeooooo posting list = === === ===~ > posting list
O Static-dynamic — splits the cache into a static part —— Deterministic path (taken by all items)
Gnd a dynqmic part. ----- - Non-deterministic path (can be taken by a subset of items)

Fig. 3. The workflow used by the simulator in query processing.

Cache Replacement Strategies
B

0 Some of the most common methods

O LRU — put newly accessed entries into a queue, discard from the tail.

O LFU — each entry has a counter, discard entries with lowest count.

m Other alternatives: Two-Stage LRU, LRU-2, 2Q, Multi-Queue (MQ),

Frequency-Based Replacement (FBR), Adaptive Replacement Cache (ARC). Comparison of Caching Policles:

O Cost — evict entries with the lowest processing cost.

08

and alpha’ on the second and subsequent renewals. o 07
% os
£os

£ oa
38

03

2

£

o Landlord ¢
01 S

. _ . o . . 00 £

H assign H—cost/5|ze on insertion or hit o e e 2 19 s e o e s
Cache Size as Percentage of Index Size IN

m cost = 1 gives most hits, cost = proc. time gives best avg. latency. 3

. Impact of Compression: 3

B evict the one with min, and subtract it from remaining H. 2
10 g

® Improvement: use H + alpha * remaining, on the first renewal, o 3
~

3

z

02

01
0.0

128 256 512 768 1024 1280 1536 1792 2048
Cache Size (MB)

Freshness with Infinite Result Cache

0 Motivation

O We can cache results infinitely but they will become outdated after a while.

o S H
| |e—e TTL =0 (no cache)

4—4TTL =1 hour
50} *— TTL = infinite

0 A solution and the improvements

1. Set a TTL to invalidate the results after a while.

m Always rerun the expired queries on request.

Cache hits

sewwS
Cache mi‘s‘s:s‘\‘-“‘
(expired entries)]

/a) “x
. - 3

2. Refresh cache results when have capacity.

| User query traffic
L hitting the backend
[

B May improves average result freshness.

3. Proactively refresh expensive queries that

are likely to be expired at peak-load hours.) S
B May improves result freshness, degradation and o Cache misses \E
latency, but determining such queries is really hard. ARy ok (compulsary) | N und on

Backend query traffic rate (query/sec)
S

the backend traffic]

ob——L L LM 1 L L L]
o 2 4 6 8 10 12 14 16 18 20 22

Hour of the day

Online and Offline Query Processing
B
0 Offline

o All queries are available at the beginning.
0 Query throughput must be maximized, individual query latency is unimportant.
O Specific optimizations

® Query reordering, clairvoyant intersection and posting list caching, etc.

0 Online
o Queries arrive at different times and the volume varies during the day.
O Throughput must be sustained and individual query latency minimized.
O Specific optimizations

m Degradation, result prefetching, micro-batching, etc.

Parallel Query Processing
N

0 Motivation

O Modern CPUs are multi-core and we would like to utilize this in the best possible way.

Int Inter-query
0 Inter-query concurrency o o o =
O - assign different queries to different cores.
P2 Q2 Q3
v Improves throughput, affects latency.
0 Intra-query concurrency Intra-query
. . . P1 Q1 Q2 | Q8 Q5
O - assign different blocks to different cores. E3 60 |
v Improves latency, affects throughput. P2 Q1 Q2 | Q3 Q5 | Q6 |
time

0 Some of the main issues
O Memory wall (I/O bottleneck).

O CPU cache related issues

m Coherence, conflicts, affinity, etc.

o Amdahl’s and Gustafson's laws.

Distributed Query Processing

0 Partitioning and Replication

v Add more partitions to scale with the collection size.
v Add more replicas to scale with the query volume.
E i i
3 S| | (S0 | (S| | (S| | et [SE0
0 Clustering & A 13
T : | | o
v imi i ! i E | LS
Group similar documents in clusters. SN I N O 1 O R R
. . . : : : | IR =
v Build a different index for each cluster. M e e e
Partitioning >
. . Dispatch
0 Tiering il

v Split the collection into several parts, e.g.

® 1 mil important documents.

® 10 mil less important documents.

® 100 mil not really important documents.

v Decide when a query should to fall through.

Tier1 <w—Tier2—» 4—Tjer3——»

Partitioned Query Processing

0
0 Document-wise partitioning ()

O Each node has a subset of documents.

"sugar tariff-
quota rates”

O Each query is processed by all of the nodes in
parallel, one of the nodes merges the results.

v" Pros: Simple, fast and scalable.
v Cons: Each query is processed by all of the nodes.

v Cons: Large number of posting lists to be processed.

0 Term-wise partitioning ‘i
0 Each node has a subset of terms. §

O Posting lists are fetched and sent to a node ougar tarif:
that processes all of them.

v Pros: Only a few nodes are involved.

Pros: Possibility for inter-query concurrency. N

v Pros: Only one posting list for each term. g

v Cons: Only one node does all processing.

v) . . C D
Cons: Network load and load balancing are critical. N ~§

Partitioned Query Processing
—

0 Pipelined query processing (on top of TP)

O Route a bundle from one node to next, process on
each node and extract the results on the last one.

"sugar tariff-
quota rates”

v Pros: The work is dived among the nodes.
v" Pros: The network load is reduced.
v Cons: Sequential dependency and load balancing.
O Possible improvements
® Do early exit to reduce the amount of transferred data.
B Apply fragment based or semi-pipelined processing to reduce query latency.

m Optimize term assignment to improve network load and load balancing.

0 Other techniques
O Hybrid partitioning — divide posting lists into chunks and distribute the chunks.

O 2D partitioning — apply both document- and term-wise partitioning (m x n).

Multi-Site Query Processing

0 Motivation

o Search engines spanning across multiple datacenters open a range of new possibilities.

0 Some of the techniques

User-to-center assignment — choose the nearest datacenter.

Corpus partitioning — cluster and assign documents geographically.

Partial replication — replicate only certain documents to other datacenters.

Reduce costs by forwarding requests to a remote datdcenter at peak.

Impact of the Hardware Trends
—

4x2x4GHz++

Processor

I super fastlll

4x8GB+

Main
Memory

5126B SSD

CPU: From GHz to multi-core

O

. 10,000,000
Moore’s Law:
O~ the number of transistors on Dual-Core Itanium 2
an IC doubles every two years. HOS,E00
Intel CPU Trends -
B less space, more complexity. o X - =
m Shorter gates, higher clock rate. 100,000 (sources: Intel, Wikipedia, K- o!u'(Otun)
Strategy of the 80s and 90’s:
O Add more complexity! 10,000
O Increase the clock ratel
1,000
Pollack’s Rule:
O The performance increase is ~ 100
square root of the increased
complexity. [Borkar 2007]
10
The Power Wall:
O Increasing clock rate and transistor current | | @ Transistors (000) |
leakage lead to excess power consumption, e o “::"s;:" i)
. ® Y aPower
while RC delays in signal transmission grow ¢ © Perf/Clock (ILP)
as feature sizes shrink. [Borkar et al. 2005] o I L '
1970 1975 1980 1985 1990 1995 2000 2005 2010

Instruction-level parallelism
B

0 Pipeline length: 31 (P4) vs 14 stages (i7). >
Instruction Instruction Operand Instruction Write

. . . Fetch Decode Fetch Execute Back

0 Multiple execution units and out-of-order ex.: (F) (ID) (OF) (1F) (WB)

. 5 Stage Instruction Pipeline
O i7: 2 load/store address, 1 store data,

and 3 computational operations can Program
Instructions
be executed simultaneously. R S T T S T S A S S S
inst1 [IF] D JOF | IE [wB ' i H ' ' 1 ' i
Inst. 2 F | D |OF | E [wB i H i i 1] i
Inst. 3 : F | D JoF | E |ws | E E i E E i
0 Dependences and hazards: s |11 e BranchPenaty i b
e | 1 P T T b
o Control: branches. Inst. 20 ! ! ! ! ! IF | D JorF] IE |wB ! '
Inst. 21 ' ! ' ' ! ' IF | D JOF | IE [WB '
m Dean 2010: a branch misprediction costs ~5ns Inst. 22 ' ! ' ' ! ! ' IF | D JOF | E |WB
Inst. 23 1 i 1 1 H ! ' . IF o JoF]IE Jwe]

o Data: output dependence, antidependence (naming). 1 T2 3 4 5 6 7 8 9 10 1 12 13 14
time (clock cycles)

O Structural: access to the same physical unit of the processor.

O Simultaneous multi-threading (“Hyper-threading”):
o Duplicate certain sections of a processor (registers etc., but not execution units).
O Reduces the impact of cache miss, branch misprediction and data dependency stalls.

o Drawback: logical processors are most likely to be treated just like physical processors.

Computer memory hierarchy

< Level Latency Size Technology Managed by
8 Registers <<1ns ?1KB CMOS Compiler
2 L1 Cache (on-chip) <1ns 4x32KBx2 SRAM Hardware
I~ L2 Cache (off-chip) 2.5ns 4x256KB SRAM Hardware
Y L3 Cache (shared) 5ns 8MB SRAM Hardware
8 Main Memory 50ns 4x8GB+ DRAM (ON)
< Solid-State Drive <100us 512GB- NAND Flash Hardware/OS/User
E Hard-Disk Drive 3-12ms 1TB+ Magnetic Hardware/OS/User
...... Main Memory Latency Processor Performance Processor Performance --=--+ Off-Chip Bandwidth
100000 - e 2°
-
b+ =
g 10000 3 20
g &
§ 1000 % 1= 8
& = 3
@ 100 £ @
2 S 10 =
= © s
K] 10 - & o
1 T T % S | §
588388884 48¢88¢88888 ¢ ° §

2007 2008 2009 2010 2011 2012 2013 2014 2015
ITRS Year of Production

(Tms =1 000 ps = 1 000 000 ns; 1ns = 4 clock cycles at 4GHz or 29.8cm of light travel)

O

O

O

Performance implications

Some of the main challenges of CMP:
O Cache coherence.
O Cache conflicts.

o Cache aoffinity.

Other important cache-related issues:

O Data size and cache line utilization.

®m i7 has 64B cache lines.
o Data alignment and padding.

o Cache associativity and replacement.

Additional memory issues:

o A large span of random memory accesses may
have additional slowdown due to TLB misses.

O Some of the virtual memory pages can also
be swapped out to disk.

Thread1

Thread2 Thread3 Thread4
Core Core Core Core
32KB 32KB 32KB 32KB
L1D L1D L1D L1D
256KB 256KB 256KB 256KB
L2 L2 L2 L2

;

;

;

;

8MB L3

Main memory

Cache- and processor-efficient query processing
S =,

0 Modern compression methods for IR:
o S9/S16, PFOR/NewPFD, etc.
o Fast, superscalar and branch-free.

O Loops/methods can be generated by a script.

0 While compression works on chunks of postings,
processing itself remains posting-at-a-time.

Inpu tvaluel
»Inpu(Valuel

cui

curInputValuei

0 So what about:

o Branches and loops?

O Cache utilization2

o ILP vutilization?

avasoze /kamikaze

))) e o/ github.com
0 Some interesting alternatives and trade-offs: coce: TP

O Term vs document-at-a-time processing.

O Posting list iteration vs random access.

O Bitmaps vs posting lists.

Acknowledgements
N

0 For details and references see Chapter 2 of my PhD thesis:
> “Efficient Query Processing in Distributed Search Engines” — http: / /goo.gl /vDNGGb

0 Also a great tutorial by Barla Cambazoglu and Ricardo Baeza-Yates:

» “Scalability And Efficiency Challenges In Large-Scale Web Search Engines” — http://goo.gl/oyWDqU

0 A very good book:

» “Information Retrieval: Implementing and Evaluating Search Engines” — Bittcher et al., The MIT Press, 2010

0 Any publication co-authored or even cited by these guys:

> Ricardo Baeza-Yates, B. Barla Cambazoglu, Mauricio Marin, Alistair Moffat,
Fabrizio Silvestri, Torsten Suel, Justin Zobel (in alphabetic order).

Thank you!
—

simon.jonassen@gmail.com

