Introduction to Information Retrieval

CS276: Information Retrieval and Web Search Text Classification 1

Chris Manning, Pandu Nayak and Prabhakar Raghavan

Prep work

- This lecture presumes that you've seen the 124 coursera lecture on Naïve Bayes, or equivalent
- Will refer to NB without describing it

Standing queries

- The path from IR to text classification:
 - You have an information need to monitor, say:
 - Unrest in the Niger delta region
 - You want to rerun an appropriate query periodically to find new news items on this topic
 - You will be sent new documents that are found
 - I.e., it's not ranking but classification (relevant vs. not relevant)
- Such queries are called standing queries
 - Long used by "information professionals"
 - A modern mass instantiation is Google Alerts
- Standing queries are (hand-written) text classifiers

From: Google Alerts

Subject: Google Alert - stanford -neuro-linguistic nlp OR "Natural Language Processing" OR parser OR tagger OR ner OR "named entity" OR segmenter OR classifier OR dependencies OR "core nlp" OR corenlp OR phrasal

Date: May 7, 2012 8:54:53 PM PDT

To: Christopher Manning

Web

3 new results for stanford -neuro-linguistic nlp OR "Natural Language Processing" OR parser OR tagger OR ner OR "named entity" OR segmenter OR classifier OR dependencies OR "core nlp" OR corenlp OR phrasal

Twitter / Stanford NLP Group: @Robertoross If you only n ...

@Robertoross If you only need tokenization, java -mx2m edu.stanford.nlp. process.PTBTokenizer file.txt runs in 2MB on a whole file for me.... 9:41 PM Apr 28th ... twitter.com/stanfordnlp/status/196459102770171905

[Java] LexicalizedParser lp = LexicalizedParser.loadModel("edu ...

loadModel("edu/stanford/nlp/models/lexparser/englishPCFG.ser.gz");. String[] sent = { "This", "is", "an", "easy", "sentence", "." };. Tree parse = lp.apply(Arrays. pastebin.com/az14R9nd

More Problems with Statistical NLP || kuro5hin.org

Tags: nlp, ai, coursera, stanford, nlp-class, cky, nltk, reinventing the wheel, ... Programming Assignment 6 for Stanford's nlp-class is to implement a CKY parser . www.kuro5hin.org/story/2012/5/5/11011/68221

Tip: Use quotes ("like this") around a set of words in your query to match them exactly. Learn more.

Delete this alert. Create another alert. Manage your alerts.

Spam filtering Another text classification task

From: "" <takworlld@hotmail.com> Subject: real estate is the only way... gem oalvgkay

Anyone can buy real estate with no money down

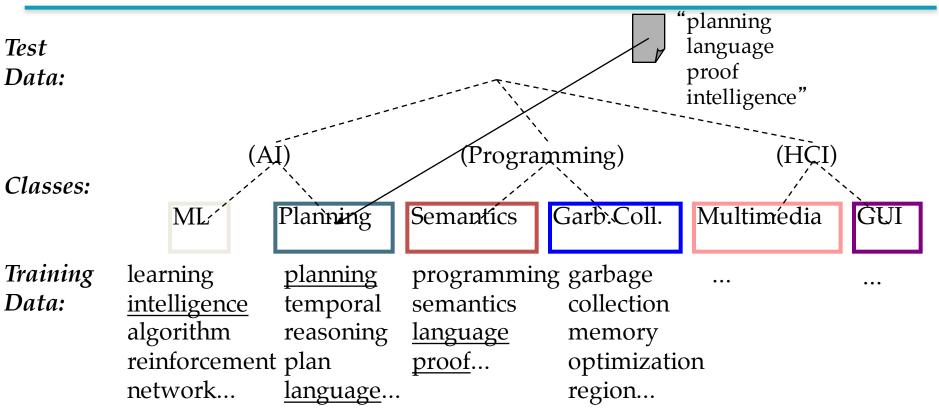
Stop paying rent TODAY !

There is no need to spend hundreds or even thousands for similar courses

I am 22 years old and I have already purchased 6 properties using the methods outlined in this truly INCREDIBLE ebook.

Change your life NOW !

Click Below to order: http://www.wholesaledaily.com/sales/nmd.htm


Categorization/Classification

- Given:
 - A representation of a document d
 - Issue: how to represent text documents.
 - Usually some type of high-dimensional space bag of words
 - A fixed set of classes:

 $C = \{c_1, c_2, ..., c_j\}$

- Determine:
 - The category of $d: \gamma(d) \in C$, where $\gamma(d)$ is a classification function
 - We want to build classification functions ("classifiers").

Document Classification

Classification Methods (1)

- Manual classification
 - Used by the original Yahoo! Directory
 - Looksmart, about.com, ODP, PubMed
 - Accurate when job is done by experts
 - Consistent when the problem size and team is small
 - Difficult and expensive to scale
 - Means we need automatic classification methods for big problems

Classification Methods (2)

- Hand-coded rule-based classifiers
 - One technique used by new agencies, intelligence agencies, etc.
 - Widely deployed in government and enterprise
 - Vendors provide "IDE" for writing such rules

Classification Methods (2)

- Hand-coded rule-based classifiers
 - Commercial systems have complex query languages
 - Accuracy is can be high if a rule has been carefully refined over time by a subject expert
 - Building and maintaining these rules is expensive

A Verity topic A complex classification rule

comment line	# Beginning of art topic definition
top-level top ic	art ACCRUE
topic de finition modifiers	<pre>/author = "fsmith" /date = "30-Dec-01" /annotation = "Topic created</pre>
subtopictopic	* 0.70 performing-arts ACCRUE
evidencetopic	** 0.50 WORD
topic definition modifier	/wordtext = ballet
evidencetopic	** 0.50 STEM
topic definition modifier eviden cetopic	<pre>/wordtext = dance ** 0.50 WORD</pre>
topic definition modifier	∕wordtext = opera
evidencetopic	** 0.30 WORD
topic definition modifier	∕wordtext = symphony
subtopic	* 0.70 visual-arts ACCRUE
	** 0.50 WORD
	<pre>/wordtext = painting ** 0.50 WORD</pre>
	/wordtext = sculpture
subtopic	* 0.70 film ACCRUE
	** 0.50 STEM
	∕wordtext = film
subtopic	** 0.50 motion-picture PHRASE
	*** 1.00 WORD
	/wordtext = motion
	*** 1.00 WORD /wordtext = picture
	** 0.50 STEM
	∕wordtext = movie
sub to pic	* 0.50 video ACCRUE
	** 0.50 STEM
	∕wordtext = video
	** 0.50 STEM
	/wordtext = vor
	# End of art topic

Note:

- maintenance issues (author, etc.)
- Hand-weighting of terms

[Verity was bought by Autonomy, which was bought by HP ...]

Classification Methods (3): Supervised learning

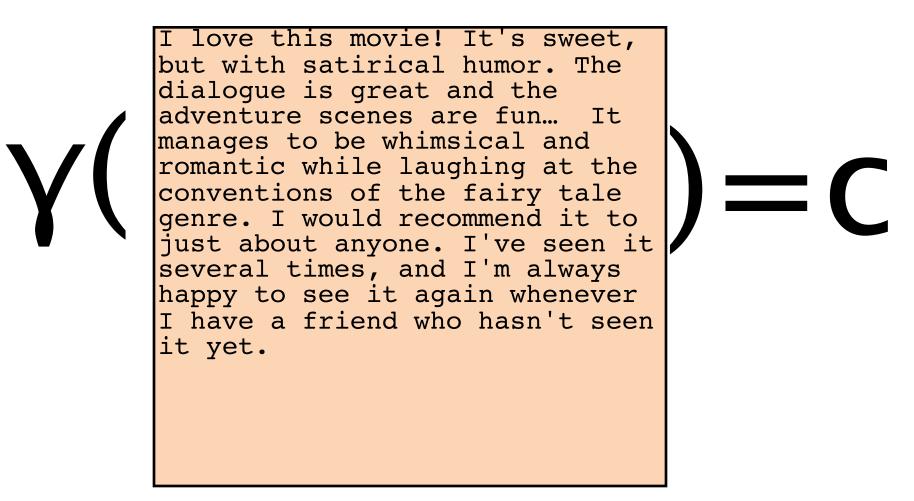
Given:

- A document d
- A fixed set of classes:

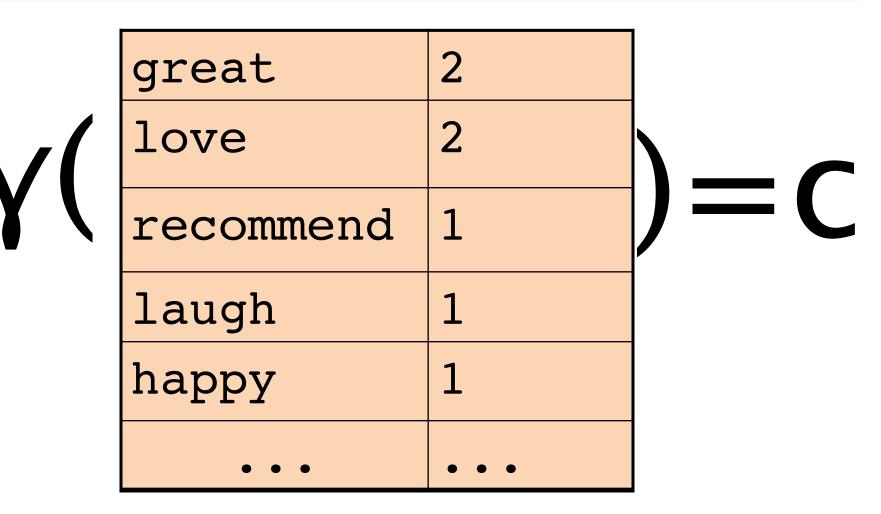
 $C = \{c_1, c_2, ..., c_j\}$

 A <u>training set</u> D of documents each with a label in C

Determine:


- A learning method or algorithm which will enable us to learn a classifier γ
- For a test document d, we assign it the class $\gamma(d) \in C$

Classification Methods (3)


Supervised learning

- Naive Bayes (simple, common) see video
- k-Nearest Neighbors (simple, powerful)
- Support-vector machines (new, generally more powerful)
- Image: plus many other methods
- No free lunch: requires hand-classified training data
- But data can be built up (and refined) by amateurs
- Many commercial systems use a mixture of methods

The bag of words representation

The bag of words representation

Features

- Supervised learning classifiers can use any sort of feature
 - URL, email address, punctuation, capitalization, dictionaries, network features
- In the bag of words view of documents
 - We use **only** word features
 - we use all of the words in the text (not a subset)

Feature Selection: Why?

- Text collections have a large number of features
 - 10,000 1,000,000 unique words ... and more
- Selection may make a particular classifier feasible
 - Some classifiers can't deal with 1,000,000 features
- Reduces training time
 - Training time for some methods is quadratic or worse in the number of features
- Makes runtime models smaller and faster
- Can improve generalization (performance)
 - Eliminates noise features
 - Avoids overfitting

Feature Selection: Frequency

- The simplest feature selection method:
 - Just use the commonest terms
 - No particular foundation
 - But it make sense why this works
 - They're the words that can be well-estimated and are most often available as evidence
 - In practice, this is often 90% as good as better methods
 - Smarter feature selection future lecture

Evaluating Categorization

- Evaluation must be done on test data that are independent of the training data
 - Sometimes use cross-validation (averaging results over multiple training and test splits of the overall data)
- Easy to get good performance on a test set that was available to the learner during training (e.g., just memorize the test set)

Evaluating Categorization

- Measures: precision, recall, F1, classification accuracy
- Classification accuracy: r/n where n is the total number of test docs and r is the number of test docs correctly classified

WebKB Experiment (1998)

- Classify webpages from CS departments into:
 - student, faculty, course, project
- Train on ~5,000 hand-labeled web pages
 - Cornell, Washington, U.Texas, Wisconsin
- Crawl and classify a new site (CMU) using Naïve Bayes

Results	Student	Faculty	Person	Project	Course	Departmt
Extracted	180	66	246	99	28	1
Correct	130	28	194	72	25	1
Accuracy:	72%	42%	79%	73%	89%	100%

Faculty			Students			Courses	
associate	0.00417	ге	sume	0.00516) (homework	0.00413
chair	0.00303	ac	lvisor	0.00456		syllabus	0.00399
member	0.00288	st	udent	0.00387		assignments	0.00388
թհ	0.00287	W	orking	0.00361		exam	0.00385
director	0.00282	st	uff	0.00359		grading	0.00381
fax.	0.00279	111	n ks	0.00355		midterm	0.00374
journal	0.00271	he	omepage	0.00345		рш	0.00371
recent	0.00260	in	terests	0.00332	i i	instructor	0.00370
received	0.00258	pe	ersonal	0.00332		due	0.00364
award	0.00250	fa	vorite	0.00310		final	0.00355

Departments		Research P	rojects	Others	
departmental	0.01246	investigators	0.00256	type	0.00164
colloquia	0.01076	group	0.00250	jan	0.00148
epartment	0.01045	members	0.00242	enter	0.00145
seminars	0.00997	researchers	0.00241	random	0.00142
schedules	0.00879	laboratory	0.00238	program	0.00136
webmaster	0.00879	develop	0.00201	net	0.00128
events	0.00826	related	0.00200	time	0.00128
facilities	0.00807	агра	0.00187	format	0.00124
eople	0.00772	affiliated	0.00184	access	0.00117
postgraduate	0.00764	project	0.00183	begin	0.00116

SpamAssassin

- Naïve Bayes has found a home in spam filtering
 - Paul Graham's A Plan for Spam
 - Widely used in spam filters
 - But many features beyond words:
 - black hole lists, etc.
 - particular hand-crafted text patterns

SpamAssassin Features:

- Basic (Naïve) Bayes spam probability
- Mentions: Generic Viagra
- Regex: millions of (dollar) ((dollar) NN,NNN,NNN)
- Phrase: impress ... girl
- Phrase: 'Prestigious Non-Accredited Universities'
- From: starts with many numbers
- Subject is all capitals
- HTML has a low ratio of text to image area
- Relay in RBL, http://www.mailabuse.com/enduserinfo_rbl.html
- RCVD line looks faked
- http://spamassassin.apache.org/tests_3_3_x.html

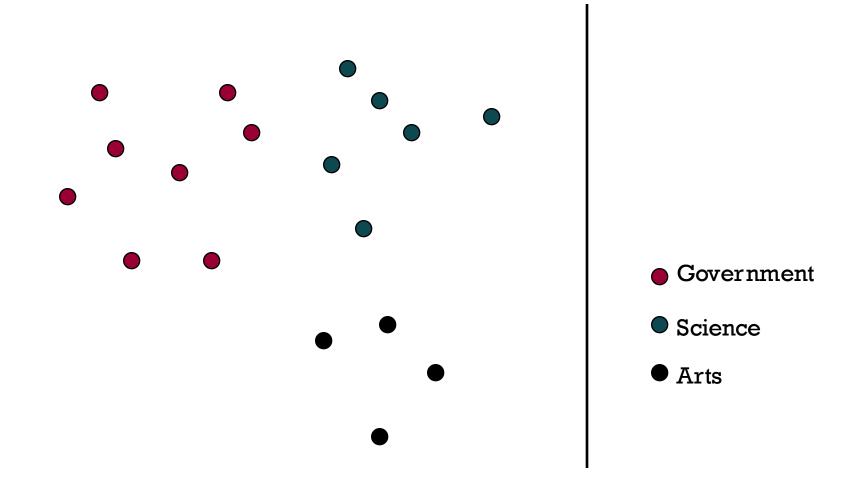
Naive Bayes is Not So Naive

- Very fast learning and testing (basically just count words)
- Low storage requirements
- Very good in domains with many equally important features
- More robust to irrelevant features than many learning methods

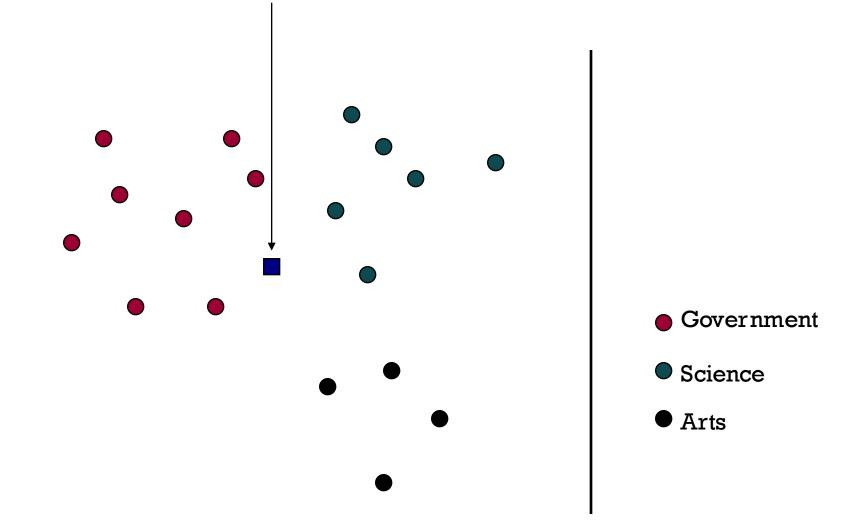
Irrelevant features cancel each other without affecting results

Naive Bayes is Not So Naive

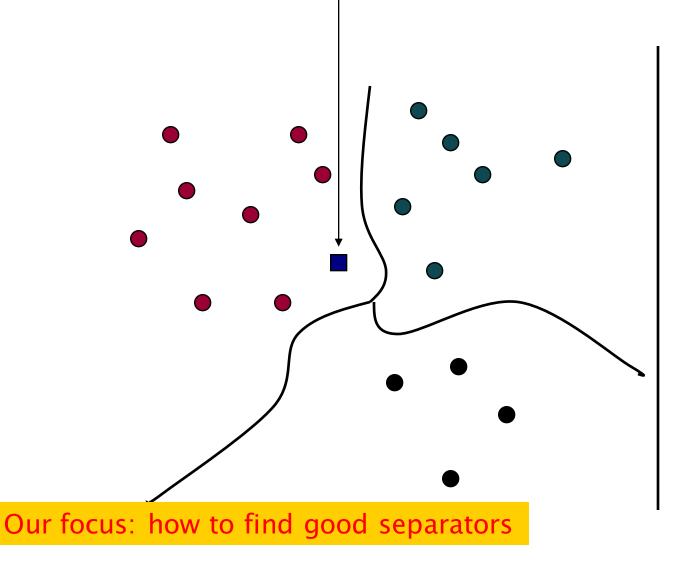
- More robust to concept drift (changing class definition over time)
- Naive Bayes won 1st and 2nd place in KDD-CUP 97 competition out of 16 systems

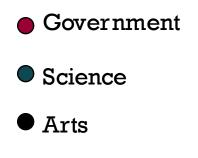

Goal: Financial services industry direct mail response prediction: Predict if the recipient of mail will actually respond to the advertisement – 750,000 records.

• A good dependable baseline for text classification (but not the best)!


Classification Using Vector Spaces

- In vector space classification, training set corresponds to a labeled set of points (equivalently, vectors)
- Premise 1: Documents in the same class form a contiguous region of space
- Premise 2: Documents from different classes don't overlap (much)
- Learning a classifier: build surfaces to delineate classes in the space


Documents in a Vector Space


Test Document of what class?

Test Document = Government

Is this similarity hypothesis true in general?

Definition of centroid

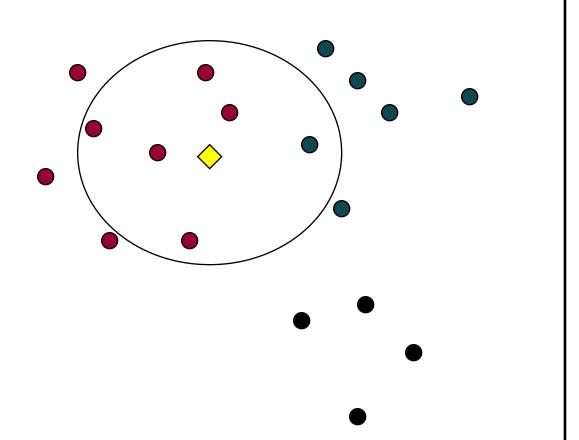
$$\vec{\mu}(c) = \frac{1}{|D_c|} \sum_{d \in D_c} \vec{v}(d)$$

- Where D_c is the set of all documents that belong to class c and v(d) is the vector space representation of d.
- Note that centroid will in general not be a unit vector even when the inputs are unit vectors.

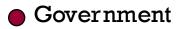
Rocchio classification

- Rocchio forms a simple representative for each class: the centroid/prototype
- Classification: nearest prototype/centroid
- It does not guarantee that classifications are consistent with the given training data

Rocchio classification


- Little used outside text classification
 - It has been used quite effectively for text classification
 - But in general worse than Naïve Bayes
- Again, cheap to train and test documents

k Nearest Neighbor Classification


kNN = k Nearest Neighbor

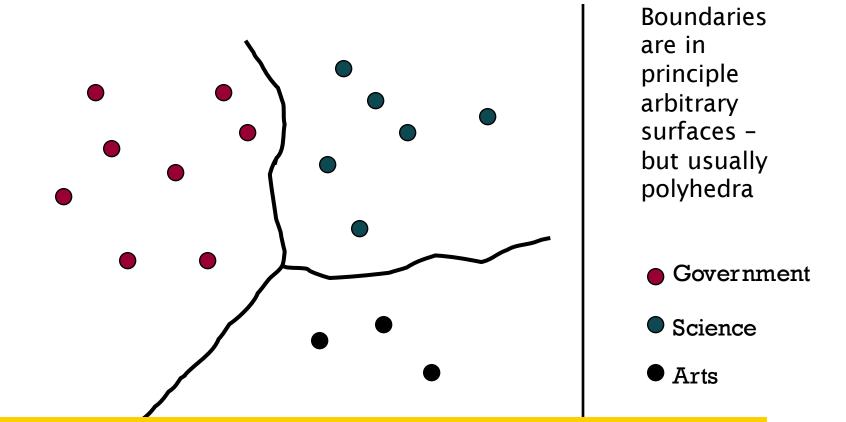
- To classify a document *d*:
- Define k-neighborhood as the k nearest neighbors of d
- Pick the majority class label in the kneighborhood

Example: k=6 (6NN)

P(science|♦)?

Science

Arts

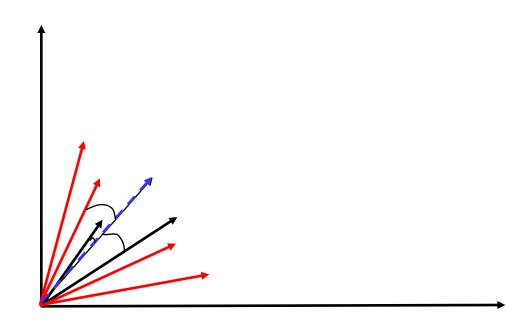

Nearest-Neighbor Learning

- Learning: just store the labeled training examples D
- Testing instance x (under 1NN):
 - Compute similarity between x and all examples in D.
 - Assign x the category of the most similar example in D.
- Does not compute anything beyond storing the examples
- Also called:
 - Case-based learning
 - Memory-based learning
 - Lazy learning
- Rationale of kNN: contiguity hypothesis

k Nearest Neighbor

- Using only the closest example (1NN) subject to errors due to:
 - A single atypical example.
 - Noise (i.e., an error) in the category label of a single training example.
- More robust: find the k examples and return the majority category of these k
- k is typically odd to avoid ties; 3 and 5 are most common

kNN decision boundaries



kNN gives locally defined decision boundaries between classes – far away points do not influence each classification decision (unlike in Naïve Bayes, Rocchio, etc.)

Illustration of 3 Nearest Neighbor for Text Vector Space

3 Nearest Neighbor vs. Rocchio

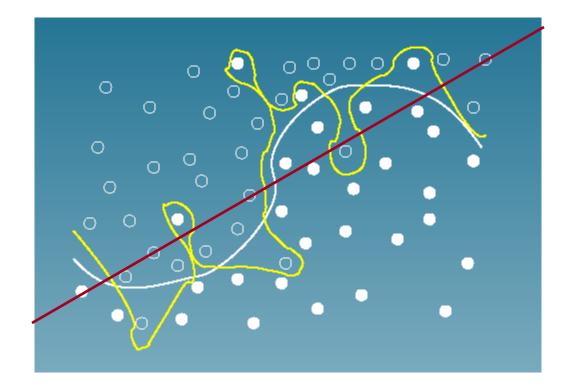
 Nearest Neighbor tends to handle polymorphic categories better than Rocchio/NB.

kNN: Discussion

- No feature selection necessary
- No training necessary
- Scales well with large number of classes
 - Don't need to train n classifiers for n classes
- Classes can influence each other
 - Small changes to one class can have ripple effect
- May be expensive at test time
- In most cases it's more accurate than NB or Rocchio

Let's test our intuition

- Can a bag of words always be viewed as a vector space?
- What about a bag of features?
- Can we always view a standing query as a region in a vector space?
- What about Boolean queries on terms?
- What do "rectangles" equate to?


Bias vs. capacity – notions and terminology

- Consider asking a botanist: Is an object a tree?
 - Too much capacity, low bias
 - Botanist who memorizes
 - Will always say "no" to new object (e.g., different # of leaves)
 - Not enough capacity, high bias
 - Lazy botanist
 - Says "yes" if the object is green
 - You want the middle ground

kNN vs. Naive Bayes

- Bias/Variance tradeoff
 - Variance ≈ Capacity
- kNN has high variance and low bias.
 - Infinite memory
- NB has low variance and high bias.
 - Linear decision surface (hyperplane see later)

Bias vs. variance: Choosing the correct model capacity

Summary: Representation of Text Categorization Attributes

- Representations of text are usually very high dimensional
- High-bias algorithms that prevent overfitting should generally work best in high-dimensional space
- For most text categorization tasks, there are many relevant features and many irrelevant ones

Which classifier do I use for a given text classification problem?

- Is there a learning method that is optimal for all text classification problems?
- No, because there is a tradeoff between bias and variance.
- Factors to take into account:
 - How much training data is available?
 - How simple/complex is the problem? (linear vs. nonlinear decision boundary)
 - How noisy is the data?
 - How stable is the problem over time?
 - For an unstable problem, its better to use a simple and robust classifier.