
CS276B
Text Retrieval and Mining

Winter 2005

Lecture 12

What is XML?

n eXtensible Markup Language
n A framework for defining markup languages
n No fixed collection of markup tags

n Each XML language targeted for application
n All XML languages share features

n Enables building of generic tools

Basic Structure

n An XML document is an ordered, labeled
tree

n character data leaf nodes contain the actual
data (text strings)

n element nodes, are each labeled with
n a name (often called the element type), and
n a set of attributes, each consisting of a name

and a value,

n can have child nodes

XML Example

XML Example

<chapter id="cmds">
<chaptitle>FileCab</chaptitle> <para>This
chapter describes the commands that
manage the <tm>FileCab</tm>inet
application.</para> </chapter>

Elements

n Elements are denoted by markup tags
n <foo attr1=“value” … > thetext </foo>
n Element start tag: foo

n Attribute: attr1
n The character data: thetext

n Matching element end tag: </foo>

XML vs HTML

n HTML is a markup language for a specific
purpose (display in browsers)

n XML is a framework for defining markup
languages

n HTML can be formalized as an XML language
(XHTML)

n XML defines logical structure only
n HTML: same intention, but has evolved into

a presentation language

XML: Design Goals

n Separate syntax from semantics to provide
a common framework for structuring
information

n Allow tailor-made markup for any
imaginable application domain

n Support internationalization (Unicode) and
platform independence

n Be the future of (semi)structured
information (do some of the work now done
by databases)

Why Use XML?

n Represent semi-structured data (data that
are structured, but don’t fit relational model)

n XML is more flexible than DBs

n XML is more structured than simple IR
n You get a massive infrastructure for free

Applications of XML

n XHTML
n CML – chemical markup language
n WML – wireless markup language
n ThML – theological markup language

n <h3 class="s05" id="One.2.p0.2">Having a Humble
Opinion of Self</h3> <p class="First"
id="One.2.p0.3">EVERY man naturally desires
knowledge <note place="foot" id="One.2.p0.4"> <p
class="Footnote" id="One.2.p0.5"><added
id="One.2.p0.6"> <name
id="One.2.p0.7">Aristotle</name>, Metaphysics, i. 1.
</added></p> </note>; but what good is knowledge
without fear of God? Indeed a humble rustic who
serves God is better than a proud intellectual who
neglects his soul to study the course of the stars.
<added id="One.2.p0.8"><note place="foot"
id="One.2.p0.9"> <p class="Footnote"
id="One.2.p0.10"> Augustine, Confessions V. 4. </p>
</note></added> </p>

XML Schemas

n Schema = syntax definition of XML language
n Schema language = formal language for

expressing XML schemas

n Examples
n Document Type Definition
n XML Schema (W3C)

n Relevance for XML IR
n Our job is much easier if we have a (one)

schema

XML Tutorial

n http://www.brics.dk/~amoeller/XML/index.html

n (Anders Møller and Michael Schwartzbach)

n Previous (and some following) slides are
based on their tutorial

XML Indexing and Search

Native XML Database

n Uses XML document as logical unit
n Should support

n Elements

n Attributes
n PCDATA (parsed character data)

n Document order

n Contrast with
n DB modified for XML
n Generic IR system modified for XML

XML Indexing and Search

n Most native XML databases have taken a DB
approach
n Exact match
n Evaluate path expressions

n No IR type relevance ranking

n Only a few that focus on relevance ranking

Data vs. Text-centric XML

n Data-centric XML: used for messaging
between enterprise applications
n Mainly a recasting of relational data

n Content-centric XML: used for annotating
content
n Rich in text

n Demands good integration of text retrieval
functionality

n E.g., find me the ISBN #s of Books with at
least three Chapters discussing cocoa
production, ranked by Price

IR XML Challenge 1: Term Statistics

n There is no document unit in XML
n How do we compute tf and idf?
n Global tf/idf over all text context is useless

n Indexing granularity

IR XML Challenge 2: Fragments

n IR systems don’t store content (only index)
n Need to go to document for

retrieving/displaying fragment
n E.g., give me the Abstracts of Papers on

existentialism

n Where do you retrieve the Abstract from?

n Easier in DB framework

IR XML Challenges 3: Schemas

n Ideally:
n There is one schema
n User understands schema

n In practice: rare
n Many schemas
n Schemas not known in advance
n Schemas change
n Users don’t understand schemas

n Need to identify similar elements in different
schemas
n Example: employee

IR XML Challenges 4: UI

n Help user find relevant nodes in schema
n Author, editor, contributor, “from:”/sender

n What is the query language you expose to
the user?
n Specific XML query language? No.
n Forms? Parametric search?

n A textbox?

n In general: design layer between XML and
user

IR XML Challenges 5: using a DB

n Why you don’t want to use a DB
n Spelling correction
n Mid-word wildcards

n Contains vs “is about”
n DB has no notion of ordering

n Relevance ranking

Querying XML

n Today:
n XQuery
n XIRQL

n Lecture 15
n Vector space approaches

XQuery

n SQL for XML
n Usage scenarios

n Human-readable documents

n Data-oriented documents
n Mixed documents (e.g., patient records)

n Relies on
n XPath

n XML Schema datatypes

n Turing complete
n XQuery is still a working draft.

XQuery

n The principal forms of XQuery expressions
are:
n path expressions
n element constructors

n FLWR ("flower") expressions
n list expressions

n conditional expressions

n quantified expressions
n datatype expressions

n Evaluated with respect to a context

FLWR

n FOR $p IN document("bib.xml")//publisher LET $b :=
document("bib.xml”)//book[publisher = $p] WHERE
count($b) > 100 RETURN $p

n FOR generates an ordered list of bindings of
publisher names to $p

n LET associates to each binding a further binding of
the list of book elements with that publisher to $b

n at this stage, we have an ordered list of tuples of
bindings: ($p,$b)

n WHERE filters that list to retain only the desired
tuples

n RETURN constructs for each tuple a resulting value

Queries Supported by XQuery

n Location/position (“chapter no.3”)
n Simple attribute/value

n /play/title contains “hamlet”

n Path queries
n title contains “hamlet”

n /play//title contains “hamlet”

n Complex graphs
n Employees with two managers

n Subsumes: hyperlinks
n What about relevance ranking?

How XQuery makes ranking
difficult

n All documents in set A must be ranked
above all documents in set B.

n Fragments must be ordered in depth-first,
left-to-right order.

XQuery: Order By Clause

for $d in document("depts.xml")//deptno
let $e := document("emps.xml")//emp[deptno

= $d]

where count($e) >= 10
order by avg($e/salary) descending

return <big-dept> { $d,
<headcount>{count($e)}</headcount>,
<avgsal>{avg($e/salary)}</avgsal> } </big-
dept>

XQuery Order By Clause

n Order by clause only allows ordering by
“overt” criterion
n Say by an attribute value

n Relevance ranking
n Is often proprietary
n Can’t be expressed easily as function of set

to be ranked

n Is better abstracted out of query formulation
(cf. www)

XIRQL

n University of Dortmund
n Goal: open source XML search engine

n Motivation
n “Returnable” fragments are special

n E.g., don’t return a <bold> some text </bold>
fragment

n Structured Document Retrieval Principle

n Empower users who don’t know the schema
n Enable search for any person no matter how

schema encodes the data

n Don’t worry about attribute/element

Atomic Units

n Specified in schema
n Only atomic units can be returned as result

of search (unless unit specified)

n Tf.idf weighting is applied to atomic units
n Probabilistic combination of “evidence” from

atomic units

XIRQL Indexing

Structured Document Retrieval
Principle

n A system should always retrieve the most
specific part of a document answering a
query.

n Example query: xql

n Document:
<chapter> 0.3 XQL
<section> 0.5 example </section>

<section> 0.8 XQL 0.7 syntax </section>

</chapter>

q Return section, not chapter

Augmentation weights

n Ensure that Structured Document Retrieval
Principle is respected.

n Assume different query conditions are
disjoint events -> independence.

n P(chapter,XQL)=P(XQL|chapter)+P(section|cha
pter)*P(XQL|section) –
P(XQL|chapter)*P(section|chapter)*P(XQL|sect
ion) = 0.3+0.6*0.8-0.3*0.6*0.8 = 0.636

n Section ranked ahead of chapter

Datatypes

n Example: person_name
n Assign all elements and attributes with

person semantics to this datatype

n Allow user to search for “person” without
specifying path

XIRQL: Summary

n Relevance ranking
n Fragment/context selection
n Datatypes (person_name)

n Semantic relativism
n Attribute/element

Data structures for XML retrieval

A very basic introduction.

Data structures for XML retrieval

n What are the primitives we need?

n Inverted index: give me all elements
matching text query Q
n We know how to do this – treat each

element as a document

n Give me all elements (immediately)
below any instance of the Book
element

n Combination of the above

Parent/child links

n Number each element
n Maintain a list of parent-child relationships

n E.g., Chapter:21 ← Book:8

n Enables immediate parent

n But what about “the word Hamlet under a
Scene element under a Play element?

General positional indexes

n View the XML document as a text document
n Build a positional index for each element

n Mark the beginning and end for each element, e.g.,

Play Doc:1(27) Doc:1(2033)

/Play Doc:1(1122) Doc:1(5790)

Verse Doc:1(431) Doc:4(33)

/Verse Doc:1(867) Doc:4(92)

Term:droppeth Doc:1(720)

Positional containment

Doc:1

27 1122 2033 5790
Play

431 867
Verse

Term:droppeth
720

droppeth under Verse under Play.

Containment can be
viewed as merging
postings.

Summary of data structures

n Path containment etc. can essentially be
solved by positional inverted indexes

n Retrieval consists of “merging” postings

n All the compression tricks etc. from 276A
are still applicable

n Complications arise from insertion/deletion
of elements, text within elements
n Beyond the scope of this course

Resources

n Jan-Marco Bremer’s publications on xml and ir:
http://www.db.cs.ucdavis.edu/~bremer

n www.w3.org/XML - XML resources at W3C
n Ronald Bourret on native XML databases:

http://www.rpbourret.com/xml/ProdsNative.htm
n Norbert Fuhr and Kai Grossjohann. XIRQL: A query

language for information retrieval in XML
documents. In Proceedings of the 24th International
ACM SIGIR Conference, New Orleans, Louisiana,
September 2001.

n http://www.sciam.com/2001/0501issue/0501berner
s-lee.html

n ORDPATHs: Insert-Friendly XML Node Labels.
n www.cs.umb.edu/~poneil/ordpath.pdf

