UiO : University of Oslo

Classification with vector space models

Pierre Lison University of Oslo, Dep. of Informatics

> INF3800: Søketeknologi April 23, 2014

> > UiO : University of Oslo

Outline of the lecture

- Recap' of last week
- Classification in vector space
 - Rocchio
 - k-nearest neighbours
- Analysis of classifiers
- Conclusion

• Recap' of last week

- Classification in vector space
 - Rocchio
 - k-nearest neighbours
- Analysis of classifiers
- Conclusion

3

UiO : University of Oslo

Classification

- Space X of possible inputs
- Set $\mathbb{C} = \{c_1, c_2, \dots c_J\}$ of possible classes or categories
- Classifier γ maps inputs to categories:

$$\gamma: \mathbb{X} \to \mathbb{C}$$

Goal: estimate this classifier with a training set \mathbb{D} composed of *n* examples $\{(\mathbf{x}_i, \mathbf{c}_i) : \mathbf{I} \le i \le n\}$

where \mathbf{x}_i is the *i*th example and c_i its category

- The inputs $\mathbf{x} \in \mathbb{X}$ are often represented as feature vectors:
 - Each vector position corresponds to a particular feature, with a discrete or continuous range
 - For instance, a "bag-of-words" representation of a document may be encoded as a vector

 $[w_1, w_2, w_3 \dots, w_N]^T$ where w_i is the number of occurrences of the term i

• The categories $c \in \mathbb{C}$ must be discrete labels

UiO: University of Oslo

5

• The classification of a document d is a search for the class c* such that

$$c^* = \operatorname*{argmax}_{c} P(c|d)$$

- But the probability P(c|d) is hard to determine!
- Using Bayes rule, we can rewrite the probability:

$$P(c|d) = \frac{P(d|c)P(c)}{P(d)} \xrightarrow{prior of the class}$$

$$P(c|d) = \frac{P(d|c)P(c)}{P(d)} \xrightarrow{prior of the class}$$

$$P(c|d) \xrightarrow{prior of the class}$$

$$P(c|d) \xrightarrow{prior of the class}$$

$$P(d) \xrightarrow{prior of the class}$$

$$P(d) \xrightarrow{prior of the class}$$

posterior prob of the class given the document

likelihood of the document given the class

- High accuracy on training examples does not necessarily translate into good results on new data
 - Phenomenon of "overfitting"
 - (especially for high-dimensional spaces and/or non-linear models)

Under-fitting

(too simple to explain the variance)

Appropriate-fitting

Over-fitting

(forcefitting -- too good to be true)

7

UiO: University of Oslo

Evaluation metrics

Confusion matrix on test set:

		Gold standard	
		Positive	Negative
Predicted by classifier	positive	True positive (tp)	False positive (fp)
	Negative	False negative (fn)	True negative (tn)

Precision =
$$\frac{tp}{tp + fp}$$
 Recall = $\frac{tp}{tp + fn}$
Accuracy = $\frac{tp + tn}{tp + tn + fp + fn}$

8

Recap' of last week

Classification in vector space

- Rocchio
- k-nearest neighbours
- Analysis of classifiers
- Conclusion

UiO: University of Oslo

9

Classification in vector space

 Last week, the input documents were encoded as feature vectors:

where w_i is the presence/absence $[w_1, w_2, \dots, w_N]$ (or number of occurrences) of term *i* in the document

• This week, we adopt a representation for the feature vectors based on the vector space model:

> where w_i is a (real-valued) $[w_1, w_2, \dots w_N]$ TF-IDF weight for the term i

Classification in vector space

- The goal remains the same
 - We want to build a classifier $\gamma : \mathbb{X} \to \mathbb{C}$
 - And we construct this classifier on the basis of a training set \mathbb{D} of *n* examples $\{(\mathbf{x}_i, \mathbf{c}_i) : 1 \le i \le n\}$

- We cover two new classifiers today:
 - Rocchio classification
 - k-nearest neighbours classification
- They rely on a notion of *distance* between points

UiO: University of Oslo

- Finds the "center of mass" for each class
- Centroids = "prototypical" examples

Rocchio classification

• A new point x will be classified in class c if it is closest to the centroid for c

• The centroid for class c is defined as:

$$\vec{\mu}(c) = \frac{1}{|D_c|} \sum_{d \in D_c} \vec{v}(d)$$

• Once the centroids are calculated, we can classify a new input d as:

$$c^* = \underset{c}{\operatorname{argmin}} \left| \vec{\mu}(c) - \vec{v}(d) \right|$$

(according to some distance metric)

15

UiO: University of Oslo

Limitations of Rocchio

- Fails to deal with non-contiguous regions
- Rocchio assumes that the classes correspond to spheres of equal radii

k-nearest neighbour (k-NN)

- k-NN adopts a different approach
 - Rely on *local* decisions based on the closest neighbors
 - k = number of neighbours to consider

17

UiO: University of Oslo

k-nearest neighbour

- Decision steps (for a input x)
 - Find the set S_k of k points closest to x
 - The probability P(c|x) is then the proportion of neighbours in S_k that belong to c
- We can also weight the votes of each neighbour according to their cosine similarity (or other measures)

- Complex, non-linear decision boundaries
 - Technically speaking: k-NN defines a Voronoi tessellation

UiO : University of Oslo

19

k-nearest neighbour

- Lazy learning: no actual training required!
 - (apart from extracting the features for each point)
 - "Instance-based" learning
 - But need to store all data points
- Testing can be expensive:
 - Need to consider a large number of points
 - But we can use an inverted index to filter the points to consider as possible neighbours

- Recap' of last week
- Classification in vector space
 - Rocchio
 - k-nearest neighbours

• Analysis of classifiers

Conclusion

21

UiO: University of Oslo

Analysis of classifiers

- We already covered 3 classification algorithms: Naive Bayes, Rocchio, k-NN
 - Next week: Support Vector Machines
- How to decide which algorithm is "better" for a particular task?
 - Ultimately, only a empirical evaluation will give us the answer
 - But we can gain some insight into the *theoretical properties* of each algorithm (what they can and cannot do)

Dimension of analysis

- What is the form of the decision boundary (linear, non-linear)?
- How is the classification function encoded (parametric or non-parametric form?)
- Is the model generative or discriminative?
 - Generative: estimate P(c|x) via P(x|c) and P(c)
 - **Discriminative**: estimate P(c|x) directly

Linear vs. non-linear classification

- A linear classifier defines a hyperplane in the input space \mathbb{X}
 - The hyperplane should separate the classes
 - If a hyperplane can be found with a perfect separation of classes, we say the problem is *linearly separable*
- See textbook for proofs that NB and Rocchio are linear classifiers

- Non-linear not necessarily more "powerful" than linear
 - Ex: a linear model with millions of features may be more powerful than a non-linear with a few dozens
- What is best in practice?
 - If problem is (more or less) linearly separable, linear classifiers often scale better
 - If problem is highly non-linear, non-linear classifiers are often more accurate

Linear vs. non-linear classification

	Linear classifier	Non-linear classifier
Function	Linear combination of features: $y = f(\mathbf{w}^{\mathrm{T}}\mathbf{x})$.	Arbitrary non-linear function
Decision boundary	Hyperplane	Non-linear, possibly discontinuous
Examples	Naive Bayes, Rocchio, logistic regression, linear SVMs	k-NN, multilayer neural networks, non-linear SVMs
Pros	Often robust, fast	Can express complex dependencies
Cons	Can fail if problem is not linearly separable	Prone to overfitting

Parametric vs. non-parametric

- One can also analyse classifiers in terms of the form of their classification function
 - Parametric classifiers are represented by a fixed set of parameters θ , and use the training data to estimate the best values for these parameters θ
 - Non-parametric classifiers do no rely on any parametric form, but directly operate on the training data
- Non-parametric classifiers make less assumptions about the problem

UiO **Conversity of Oslo**

Parametric vs. non-parametric

	Parametric classifier	Non-parametric classifier
Type of model	classifier with fixed set of parameters, use data to estimate their values	Use training data itself as "model"
Examples	Naive Bayes, Rocchio, logistic regression	k-NN, SVMs
Pros	Compact encoding, excellent results if model is appropriate	Flexible (naturally adapts itself to the data)
Cons	Rigidity (must stick to the given model structure)	Prior knowledge difficult to include; expensive in memory & CPU

- Finally, classifiers may be analysed in terms of how they estimate P(c|x)
 - Generative classifiers estimate P(c|x) indirectly:

 $P(c|x) \propto P(x|c)P(c) \longrightarrow prior \text{ of the class}$ likelihood of the input given the class

"generative" because they can generate new data points

• Discriminative classifiers estimate P(c|x) directly

29

Generative vs. discriminative

	Generative model	Discriminative model
Type of model	Estimates both the likelihood P(x c) and the prior P(c)	Directly estimates the posterior P(c x)
Examples	Naive Bayes, many graphical models	Logistic regression, SVMs, k-NNs
Pros	Explanatory power	Usually more accurate when lots of data is available
Cons	Tries to model "more" than is necessary for the task	Problems with missing data

- The bias-variance trade-off provides useful insights on the theoretical properties of classification algorithms
- One important quality metric in classification is the mean square error:

UiO **Conversity of Oslo**

Bias-variance trade-off

- MSE measures the error of a particular classifier
 - But we are interested in evaluating learning methods
- The learning error is the expectation (averaged) over the possible training sets:

learning-error(
$$\Gamma$$
) = $E_{\mathbb{D}} \left[E_x [\gamma(x) - P(c|x)]^2 \right]$
...
= $E_x [\text{bias}(\Gamma, x) + \text{variance}(\Gamma, x)]$

with $bias(\Gamma, x) = [E_{\mathbb{D}}[\Gamma_{\mathbb{D}}(x)] - P(c|x)]^2$ (details in the textbook, $variance(\Gamma, x) = E_{\mathbb{D}}[\Gamma_{\mathbb{D}}(x) - E_{\mathbb{D}}[\Gamma_{\mathbb{D}}(x)]]^2$ (details in the textbook, but you don't need to memorise them)

- The bias represents how much the classifier prediction deviates (on average) from the "true class probability
 - Bias is large = the classifiers are consistently wrong
- The variance represents the amount of variation in the classifier prediction depending on the training data
 - Variance is large = distinct training sets may lead to very different classifiers

Bias-variance trade-off

- Bias encodes the domain knowledge (assumptions) prior to learning
 - All learning algorithms necessarily have a bias (else they would not be able to generalize to new points)
- Variance represents the sensitivity of the algorithm to variations in the data
 - High variance = prone to overfitting!

• Examples:

- Naive Bayes has a *high bias* (can only encode linear problems) but a *low variance* (small variations of the training set will not move the boundary by much)
- k-nearest neighbour has a *low bias* (can encode complex, non-linear problems) but a *high variance* (very sensitive to noise in the training data)
- Minimising the learning error = finding the right trade-off between bias and variance

35

UiO : University of Oslo

- How to practically control the biasvariance trade-off
 - Reduce dimensionality (e.g. feature selection)
 - Reduce model complexity (e.g. regularisation, Bayesian priors on parameters)
 - Ensemble learning (combine several classifiers)
 - Cross-validation to test models empirically

- Recap' of last week
- Classification in vector space
 - Rocchio
 - k-nearest neighbours
- Analysis of classifiers

Conclusion

37

UiO : University of Oslo

- Classification in vector space:
 - Rocchio: a linear classifier that maps an input x to the class whose center of mass is closest to the point
 - *k-nearest neighbour*: a non-linear classifier that maps x to the majority class of its *k* closest neighbours
- Analysis of classification algorithms:
 - Various dimensions: Linear vs. non-linear, parametric vs. non-parametric, generative vs. discriminative
 - Bias-variance trade-off: finding the right balance between accuracy and robustness to overfitting