
Exercise 2a

Definition 1 (2-directed Hamiltonicity). Given a graph G = (V,E), G is said to be 2-directed
Hamiltonic, iff there exist 2 simple disjoint circuits in the graph with at least 3 nodes each,
where the union of both circuits is V .

The decision problem (2DHAM) is then: given a graph G, is it 2-directed Hamiltonic?

Proof. We are asked to prove that 2-directed Hamiltonicity (2DHAM) is in NPC. Let us
assume that directed Hamiltonian cycle (DHC) is in NPC1.

The proof has two steps.

• I need to prove that 2DHAM is in NP.

• I need to prove that some NPC problem X can be reduced in polynomial time to
2DHAM (i.e. X ∝ 2DHAM in polynomial time).

First of all, 2DHAM is trivially in NP. Given a certificate for an instance of 2DHAM , i.e.
two simple directed circuits in G = (V,E), we can check that each of the circuits has at least 3
nodes (that is trivially in P), that each of the circuits is simple (again trivially in O(|V |) time
and space by traversing each circuit and using a hash table), that the union of both circuits
encompasses V (again trivially in O(|V |) time and space with a help of a hash table and a
simple traversal). Therefore, 2DHAM ∈ NP.

For the second step of the proof I’ll use a reduction from DHC. Given an instance of
DHC, i.e. a directed graph G = (V,E) and the question “Does G have a directed Hamiltonian
circuit?”, we can transform this to an instance of 2DHAM in the following fashion. Let
G′ = (V ′, E′) be constructed thus.

V ′ = V ∪ {x1, x2, x3}
E′ = E ∪ {(x1, x2), (x2, x3), (x3, x1)}

I.e. I augment G with a directed Hamiltonian circuit x1, x2, x3 disconnected from the rest
of the graph. This transformation is obviously polynomial in |V | and |E|. Now, G′ is 2-directed
Hamiltonian if and only if G has a Hamiltonian circuit. Why?

• If G has a Hamiltonian circuit, then G′ has the following 2 Hamiltonian circuits: the
directed Hamiltonian circuit of G spanning V (this is the assumption) plus an addi-
tional circuit {x1, x2, x3}. The latter is trivially Hamiltonian. Thus G′ has 2 directed
Hamiltonian circuits and the union of the nodes participating in both covers the entire
V ′.

• Conversely, assume that G′ has 2 directed Hamiltonian circuits. One of these is the
(artifically) constructed {x1, x2, x3}. Since both circuits span the entire V ′, it means
that the second directed circuit must span the entire V ′ \ {x1, x2, x3} = V . But a simple
directed circuit spanning V will be exactly a directed Hamiltonian circuit for G = (V,E).

1We are allowed to assume that (undirected) Hamiltonian cycle problem is inNPC. However, I’ll demonstrate
later that the directed version, DHC, is in NPC as well. Since it is ultimately irrelevant which NPC problem
is used in the reduction, and I prefer DHC.

1

Figure 1: Reductions for NP-completness proof for 2a

Finally, there exist 2 trivial cases which have not been covered yet: G could have 1 or 2
nodes. Since there are 3 graphs in total possible with this number of nodes, for each of them
the transformation can use a pre-programmed answer (a 1-node graph is defined to have a
Hamiltonian circuit; a 2-node graph is defined NOT to have such a circuit. The transformation
uses this definition to adjust the answers).

So, DHC ∝ 2DHAM (just proven) and DHC ∈ NPC (assumed). These imply that
2DHAM ∈ NPC.

The last step is to demonstrate that DHC ∈ NPC. We could assume without proof that
(undirected) Hamiltonian circuit, HC, is in NPC. DHC is obviously in NPC by using the
following transformation from HC - each undirected edge (x1, x2) in the given HC-instance
is mapped to two directed edges (x1, x2), (x2, x1). The existence of a Hamiltonian circuit in
one version obviously implies the existence of the Hamiltonian circuit in the other version (we
follow the same path, which is always possible since an undirected edge results in directed
edges going in both directions). HC ∝ DHC is obviously polynomial (DHC has twice as
many edges but is otherwise identical).

The reductions for the example graph will proceed as outlined in figure 1.

Exercise 2b

Definition 2 (NP-hard). Any problem Π, whether a member of NP or not, to which we can
reduce an NPC problem. Π may be a function problem or a decision problem.

For the purpose of this exercise we are permitted to assume that “hamiltonicity” is in NPC.
I’ll assume that both Hamiltonian cycle (HC) and Hamiltonian path (HP) are in NPC.

2

(i) X: Find the length of the longest simple path between x and y. X ∈ NPH (however,
X /∈ NPC). Thus, X is “genuinely” NP-hard.

The fact that X ∈ NPH is proved by finding a suitable reduction from an NPC problem.
An obvious choice is HP. Assuming that we can solve X, HP ∝ X in the following
fashion. Given a graph G = (V,E) and given a Turing machine M that solves X, G has
a Hamiltonian path iff M finds a longest simple path of length |V | − 1 for a given node x
and some other node y ∈ V . So, HP ∝ X. This proves that X ∈ NPH, but I still need
to prove that X /∈ NP. This is by the fact that X is not a decision problem.

(ii) X: Find the length of the shortest simple path between x and y. X is polynomial.

And, I might add, obviously so, since Dijkstra’s algorithm solves X in time polynomial
in graph’s size. Given a problem instance for X, G = (V,E) assign a weight of +1 to
each edge and run Dijkstra’s algorithm from x. The length of the path returned by the
algorithm is in fact the shortest path, if it at all exists. The path is obviously simple,
since visiting the same node twice implies a loop which is impossible since it would have
been removed given how Dijkstra’s algorithm works and given that all the edges are +1
in weight.

(iii) X: Decide if there is a simple path between x and y that contains at least half the nodes
(including x and y). X ∈ NPC.
The problem is obviously in NP (given a path between x and y, it is trivial to check
in polynomial time that the path is simple and that its length is ≥ |V |/2). Now for
the reduction. I’ll demonstrate that HP ∝ X. Given an instance of HP, G = (V,E)
construct G′ = (V ′, E′) in the following fashion. V ′ = V ∪{x1, . . . , x|V |}, E′ = E. I.e. we
augment the original graph with twice the number of nodes and keep the original edges.
G′ has a simple path between x and y iff G has that path (the xis are not connected and
cannot contribute to the path). If the length of that path is |V ′|/2, it means that G has
a simple path of length |V |. If the length of that path is less than |V ′|/2 = |V |, the path
in G is not Hamiltonian. This concludes the reduction.

So, X ∈ NP and HP ∝ X. Since HP ∈ NPC (assumed), X ∈ NPC.

(iv) X: Find a longest simple path between x and y in G. The algorithm is to return the
resulting node sequence for one of the longest simple paths. X ∈ NPH.

This is not a decision problem, much like in (i). There is a trivial reduction though,
HP ∝ X (HP exists iff the length of the longest path is exactly |V | − 1)

(v) X: Is there a clique in G containing x, y and 3 more nodes? If so, produce such a clique.
X ∈ P.

The easiest way is to produce an algorithm. The critical part here is the fact that we
have 2 starting nodes and need only 3 more (this is what distinguishes this problem from
maximum clique or generalized clique’s existence problems). The easiest is simply to
sketch is a straightforward brute-force algorithm 1 on the next page.

Each step of the algorithm is obviously polynomial in |V |. Calculating neighbours of a
node is linear in |V |. Calculating a set intersection where each set is bounded by |V | is
polynomial in |V |. All steps are polynomial, the algorithm is polynomial and therefore
X ∈ P.

3

procedure common(x1, . . . , xk)
tmp← neighbours(x1)
for all x in x2 . . . xk do

tmp← tmp ∩ neighbours(x)
end for
return tmp {set of nodes that are connected to all nodes x1 . . . xk}
end procedure
procedure cliqueness(x, y)
for all n1 in common(x,y) do

for all n2 in common(x,y,n1) do
for all n3 in common(x,y”n1,n2) do

return x, y, n1, n2, n3 {that’s our clique}
end for

end for
end for
return there is no clique
end procedure

Algorithm 1: Clique calculation for problem (v)

4

	2a
	2b

