
UNIVERSITETET I OSLO
Institutt for informatikk

Kompendium nr. 51
til IN210

Dino Karabeg og
Rune Djurhuus

22. august 1999

2

Innhold

1 Forord 5

2 Polyscopic scientific teaching and writing 7
2.1 Motivation . 7
2.2 Anecdote One . 7
2.3 Analysis of anecdote One . 8
2.4 Anecdote Two . 8
2.5 Analysis of anecdote Two . 8
2.6 Conclusion . 8

3 Forelesningslysark og -notater 11
3.1 Lecture 1 . 12
3.2 Lecture 2 . 34
3.3 Lecture 3 . 56
3.4 Lecture 4 . 80
3.5 Lecture 5 . 106
3.6 Lecture 6 . 132
3.7 Lecture 7 . 160
3.8 Lecture 8 . 184
3.9 Lecture 9 . 210
3.10 Lecture 10 . 236
3.11 Lecture 11 . 274
3.12 Lecture 12 . 290
3.13 Lecture 13 . 318

4 Oppgaver, ledetråder og løsninger 341
4.1 Problems . 341
4.2 Hints . 350
4.3 Solutions . 356

5 Kommentarer til læreboka G&J 377
5.1 Innledning . 377
5.2 Kommentarer til Kapittel 1 . 377
5.3 Kommentarer til kapittel 2 . 381
5.4 Kommentarer til kapittel 3 . 384
5.5 Kommentarer til kapittel 4 . 391
5.6 Kommentarer til kapittel 5 . 393
5.7 Kommentarer til kapittel 6 . 394

3

4 INNHOLD

Kapittel 1

Forord

Dette er kompendium nr. 51 til bruk i kurset IN210 – Algoritmer og effektivitet –
ved Institutt for informatikk, Universitetet i Oslo.

Kapittel 2 inneholder to anekdoter som belyser Dino Karabegs polyskopis-
ke tilnærming til algoritmeteori og praksis. Kapittel 3 inneholder lysark (foiler)
og kommentarer, basert på forelesningene gitt av Dino Karabeg høsten 1998.
Kapittel 4 inneholder oppgaver, ledetråder og løsningsforslag. Siste kappitel er
noen kommentarerer til læreboka, opprinnelig skrevet til forelesningene våren
1990.

Kompendiet er redigert av Rune Djurhuus, men mesteparten av stoffet kom-
mer fra Dino Karabeg, med unntak av oppgaver med norsk tekst i kapittel 4
(Stein Krogdahl, Ellen Munthe-Kaas) og læreboknotatene i kapittel 5 (Stein Kro-
gdahl).

Kompendiet finnes tilgjengelig i pdf-format på “nettet”. Se nærmere infor-
masjon på http://www.ifi.uio.no/~in210/ området.

5

http://www.ifi.uio.no/~in210/

6 KAPITTEL 1. FORORD

Kapittel 2

Polyscopic scientific teaching
and writing

2.1 Motivation

We look at the following questions: What sort of problems in scientific teach-
ing and writing arise from the habitual flat-and-linear approach to information
representation? Can those problems be resolved by using polyscopic modeling?

By studying those questions we want to

• point to the advantages of the polyscopic modeling approach (see
http://www.ifi.uio.no/~id/) to teaching science and scientific writ-
ing over the common approaches.

• motivate our work on designing the Algorithm Theory class (IN210) and
the related "Lectures in Algorithm Theory" compendium and book ac-
cording to the guidelines set by the polyscopic modeling methodology.

We base this inquiry on a pair of anecdotes.

2.2 Anecdote One

"We don’t want theory for the sake of theory."

I heard those words from a chairman of an American computer science de-
partment. I was interviewing for a position and those words were his greeting
as I arrived from the airport. I was a novice theoretician. I felt like a cowboy-
movie character riding into a city and being received by the sherif with a gun in
his hand and a "We don’t like strangers!"

Anti-theory attitudes were not uncommon in both universities and busi-
nesses. When I was beginning with my doctorate people warned me against
studying theory. I assured them that I had no intention to become a theoreti-
cian. But as it turned out I had no other choice. I found in theory the natural
way to study the practical questions scientifically. I saw in theory a model of
practice, not "theory for the sake of theory". Theory was for me no more and no
less than organized knowledge about practice. I considered the algorithm the-
ory the natural way to understand computing. Why, then, was theory so little
appreciated among the non-theoreticians?

7

http://www.ifi.uio.no/~id/

8 CHAPTER 2. POLYSCOPIC SCIENTIFIC TEACHING AND WRITING

2.3 Analysis of anecdote One

If one opens an algorithm theory textbook one will easily understand why the
good chairman acted as he did. There is no mention of real-world issues in
a typical algorithm theory textbook. There are only definitions, lemmas and
theorems. The kind of stuff that may interest a theoretician, but hardly anyone
else.

One might conclude that we, the theoreticians, are to blame. Is it not our
duty to give our field and our work a proper representation? Is it not up to us to
motivate the theory so that any student or chairman can understand its mean-
ing and relevance? Why don’t we do that?

In a typical flat, linear, mono-scopic textbook (and in the corresponding style
of lecturing) one needs to choose a single way of writing, a single point of view,
a single level of detail. In a theory textbook, what could that single choice pos-
sibly be but - the theory itself?! Those definitions and those theorems really
have to be there! But an unfortunate consequence of that natural choice is that
the modeling aspect, the meaning and the relevance of the theory, the way the
theory organizes our ideas about computers and computation, the way it gives
us a systematic way of thinking about our field - the issues that are probably
far more interesting and more relevant for a typical student than the theorems
themselves - end up being left out.

2.4 Anecdote Two

"I don’t read research papers. I call up my friends by phone and they
tell them to me."

This I heard from a mathematician who was one of the leading people in his
field. Similar attitudes have been expressed surprisingly often.

I mean, similar attitudes were often heard among the researchers. Surpris-
ingly often because - if a researcher wouldn’t read the research papers in his
field, who in the world would?

2.5 Analysis of anecdote Two

Behind a typical result in a theoretical field there is usually an idea, an insight, a
"trick" which makes the result possible. Such an idea can be told in an informal
phone conversation in just a few minutes. But when one writes a paper about
the result, one aims to obtain the sharpest possible version of it. One writes
in formal terms. The simple, elegant ideas become burried in formalism and
difficult to recover.

Why can’t the researchers simply give an informal description of the key in-
sights in the research article, exactly as they would in a phone conversation with
a colleague friend? If they did, even the people who are not their friends would
be able to understand the article without unnecessary trouble. The obvious rea-
son is again the tradition of writing in a single style, of looking from a single view
point.

2.6 Conclusion

By writing a polyscopic algorithm theory textbook we make a model for poly-
scopic scientific writing and teaching. Several styles of writing and several an-
gles of looking are represented. We give, of course, the most relevant definitions

2.6. CONCLUSION 9

and theorems. But we also explain their practical implications, the modeling
aspect of the theory. We give a high-level view of the theory which shows how
the theory is structured. We extract the key techniques which make the main
results possible and we explain them by using very simple examples. The algo-
rithm theory becomes transparent, as if seen from different sides, projected on
different planes, each projection showing a single aspect, a simple image.

10 CHAPTER 2. POLYSCOPIC SCIENTIFIC TEACHING AND WRITING

Kapittel 3

Forelesningslysark og -notater

Dette kapittelet inneholder lysarkene (foilene) fra forelelesningene i IN210 slik
de ser ut for øyeblikket (august 1999). I tillegg har vi tatt med utfyllende kom-
mentarer til hvert lysark bassert på forelesningene som Dino Karabeg holdt høs-
ten 1998. Vi har plassert kommentarene til hvert enkelt lysark direkte etter lysar-
ket, slik at man lett kan følge med på lysarket mens man leser kommentarene.

Kommentarene er et redigert sammendrag av forelesningene. Det betyr at
den fortellende, ofte litt ordrike, forelesningsstilen skinner igjennom. Materialet
ville helt sikkert hatt godt av å redigeres enda mer, men fordi vi kun har hatt
polynomisk tid til rådighet, må det vente til neste versjon av kompendiet.

Ideen er at du som tar kurset kan velge om du vil lese om forelesningen på
forhånd og/eller bruke kommentarene som forelesningsnotater. Dermed vil du
forhåpentligvis få større utbytte av forelesningene.

En annen årsak til at vi her presenterer forlesningene i skriftlig form er at
pensum i kurset bare delvis dekkes av hver av de to lærebøkene. Garey og John-
sons “Computers and Intractability” er teoretisk meget sterk, men gir ikke alltid
den store oversiktsforståelsen. David Harels “Algorithmics” er lettlest og meget
praktisk anvendt, men den har ikke den nødvendige teoretiske dybden som vi
krever på et videregående universitetsemne.

Dino Karabeg legger stor vekt på å presentere informasjon fra flere synsvink-
ler som til sammen gir en helhetlig forståelse. Vi håper at denne måten å under-
vise på kan fungere som en bro mellom den praktisk-orienterte verdenen og
teoriverdenen.

11

12 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

3.1 Lecture 1

IN210 − lecture 1

Autumn 1999 2 of 12

Administrative information
• Teacher: Dino Karabeg (Email: dino@ifi,

Room: 3344, Phone: 22 85 27 02)

• Teaching material:

— Garey & Johnson: Computers and
Intractability

— D. Harel: Algorithmics

— Compendium no. 51

• Information:
http://www.ifi.uio.no/~in210/

• Problem sessions (gruppeøvelser):
Prepare in advance!

•Midterm (oblig): An old exam

• Final (eksamen): December 2rd 1999

NB!

Theory↔ proof

Theory 6↔ opinion

Answer = (sketch of a) proof

G&J:
1

Algo:
1

Welcome to IN210 – Algorihtms and Efficiency. There are three books to
read: The textbook in the earlier years was Garey and Johnson: Computers and
Intractability. The problem with G&J is that it is not really a textbook, it is a pro-
fessional book on NP-completeness and it covers only one part of the course.
So there will be parts which you don’t have in G&J, quite a few of them, and of
course my approach is completely different from what you have in G&J.

So we will supplement G&J with David Harel’s Algorithmics. This book sup-
plements what you don’t have in G&J, which are the general insights, the con-
nection with the real world. It is a very interesting book to read. It talks about
quite a few things, some of them are part of the course, some of them are not. I
recommend that you read this book.

We also have the new version of the compendium which is our first attempt
to combine the best from the two textbooks, namely theory and practice, into
a new kind of book written in a modular (polyscopic) style. There you have
foils and notes based on last year’s series of lectures . You also have homework
problems with hints and solutions, together with some old exams.

At http://www.ifi.uio.no/ in210/ you will find among other things announce-
ments, a lecture plan, and the description of the "pensum" (what goes into
the course and what is not part of it). You should read the announcement file
("Beskjeder") each week.

We will have problem sessions ("gruppeøvelser"), one midterm ("obliga-

3.1. LECTURE 1 13

torisk oppgave") and the exam. I would emphasize and recommend that you
prepare in advance for the problem sessions. You should read the problems
and try to solve them on your own. And even if you cannot, this would be ex-
tremely useful for you, because when you come to the group sessions, you will
listen in a completely different way if you have tried to solve the problems on
your own, then if you did not. You can imagine that if you try to solve the prob-
lem, then there is a little question mark that forms in your brain, it’s like, almost
like, a little hole that needs to be filled in. And then when information comes,
this hole is ready, so you can receive the information.

A lot of researchers, really good professional people, when they enter a new
area, they don’t just start reading what other people have done. They just read
some papers until they have understood what the problems are in the area.
Then the leave the papers and try to solve the problems on their own. Typi-
cally, they cannot because they have not advanced yet to that level. But in this
way they prepare themselves for actually understanding what the whole thing
is about. I recommend strongly that you do something similar.

The midterm is going to be around week 9 of the course, and it will be an old
exam – it will be a take-home exam. So you will take this exam home, and it will
give you an idea of what the real exam will look like.

There is a major point that regards all of these exams and problem sessions,
namely that the theory, which is what we are dealing with in this class, is about
proofs not opinions. Everything that ones states in theory, ones proofs. So that
means that whenever I am asking for an answer, I am really asking for a sketch
of a proof from you, not your opion, not just the answer, not just ’Yes’ or ’No’.
Sometimes I am asking for a sketch of a proof, sometimes I am asking for the
complete proof, but in either way when I read your answer, I should form an
impression that you would know how to prove your answer. That is extremely
important. So when you study, try to understand how you would prove things,
and when you answer me questions, show me that you can prove things.

14 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 1

Autumn 1999 3 of 12

Lecture 1 overview
• Our approach

• The subject matter - what this is all about

•Historical introduction

• Problems and their models

Here is what today’s lecture will be about:
I will first tell you a little bit about the approach to algorithm theory which

we are going to follow. This approach differs, I would say quite a bit, from what
is usual, and this is one of the reasons why we are making this compendium,
and eventually turn it into a book.

Then I will tell you what the course will cover, not in detail but kind of give
you a broad idea what this whole thing is all about that we will be talking about
in the class.

Next I will give a historical introduction into this subject matter. I will tell
you how exactly this subject developed historically, and by doing so I will tell
you what the interesting issues really are, the main interesting issues. So then
we will have both: We will have an idea of how this subject developed and also
what the main problems are and who are the main people who dealt with those
problems – very, very briefly.

And in the end we will deal with a little bit of some technical issues, and we
will start looking into the theory.

3.1. LECTURE 1 15

(This is a blank page)

16 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 1

Autumn 1999 4 of 12

Our approach
Modeling

models

abstraction interpretation

proof

practice

results

Perspective

In
fo

rm
at

io
n

H
ie

ra
rc

hy

Proofs, techniques
Technical details

High-Level Information
Basic insights
Big picture

Low-Level Information

Lectures → Mainly high-level understanding

Group sessions → Practice skills: proofs,
problems

Studying strategy: Don’t memorise pensum –
try to understand the whole!

Two words characterize our present approach to algorithm theory: The word
’modeling’ and the word ’perspective’. It is quite usual that algorithm theory –
and any kind of theory – is just theory. ’Just theory’ being definitions, theorems,
lemmas – technical things. We will however emphasize the practical side of the
issue, or the actual reality of computing and its connection with the theory. So
we will consider theory as a model of what happens in practice.

To get from the practice to theory – to models – we use abstraction, or for-
malization. So by using abstraction looking at theory, we ignore what is irrel-
evant, what maybe varies from one situation to another. As if looking through
our eyebrows, we try to see the broad features – what is essential. And based
on what is essential and broad, we make definitions, or formal models, and in
that way we represent what we see in practice by formal, or mathematical, or
defined things – formal models. So it is like we are moving from a real world to
an abstract world.

And then once we are in the abstract world we have the benefit of having
things well defined, having methodologies well defined. Then we live there for
a while, we make theorems, gain insights, use formal proofs. And then we step
back into practice and interpret those results and insights. We try to see what
they really mean – practically.

So this whole cycle from practice to modeling back to practice, is one of the
two most important things for us, for our approach. And I recommend to you
that whenever we are dealing with abstract things, models – whenever we are in
the abstract world, please see practice through it. We are not just interested in

3.1. LECTURE 1 17

theory for the sake of theory; we want to understand the reality through it. And
vice versa: When we are talking about the real world issues, then we want to see
through them, into theory, and see how exactly they are reflected in theory. So
these two – practice and theory – they are inseparable, they reflect one another.

The word perspective means a kind of a compact, simple, transparent pic-
ture of the whole. Ultimately we would like to build a perspective on our whole
subject matter – perspective on algorithmics, on this thing called the algorithm,
or a perspective on computation. So we want to understand it as a whole. And
I will be using this ideogram of the triangle. You can imagine that it represents
a little pyramid, and this pyramid represents a hierarchy of information.

On the top of this pyramid we find high level information. These are the
basic questions, the basic insights, and we want to know first of all, and above
all, what those are. What are really the main issues? And there on the top level
we want to form some kind of big picture of the whole thing. What it is really
that we are talking about.

In order to answer these high level questions, in order to form the big pic-
ture, we will have to descend down the information hierarchy to the technical
level, to the lower level, where we find definitions, proofs, techniques – all sort
of things. So, on that level we will be spending quite a bit of time, and also on
that level we practice something which is no less important than what happens
up there for our goal: We practice the technical skills.

So two things are really expected from you. One: high level, global under-
standing of the issue. Two: technical proficiency. Because understanding, being
able to ask questions, is not enough for a theory education: You need to be able
to do theory, which means do proofs, create models, understand them, under-
stand the results. So in the group sessions you will be dealing quite a bit with
this low level. I will be dealing mainly with the high level in the class, but still
quite a bit with the low level. Now it is your task to put this all together into a
perspective, into a consistent whole.

I am repeating the modeling story really. What I am talking about now is just
technically how this modeling will happen.

About the studying strategy for you: I recommend that you don’t really think
of the pensum, or the contents of the course, too much. Usually one thinks:
"OK, so from this page to that page I have to learn, and then those pages and
those pages, and then I have to memorize all these things, be able to write them
down on an exam, and then maybe later I just purge, I erase them from my
memory, and I take in something else." That’s not a very good way of studying,
not very useful.

The alternative, that I do recommend, is that you begin from the perspec-
tive, understand what the essential questions are, and then on the lower level
understand what the essential techniques are that you can use for answering
those questions, and then focus on those first. Because that is really what I am
going to be asking on the exam. Not only I will be asking the essential ques-
tions, but also I will try to test whether you understand what those essential
questions are. So you want to understand what is essential and what is not.
And that’s one way of saying that you do have the perspective, you have a good,
compact understanding of the whole. So try to study by putting together a good
understanding of the whole, as opposed to memorizing some kind of pensum.

18 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 1

Autumn 1999 5 of 12

Subject matter
How to solve information-processing
problems efficiently.

formalisation
modeling

abstraction

Problems ; interesting, ; formal
natural languages
problems (F.L.s)

(Ex. MATCHING, SORTING, T.S.P.)

Solutions ; algorithms ; Turing
machines

Efficiency ; complexity ; complexity
classes

Unsolvable (impossible)

Nice

Problems,
F.L.s

Intractable (horrible)

I will use this triangle symbol in the upper-right corner of the foil to illustrate
where we are in the "pyramid of information". Now we rise to the highest level
of our pyramid – we speak about the most general things. We try to tell what
this class is about. And we can say that the class is about one question, which
is: How to solve information-processing problems efficiently.

Well, that’s a general kind of question that informatics deals with. We want
to be able to solve information-processing problems. Probably by using a com-
puter, but I don’t even insist on that, because a human can be a computer. A
human can use the same kind of procedure that a computer uses, and solve the
problem, and the issues are still more or less the same.

What is unique for this class, or for theory classes in general, is that we are
using abstraction or formalization or modeling to deal with this general issue.
And I am using this little snake-like arrow, ;, to represent this abstraction or
formalization or modeling. I have given three keywords here and we are going to
apply abstraction to those keywords in order to arrive to models that are going
to be the bread and butter of this course – the basic, basic tools.

So first of all we have ’problems’. There are all kinds of problems in this
world, all kinds of problem that you want to solve on a computer. And putting
the problems together and talking about all of them on the same time, is a chal-
lenge. We use abstraction, and we represent the real-world things like people
and distances by mathematical objects, such as numbers and graphs. And by
doing a little bit of sifting – seeing what is important and what is not, or separat-
ing the wheat from the chaff, as they say – we arrive at the so called interesting

3.1. LECTURE 1 19

or natural problems, which are studied in algorithm theory, such as the match-
ing problem, the sorting problem, the Traveling Sales Person problem, etc. And
then we use abstraction a little more, abstract from those natural problems to
a concept which is called formal languages. Formal languages will represent
problems for us. So they will be a formalization of the first essential term, the
first essential object in reality that we are studying, which is the problems.

Then we talk about how to solve those problems. What is a solution? And we
will see that the solution for us is an algorithm, it is a procedure, it is a sequence
of steps that solves all the instances of a problem. And then we will formalize
the algorithm further by saying that algorithms are really Turing Machines. So
TMs will be something that will represent solutions for us.

And then the third thing: We don’t want just any kind of solution, we want
good solutions, efficient solutions. How can we tell that a solution is efficient?
We will be able to talk about efficiency by comparing the complexity of our al-
gorithms – their running time, how much resources the algorithms take – to the
complexity of the problems that those algorithms are solving. If those two com-
plexities match, then we say that we have a good, or efficient, solution. If they
don’t then the chances are that our algorithm is not so good. So this issue of
efficiency – or complexity – will be a central issue that we will be studying, a
central thing that we will be trying to evaluate when we study the algorithms as
solutions.

So one of our goals will be to classify problems into complexity classes, which
means into sets of problems which are of about the same difficulty and have sort
of the same structure. The problems that live within a certain class will naturally
be attacked by more or less the same algorithmic approach. They will be of the
same or similar difficulty. So they will be a natural kind of group of problems of
a certain physiognomy. So by structuring problems into these groups, we will
be able to gain insights about the nature of problems, about the nature of their
solutions, and organize those insights very nicely.

I will be using an egg kind of ideogram to represent all problems. So when
I draw an egg, that means the set of all problems that exist in this world, or all
formal languages when we talk about the problems in the formal way. And then
we will see that we are dividing these problems into classes, and very broadly
speaking, on the most general level, we will be talking about unsolvable prob-
lems. We will see that some problems really don’t have any solution. Those
will be unsolvable problems. And then among the solvable problems there are
problems which we call intractable. Intuitively speaking they are hopeless prob-
lems, hopeless in the sense that we cannot really solve them exactly. And then
we have nice problems on the bottom, and those nice problems they live in a
class which is called P – polynomial time solvable.

So on the broadest most general level we will be interested in dividing prob-
lems into these three categories, understanding the techniques that are used.
So this foil pretty much defines the most global, the most basic perspective on
our class. So I hope you can have this page written/printed somewhere very
nicely and maybe put it on your refrigerator, and every time you go to this class,
try to see where we are exactly on this map.

20 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 1

Autumn 1999 6 of 12

Historical introduction
In mathematics (cooking, engineering, life)
solution = algorithm

Examples:

•
√

253 =

• ax2 + bx + c = 0

• Euclid’s g.c.d. algorithm — the earliest
non-trivial algorithm?

∃ algorithm?→metamathematics

• K. Gödel (1931): nonexistent theories

• A. Turing (1936): nonexistent algorithms
(article: “On computable Numbers . . . ”)

Unsolvable

techniques
Turing’s results &

Solvable

Now we move to the algorithm. If we understand an algorithm as a pro-
cedure, as a sequence of steps which solves a certain problem or produces a
certain thing, then we can say that the algorithm is in fact one of the most basic
things that exists in this world. In mathematics as well as in cooking, as well as
in engineering, or in life in general, the best solutions are algorithms. And what
an algorithm gives you, as a kind of a solution, is that it solves not only just one
instance of the problem, not only just one situation, but basically all situations,
all problems of a certain kind. And it gives you the ability to deal with the prob-
lem without really thinking, without really worrying, without any strength. You
just follow the recipe: 1-2-3-4-5, five steps. In five steps you have the solution.
It’s like in cooking: Who would ever come up with those complicated things like
baking a bread? But you just open the book. It says: Step 1: Put some flour into
a bowl. Step 2: Add some salt. Step 3: Add some water. Step 4: Mix well. And so
on. The recipe tells you what to do, you don’t have to think. It’s very convenient.

In mathematics there are all kinds of recipes, like we learn very early at
school how to compute the square root of a number. Or given a little polynomial
how to find the roots of the polynomial, the x-values for which this evaluates to
zero. We know those things.

One of the earliest non-trivial algorithms that one mentions historically is
the Euclid’s Greatest Common Divisor-algorithm, and actually this algorithm
was proven correct by Euclid, and this happened about 400 years before Christ.
So algorithms have been around for a very, very long time. And one of the big
tasks of mathematics and mathematicians is to construct algorithms. And this

3.1. LECTURE 1 21

is what they have been doing for ages. There are lots of algorithms and if you
think, you will see that actually a good part of your education is algorithms.

Mathematicians construct algorithms. Sometimes they are successful, in
which case they write a paper, become famous. A lot of times they just struggle
and try, and they cannot really make an algorithm for the problem. For example,
for the quadratic polynomial we know how to compute the roots, but for the
general polynomial we don’t. And beyond a certain degree of the polynomial,
we just don’t know how to compute the zeros.

The natural question arises then: Given some problem, is there really an
algorithm for the problem? A mathematician with this kind of knowledge is
maybe able to say: "Look, this problem doesn’t really have an algorithm. So I
should not spend the rest of my life trying to find an algorithm. I may as well
forget it and move on to some more useful and tractable problem." This ability
to actually prove that there is no algorithm for a given problem, this has been
given to us relatively recently.

With a certain development in mathematics, which was actually a very in-
teresting development, people became interested in something which is called
metamathematics just at the very beginning of this century. The year 1900 was
actually the beginning of metamathematics. Metamathematics is about mathe-
matics studying itself. It’s like mathematics looking at itself and trying to decide,
trying to prove, what mathematics can really do.

Perhaps the most famous result in metamathematics is Gödel’s Incomplete-
ness Theorem, where he has proven that certain very basic theories in mathe-
matics, which people were trying to construct for long time without succeed-
ing, don’t really exist. This was a major, major result in 1932. And we are deal-
ing with this result in a more advanced version of this course, IN394, which is
usually thought in the spring and for ’hovedfag’ students and Ph.D students.
Here we leave this aside and only mention that Gödel developed a certain proof
technique and used it in this proof, which allowed Alan Turing a little bit later
to show that certain problems don’t really have algorithms. He wrote a paper
called "On Computable Numbers" in 1936 and proved that certain numbers
cannot be computed, or in other words: That certain problems don’t have cor-
responding algorithms.

So Turing’s results and techniques allowed us to make the first big separation
we are interested in: To divide the world of all problems into the unsolvable
ones and those that do have solutions. This is obviously totally essential for our
understanding of algorithms and problems, and naturally this is going to be the
first issue that we will be dealing with in this class.

So the first thing for us is uncomputability, or unsolvability. We will see
those techniques that allow us to separate between unsolvable and solvable
problems. You will gain insight into the unsolvable problems and unsolvabil-
ity, so that when you come across a problem you can pretty much recognize
right away whether this problem is unsolvable or not, because you will know
the physiognomy of the unsolvable problems – what they look like. And that
is of course extremely important because you will be creating lots of algorithms
and programs in your life. It is very important that you are able to know that cer-
tain problems don’t have algorithms, that they cannot be solved by programs.
And also that you know what sort of problems those are, what they look like, so
you can avoid them.

22 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 1

Autumn 1999 7 of 12

• Von Neumann (ca. 1948): first computer

• Edmonds (ca. 1965): an algorithm for
MAXIMUM MATCHING

Ann •

Mary •

Moe •

Billy•

Joe•

Bob•

hhhh
e
e
e
e
e,

,
,
,

hhhh

Edmonds’ article rejected based on existence
of trivial algorithm: Try all possibilities!

Complexity analysis of trivial algorithm
(using approximation)

• n = 100 boys

• n! = 100× 99× · · · × 1 ≥ 1090 possibilities

• assume≤ 1012 possibilites tested per
second

• ≤ 1012+4+2+3+2 ≤ 1023 tested per century

• running time of trivial algorithm for
n = 100 is≥ 1090−23 = 1067 centuries!

Compare: “only” ca. 1013 years since Big Bang!

All this development of theory of algorithms happened really before the first
computer was made around 1948 by John von Neumann and some other peo-
ple. So computer science began before the computer was around. But once
the computers came around then of course it was a lot more interesting and
important to study algorithms and computer science and the theory of algo-
rithms. Now they had this perfect mechanical slave that could do algorithms,
that could do a lot of computation for them, if they could only put him into
business, give him a reasonable way of doing things. So after 1948 the construc-
tion of algorithms became even more important than it was before. People were
constructing algorithms left and right.

Around 1965 a researcher named Edmonds made an algorithm for a prob-
lem called maximum matching, wrote a paper and sent the paper to a journal.
Let me tell you what the maximum matching problem is about: You have a set of
girls and a set of boys, n of each. You have some compatibility constraints which
tell you who can marry whom, or who likes whom. You assume that these rela-
tionship are mutual so if Ann likes Billy, Billy likes Ann too. So in this example
Ann and Bill they are compatible. Ann and Joe, and Mary and Billy, but Mary
and Joe are not compatible. They cannot be married. Edges represent com-
patibility in this graph, nodes represent people. And then we want to marry as
many pairs of compatible people as we possibly can.

This is somewhat a non-trivial problem. Suppose Ann and Billy get married.
They like each other and just get married without asking anybody. Then maybe
Moe and Bob get married, and that’ all right. But the problem exists with Ann
and Billy because that doesn’t give us the maximum possible matching. Mary
and Joe have nobody to marry. So in order to get the maximum matching Ann
and Billy have to divorce, and then Ann gets to marry Joe and Mary gets to marry

3.1. LECTURE 1 23

Billy, and then we have a maximum matching.
There are some insights here. There is this trivial kind of algorithms where

you just start somewhere and then add more things to that. Edmonds’ algo-
rithm is not one of those trivial algorithms. If you have a kind of a partial so-
lution, then you have to correct this partial solution in a clever way in order to
actually arrive at the best solution eventually.

So Edmonds’ algorithm was one of those non-trivial algorithms, and it took
quite a bit of work. So that’s why he wrote a paper about it. The paper was how-
ever rejected. The referee, the person who read the paper an evaluated it, was a
mathematician. There were not many computer scientists around at that time.
So this mathematician rejected the paper based on basically just one sentence.
He said: "Why bother with this complicated algorithm when there is a trivial
algorithm that solves the problem, namely you try all possibilities?"

What are all the possible solutions? Well, you try to marry Ann with Billy,
with Joe, with Bob, and for each of those you marry Mary with one of the re-
maining guys, and then Moe with the guy who remains unmarried. So you sort
of circle the boys and just try all possible solutions. For each possible matching
you count how many people get married and keep track of the best. It’s simple,
it’s easy, it’s solves the problem, why bother with complicated algorithms? Said
the referee.

However Edmonds he did not give up. He actually wrote back to the referee,
explaining why his algorithm was a good algorithm, and eventually he got to
publish the paper. His argument was accepted. I don’t know what he wrote, but
we may guess that he wrote something along the following lines.

The argument is based on complexity analysis, which is the second big part
of our course. We analyze the complexity of the algorithm and of the problem. I
will be doing it very, very sketchy. In complexity analysis we use approximations
quite a bit, and this will be almost abusing approximation. So think that we
have 100 boys and 100 girls. We ask how many possible solutions there are that
the naive algorithm will go through, and we see that there are n! (n factorial)
of them. There are 100 boys that Ann can marry, and then for each of those,
99 remaining boys that Mary can marry, and so on. So there is 100! possible
solutions. Ignoring the 10 smallest numbers in this product, we can say that
this is definitely bigger than 1090 – that’s what you get when you multiply 10
ninety times.

We assume that each of these possibilities can be checked unbelievably fast,
so in 1 picosecond we can test one. It’s not possible even with the fastest com-
puter, but we say that that’s the limit. So we assume that in fact at most 1012

possibilities can be tested per second. We have 3600 seconds in one hour, we
say that’s less then 104. And then we have 24 hours in one day, we say that’s less
then 102. We have 365 days in a year, that’s less then 1000. And then we have
100 years in a century.

So if we can look at 1012 possibilities per second, we can look at 1023 pos-
sibilities in one century, using the fastest computer. And since we have 1090

possibilities, then the trivial algorithm would take 1067 centuries to compute.
How big is this? Well, obviously none of us will live long enough to get the out-
put. In fact our universe is only 1013 years old, because that’s the estimated time
since the Big Bang.

This trivial algorithm is a really nice algorithm – try all possibilities, why
not? Well, good luck! Nobody can wait this long, and in fact there has not been
enough time since the beginning of our universe to complete even a simple run
that solves an instance of the medium size 100.

The bottom line is that there are algorithms, there are solutions which are
just plain useless, because they take unbelievably much time.

24 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 1

Autumn 1999 8 of 12

Edmonds: Mine algorithm is a
polynomial-time algorithm, the trivial
algorithm is exponential-time!

• ∃ polynomial-time algorithm for a given
problem?

• Cook / Levin (1972):NP-completeness

P

Intractable

Cook/Levin results &
techniques

So what Edmonds was saying in his response is: "Mine is not one of those
useless algorithms as the one that you are proposing, my dear referee. My algo-
rithm is a polynomial-time algorithm and your algorithm is exponential time."
So these two keywords, ’polynomial time’ and ’exponential time’, will be used
over and over again in this class to distinguish between good algorithms and
bad algorithms, useful algorithms and practically useless algorithms.

Since we are theoreticians, we want to ask the obvious questions and answer
them. The next obvious question that arises is: Given a problem, is there a nice
algorithm, is there a polynomial-time algorithm that solves the problem? Ac-
tually Edmonds was not the first guy to speak about polynomial-time. It seems
that John von Neumann was the first guy. He was a very clever guy. He re-
ally came up with all sorts of basic notions in informatics, and one of them is
polynomial-time. So there was a lot of interest in constructing polynomial-time
algorithms around that time, but still there was no methodology for proving
that such an algorithm does not exist for a certain problem. Sometimes people
were successful in constructing polynomial-time algorithms, a lot of times they
were not. But when they were not, there were just nothing one could do but to
give up.

This was the situation until a theory was developed in 1971-72, called the
NP-completeness theory, which in a certain way allows us to prove that certain
problems don’t have good algorithms. We can prove that certain problems most
probably can not be solved efficiency by algorithms. Those problems we will
call intractable. This is the second big issue which we will be dealing with quite

3.1. LECTURE 1 25

a bit in this class. We will look at this methodology, this bunch of techniques
and results that were developed first by Cook and Levin and then some other
people, that allows us to differentiate between efficient solvable problems and
those intractable ones.

In this class we will be also dealing quite a bit with methods for solving in
some way or other those intractable problems. Because intractable problems
they do exist in this world, they have to be dealt with. If you naively just try to
solve them with a real algorithm, that won’t work. So if you come across one
such problem, then instead of trying to solve it with an algorithm – give a pre-
cise, complete solution – you rather prove that the problem is intractable. And
then you use one of those alternative techniques for dealing with the problem,
without really solving it exactly, because you know that the exact solution will
take an exponential time, which is just not the kind of time that we have in our
lives.

26 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 1

Autumn 1999 9 of 12

Problems, formal languages
All the world’s Ex. compute salaries,
information-processing control Lunar
problems module landing

numbers ...

graphs,

“Interesting”, MATCHING

“natural” TSP

problems SORTING

inp. outp.

Functions (sets of I/O pairs)

output=

YES/NO

Formal languages (sets of ’YES-strings’)

Problem = set of strings (over an alphabet).
Each string is (the encoding of) a
YES-instance.

So this up to here, was an introduction. We were on the top of our informa-
tion hierarchy, on top of the pyramid. Now we descend a little bit towards the
bottom, just to get a taste of it and see how the first of our basic notions can be
formalized. We look into the ways of formalizing the notion of a problem, and
we arrive at the formal notion of ’the formal language’, which models the real
world notion of a problem.

There are all kinds of problems which one solves with algorithms or com-
puters, for example one computes salary, or computers control complicated
machinery like the landing of the lunar module or airplanes. So there are all
kinds of things there, and the question is: How can one actually put all those
things into one pot, talk about all of them in a unified way? How can we study
problems theoretically?

Well, we use abstraction. We say: Look, what is really important about the
problem is not whether the problem talks about salaries or ages of people or
heights of trees. All those things are numbers. One problem is asking for the
same thing about trees as some other problem is about people. We don’t care
about such distinctions. We say: Numbers. So we abstract real world things and
properties by representing them by mathematical, abstract, people-invented
objects such as numbers. Another good object is graphs. When we gain some
experience in this business of representing real world things with abstract math-
ematical objects, then we see that there are not so many interesting or really dif-
ferent problems in this world. There are quite a few, but a manageable number.

So by using abstraction, we arrive at a certain set of interesting problems.

3.1. LECTURE 1 27

Common examples are the maximum matching problem – the one that we have
just seen – the traveling sales person’s problem, the sorting problem, and so on.
And we will be seing quite a few of those problems in this class. Typically those
interesting problems are formulated as input/output pairs, or more mathemati-
cally speaking, as functions. What you want to know when you define a problem
is: Given an input, the instance of a problem, what should the output be, what
should the solution be, what is the answer? And then those question/answer
pairs, all of them together, they make up a problem. So to define a problem,
you define this function in some way or the other.

We abstract further by saying: We don’t really care about all sorts of outputs
here. We just care about those problems which have a single bit of informa-
tion as output, which have an yes/no-answer. So we represent all problems by
such problems that have ’Yes’ or ’No’ as answers. How could we do this? Well,
take sorting for example. The sorting problem is ordering a certain sequence of
numbers or names or whatever.

So an input to the sorting problem is a bunch of things in an arbitrary order.
The output that is desired is the same bunch of things, nicely ordered. But you
can turn this problem into a yes/no kind of question by saying: "Here is the in-
put. Is it ordered?" And the problem consists in checking whether the order is
the right order. This problem is certainly not more difficult than actually pro-
ducing the solution. It may be easier, but in a certain way we can say that this
yes/no-problem reasonably well represents the original problem.

So just about always we are able to represent the real world, interesting
problems by these yes/no kind of problems, and from yes/no-problems we ar-
rive at a notion of formal languages very easily. There a problem becomes just
a set of strings over an alphabet. Now we talk a little more about this.

28 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 1

Autumn 1999 10 of 12

Def. 1 Alphabet = finite set of symbols

Ex.
∑

= {0, 1} ; Σ = {A, . . . , Z}

Coding: binary↔ ASCII

Def. 2
∑∗ = all finite strings over

∑
∑∗ = {ε, 0, 1, 00, 01, · · · }— in lexicographic
order

Def. 3 A formal language L over
∑

is a subset
of
∑∗

L is the set of all “YES-instances”.

problems
Set of all L

Here we are at the bottom of our pyramid, dealing completely with technical
things. We show this on the foil by the green triangle in the upper-right corner.
I wouldn’t say that this is completely the bottom because in the theory world
these are very, very basic concepts.

We start with some definitions. An alphabet is defined as finite set of sym-
bols, where symbols are some objects. Common alphabets are characters a to
z which we use for writing, and which is the alphabet that we learn first in the
school. In computer science a common alphabet is {0, 1}. This is the kind of al-
phabet that the computers use. And then there are all kinds of other alphabets
in this world. We can extend this a-z alphabet with small letters and special
characters and digits from 0 to 9 and so on.

But by and large it is irrelevant which alphabet we are using, because we
can represent one alphabet by another by using what is called ’coding’. You are
probably familiar with what is called the ASCII-code which allows us – or which
allows the computers – to represent the real world characters that exist on the
keyboard, by 0’s and 1’s. We use a sequence of eight 0’s and 1’s per character, and
that gives us enough characters to represent each of this real world characters.
So by using coding techniques any alphabet, even if the alphabet is fairly large,
can be represented by a very small alphabet such as 0 and 1. We just use a
sufficient but constant number of 0’s and 1’s to represent each of the characters
in the big alphabet. So then we can focus on a simple alphabet, say {0, 1}, and
that’s what we will be doing most of the time in this class, because that’s what
the computers are doing.

3.1. LECTURE 1 29

Sigma-star will represent all finite strings over the alphabet, namely all pos-
sible strings or sequences that one can construct from these characters. Here
is what sigma-star is if the alphabet is 0 and 1: It’s first the empty string, ep-
silon, and then 0, 1, 00, 01, and so on. This way of listing the strings over the
{0, 1}-alphabet is called the lexicographic order. It is the natural way to order
the strings. Notice that all of them are here. You order the strings first by lengths,
and then according to the rule which we apply when we look in a dictionary.

By definition, a formal language over the alphabet Sigma is a subset of Sigma-
star. In other words: A formal language over an alphabet is a set of strings over
that alphabet. This set can be finite or infinite. Now, how does this represent a
problem? It is very simple: We take those strings that are the yes-instances of
the problem – the questions whose answer is yes. We take them together into a
set, and this set represents the problem. This set is a formal language.

In the sorting problem – or the formal language that corresponds to the sort-
ing problem – we take all the sorted sequences, their representations, some kind
of encoding. The sorted instances are the ’Yes’-instances. We put them all to-
gether and we say: This is the sorting problem. This is the formal language that
corresponds to the sorting problem.

We can do this pretty much with any problem in the world. We can represent
all problems with formal languages. And formal languages, what are they? They
are just sets of strings. And this allows us to do this piece of magic: To put all
problems in this world under one hat, into this one set which is the set of all
sets of strings. And each problem is a point in this big set. Each problem is a
formal language. So we have no gathered all the problems into one house, put
them together. And now are going to create rooms in this house, organize the
problems together. That’s what this class will, to a large extent, be about.

So when we organize the problems we can also talk about how to solve them,
because we don’t want to solve the problems individually. There are too many
of them. But talking about how to solve a certain kind of group of problems,
that makes a lot more sense.

30 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 1

Autumn 1999 11 of 12

A sample result
•We want to show that there are more

problems than solutions!

• Formalisation:
problems;sets of strings
solutions;strings

• Proof methodology:

— proof by contradiction

— diagonalization

— (non-constructive) existence proof by
counting

• Assume all problems have solutions.

• Then all problems fit into matrix.

I want to prove our first result, and this result is something that you know
from experience, intuitively, but never quite knew how to go about proving it.
The result is that there are more problems in this world then there are solutions.
Or in other words that certain problems just don’t have solutions. And of course
you know this, but without going into the formal world, there is no way to prove
it. So you just shake your hands and feel maybe even inadequate when you are
dealing with a difficult problem, but here we are going to be able to prove that
some problems don’t have solutions. Later on when we aren’t able to solve a
problem, we will feel much better about ourselves, and that would be good!

By the way, if you study the proof well enough then you will notice that in
fact most problems don’t have solutions. That just follows from the proof.

Our methodology will introduce, or review, some very basic techniques such
as the proof by contradiction and the proof by diagonalization – which is the
proof technique that both Gödel and Turing used to prove their fundamental re-
sults. Another basic notion is the non-constructive existence proof by a count-
ing argument. I don’t insist on you knowing all these words, but it is good to
mention them because some of you may be interested in actually understand-
ing what they mean.

The overall structure of my argument will be a proof by contradiction. To-
wards the contradiction we assume that all problems do have solutions. If all
problems do have solutions then we can write all problems down and organize
them into a huge kind of matrix. This is an infinite matrix, so we must be care-
ful about saying what we can or cannot do. But in principle this can be done.

3.1. LECTURE 1 31

’In principle’ meaning in the mathematical sense, for we cannot really write all
possible strings, but in principle they can be written. And this is how:

32 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 1

Autumn 1999 12 of 12

ε 0 1 00 01 10 11 000 001 · · ·

ε

0

1

00 0 1 0 6 01 1 1 0 1 0
01

10 1 0 1 0 0 6 10 1 1 1

11 0 0 1 1 0 0 6 10 1 0

000
001 1 1 1 0 1 1 0 1 6 01

...

• Solutions = row labels = finite strings of
characters.

• Each yellow row represents a problem
(formal language).

• Flip the diagonal entries (replace 0’s by 1’
and 1’s by 0’s).

• The diagonal language LD = {00, 001, · · · }
is not (solved by any algorithm) in matrix.

• Contradiction!

The matrix has strings as column labels and strings as row labels, and these
strings they are ordered lexicographically. We know that we can write, in prin-
ciple, all strings in a sequence because they are ordered. So here is the empty
string, 0, 1, 00, and so on.

If all problems have solutions, then all problems can fit into this huge matrix.
But first of all, what are solutions? I haven’t been talking the solutions yet. We
have said that solutions are algorithms or Turing machines, but we don’t even
have to formalize the notion of the solution to that degree yet, in order to get
this result. All we need is a very basic fact about the solutions, and that is that a
solution, a solution being a procedure, a sequence of steps, a recipe, a solution
is something that we must be able to write down using some kind of text. In
other words, a solution is a finite string of characters, a finite string. A solution
is something that you can write on one page of paper, or maybe on 100 pages,
maybe 1000 pages, but it is a finite string.

So every solution, every algorithm must be one of those strings here, be-
cause all strings are here. They are the row labels of this huge matrix. Most of
the strings will probably not be algorithms, they will just be nonsense, but some
strings will be algorithms encoded in a certain way. And suppose that this row
is an algorithm, and this row and this row (shaded yellow). They are probably
too short, you know 00 is not a great algorithm, but suppose that these things
are algorithms.

And then each algorithm solves a problem. So we encode this problem as a
formal language. A formal language is a set of strings, so since we have all the

3.1. LECTURE 1 33

strings here as column labels, we put a 1 in the row’s entry if the correspond-
ing string belongs to the language, 0 otherwise. So by doing so in each entry
of the row that corresponds to a solution, we can represent the language that
corresponds to the problem that the algorithm is solving.

Take algorithm ’00’ as an example: the empty string is not in the language,
0 is in the language, 1 is not in the language, 00 is not in the language, and so
on. We do the same for each solution. So if all problems have solutions, then all
problems are represented in this matrix.

Now I’m going to show you that there is in fact one problem that is not in the
matrix. I’m going to construct it and this is how: I look at diagonal of this huge
matrix. And this diagonal is again a sequence of 0’s and 1’s. We don’t worry
about what is in these entries where we don’t have algorithms, because that’s
irrelevant. It could be either 1 or 0.

So, we look at the diagonal, and then we flip the entries of the diagonal: If
we see a 0, we turn it into a 1. If we see a 1, we turn it into a 0. So in row
’00’ this 0 becomes 1, in row ’10’ this 1 becomes 0, etc. And then we look at the
corresponding language that is defined by this sequence that I have just created.
This language includes the string 00, the string 001, and some other strings too.
So I put these all together and get this language called LD, D for diagonal, the
diagonal language.

And I claim that the problem that this language is representing is not solved
by any algorithm. In other words that this language is different from all the
rows in this big matrix. Why is this true? The diagonal language differs from
every one of these row languages in at least one position, namely in the diagonal
position. That is how the diagonal language was constructed.

So this act of flipping the diagonal magically changes the diagonal language
so that it differs from each of the row languages in at least one place. I have con-
structed a language that is not in the matrix. So I have reached a contradiction,
because I have assumed from the beginning that all problems have solutions,
which means that all problems can be represented as rows in this matrix. Since
I have reached a contradiction under this assumption, that means that my as-
sumption was wrong, in other words that not all problems have solutions.

That’s about it. Next time I will be talking about how to formalize the notion
of an algorithm, and we will arrive at notion of the Turing machine. And then we
will see actually how Turing used his machine and all these ideas to prove that
certain concrete problems don’t have solutions, to develop the whole method-
ology for proving that certain problems don’t have solutions. We will see that
this same argument that I was using here, pretty much is what Turing was us-
ing, but in a different way, to prove his result. So then it will all come together.

34 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

3.2 Lecture 2

IN210 − lecture 2

Autumn 1999 1 of 11

Review
How to solve the information-processing
problems efficiently.

; : abstraction, formalisation

Problems ; I/O pairs, ; formal
functions, languages
“interesting
problems”

solutions ; algorithms ; Turing
machines

efficiency ; resources, ; complexity
upper/lower classes
bounds

high-level information

low-level information

Algo:
9 (p.223-238)

Last time we were talking about how to solve information-processing prob-
lems efficiently. That is our subject. That is what we are going to talk about in
this class. This is a theory class, which means that we are using abstraction and
formalization to study reality. And this abstraction or formalization we repre-
sented by a little curly arrow.

We applied abstraction and formalization to problems that exist in this world.
First we saw that problems can be represented abstractly as input/output-pairs
or functions or interesting problems, which happens basically when we replace
objects that exist in the world – like people and salaries – with mathematical ob-
jects such as graphs and numbers. And then a further step in formalization took
us to formal languages which allow us to represent all the world’s problems as
languages, as sets. And the set of all languages we represented by an oval form,
an egg. And a very convenient outcome of this development has been that we
are now able to put all the problems under one roof, treat them uniformly, and
create a kind of a map of problems – divide the problems into classes. This is
what is going to happen as a final result of this class.

We have said that when we apply abstraction and formalization to solutions
we arrive at the notion of algorithms. Now, an algorithm is still an informal
notion. Basically you recognize an algorithm when you see one. An algorithm is
a kind of a procedure, it’s a cook book recipe. It’s a recipe that solves all instances
of a problem.

3.2. LECTURE 2 35

An algorithm as a notion cannot be defined in the mathematical sense. Fur-
ther abstraction is needed and it leads to Turing machines. The Turing machine
is a formal concept, it is something that is defined. There is a big difference
between something that is defined and something that is informal as an algo-
rithm, because when something is defined then you can use that something in
mathematical proofs.

Efficiency, our major concern, leads us to notions such as resources, up-
per/lower bounds, and further abstraction gives us complexity classes. We can
divide problems into classes of problems based on how expensive their solu-
tions are, in terms of certain resources that are used in computation such com-
putation time and computation space.

Based on efficiency we divide the formal languages, or problems, into classes
and then by placing a certain language or a problem into a certain class, we
make a statement about the complexity or difficulty of the problem. Then we
know what sorts of algorithmic approaches, what sorts of solutions, are appro-
priate or efficient for that problem or for that class. In that way we pinpoint
efficiency. We make statements about efficiency. And as I said that is going to
be the major concern of this class.

In the upper-right corner of each foil we put a pyramid symbol to show
where we are in the information pyramid. When the upper part of the trian-
gle is shaded, that means we are dealing with the big picture, the basic insights,
the so-called high-level information. A triangle with the lower part shaded in-
dicates more formal, technical, low-level information.

36 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 2

Autumn 1999 2 of 11

Theorem 1 There are more problems than
solutions.

Corollarly 1 There are (many) problems that
cannot be solved by algorithms.

The “egg of all problems” which we want to
divide into (complexity) classes:

Intractable

Unsolvable

P

Today
• Turing machines as an algorithm model

• Turing’s theorem which gives us a
(provably) unsolvable problem.

We are going to study all sorts of classes and all sorts of algorithmic ap-
proaches that are appropriate for those classes, but to begin with, as a kind of
a most basic picture, we are going to divide the problems into two big classes:
The unsolvable problems that cannot be solved by algorithms, and the others
that can be solved by algorithms. The solvable problems we are going to divide
further into problems that are properly solvable with good algorithms (a class
called P or polynomial-time solvable) and others that are not solvable in poly-
nomial time which we call intractable (NP-complete,NP-hard and so on).

Our major concern is going to be dividing problems into unsolvable, in-
tractable and properly solvable, studying techniques that allows us to make this
division, and gaining insights into what sorts of problems live in each "country".
What kind of problems are those that are unsolvable, what sorts of problems are
intractable, and what sorts of problems are solvable in polynomial time?

At the end of last class we have seen a theorem which says that here are more
problems than solutions. And a consequence of this theorem is that there are
problems that cannot be solved by algorithms. So we know that such problems
exist, but we don’t know how to find one yet. In fact we know a little more: We
know that many, most problems in fact, are unsolvable. How do we know that?
That follows from the proof of theorem 1 that we have seen last time. There
are countable many algorithms and uncountable many problems. There are as
many algorithms as there are natural numbers. There are as many problems as
there are real numbers. And we know that between every pair of natural num-
bers, there are infinitely many real numbers. The relationship between algo-

3.2. LECTURE 2 37

rithms and problems is the same.
Today we go further: We define and study the Turing machine as a formal-

ization or model of an algorithm, and then we use the Turing machine to study
unsolvability. We will try to go as far as proving the Turing theorem which gives
us our first provably unsolvable problem. Turing theorem will be the foundation
stone for our technique for proving unsolvability. Once we have one unsolvable
problem, by using a technique called reduction, we will be able to prove for
many other problems that they are also unsolvable.

38 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 2

Autumn 1999 3 of 11

Algorithm

397 + 46 =
397
 46 443

input output443

11

computation rules

Turing machine – intuitive description

(input/output)
tape

"processor" or
finite state control

computation
steps of

, bq
1

, R)
"loaded
program"
or rules

... b b b0 1 0

s

2q
1q

...

...

b

read/write head

states

δ
δ

...

2
, b , R)

(s,o) =(
,1)=(q(q

1

If we reduce the notion of an algorithm a little bit from all sorts of things
like cookbook recipes, and study only the mathematical algorithms, which is
what Turing did, then we can see that algorithms have certain common fea-
tures. There is something that comes as input, as we would call it in computer
science, and that input is usually some kind of numbers, or some text generally.

On this foil we are studying a simple algorithm for adding two numbers, and
what comes in is the two numbers and a little plus which tells us what to do with
these numbers. We learn very early at school how to make this summation: We
write these two numbers one below another and then we go through a certain
procedure. Like here we would be adding 6 and 7 which gives us 13. There is a
carry 1 which we add to the next column. We have 1 plus 9 which is 10 plus 4,
that makes 14. Again the carry is 1. 1 and 3 is 4. So we know how to perform this
computation, and what comes out is a result or output: 443.

So there are lots of algorithms in this world that mathematicians have cre-
ated for us, and all have this basic structure. So when Alan Turing was con-
structing his machine – computers did not exist yet – he was really modeling
a mathematician. So a Turing machine is a mathematician executing an algo-
rithm, or a model of it.

I will first describe the Turing machine intuitively, as a kind of a machine.
And then we will see how this intuitive description leads to a completely formal
concept of a TM. So a TM consists of a tape, which we could call an input/output
tape or simply tape. And this tape is infinite on both ends. Sometimes it is given
as infinite on only one end. Every book has a different TM, a different definition,

3.2. LECTURE 2 39

and in order to be consistent with this tradition I have also invented my own
TM, so this machine will probably defer from all machines in all books.

The tape is infinite on both ends and it has squares. Each square can house
one character, one symbol. In the example on the foil we see that most of the
tape is blank. And you can think that all the non-blank part here is this ’010’.
That is 3 characters and these 3 characters represent input. The reason why
know that this is input, is because at the beginning of time, before the machine
has started to do anything, before it has started computing, its read/write head
– which is the arrow here – points to the first character of the input.

In addition to the tape and the read/write head a Turing machine has a "pro-
cessor" – a finite-state control – which tells us about the state in which the ma-
chine is. There are a finite number of these states. If you think of the machine of
being a digital computer, then you can think of the tape as being the computer’s
memory. And since memory is cheap you can always add more memory, so this
is why this memory is infinite. The read/write head is something that can read
the memory and this circular disk is the CPU unit – the central processing unit.
You know that any digital device always can have just a finite number of states.

So it makes sense to represent a computer in this way. If you think of this as
being a mathematician then this tape is really the paper that the mathematician
is using, and paper is also cheap. The read/write head must be his own hands
or eyes which he is using to read and write on the paper. And the circular disk
is the mathematician’s own memory in the head, which tends to be limited –
that’s why we use paper, because our memories are limited.

The heart of the algorithm and the heart of the Turing machine is a bunch of
rules, a finite number of them. The rules tell how the TM does its computation.
The rules are defined by this function delta which for every pair of state and tape
symbol, tells us three things: 1) the next state 2) the symbol which is going to
replace the currently scanned symbol, and 3) the movement of the read/write
head – left or right. These rules define the steps of computation. An application
of a rule is a step.

So what does a Turing machine do in one step of computation? Here I am
showing in green what changes happen in one step of computation. According
to this rule, this TM is going to change its state from s to q1, it is going to replace
the currently scanned symbol – which is 0 – by a blank. It is going to erase,
effectively, this 0. Finally it is going to move its read/write head one square to
the right. So those are the three actions that are specified by this rule.

There are two special states among these states. One is the state s – the
start state – which is the state in which the TM begins its computation. Another
special state is the state h – the halting state or the halt state – and this is the
state where the machine stops. So when the machine reaches h then it just
stops executing – it halts.

If I give you this kind of description of a TM, you can easily perform the
computation that the TM is doing simply by applying one rule at the time, one
rule in each step. So each application of a rule is going to move the machine
one step further – the state is going to change, the position of the head is going
to change and the content of the tape is going to change. And this goes on until
the machine has reached the state h at which point the computation stops, and
then you are free to do something else.

40 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 2

Autumn 1999 4 of 11

Turing machine – formal description

A Turing machine (TM) is M = (Σ,Γ, Q, δ)
where

Σ , the input alphabet is a finitive set of input
symbols

Γ , the tape alphabet is a finite set of tape
symbols which includes Σ, a special blank
symbol b ∈ Γ \ Σ, and possibly other
symbols

Q is a finite set of states which includes a
start state s and a halt state h

δ , the transition function is

δ : (Q \ {h})× Γ→ Q× Γ× {L,R}

NB! “Almost” every textbook has its own
unique definition of a Turing machine, but
they are all equivalent in a certain sense.

We are descending now to the bottom level. We are looking at something
which is completely formal. And my intention here in presenting you all these
details is not to throw all sorts of details on you, but mainly to show you how
this kind of formalization can be done, and what its meaning is. So please don’t
get to much involved with details, but try to understand the big basic message,
which is the spirit of formalization, what the formalization really means, what
it looks like.

What we want to do here is to represent the Turing machine as a mathe-
matical object, something which is completely formal. And we need something
which is completely formal in order to be able to do formal proofs. At the point
where we will be able to do formal proofs, we will be able to use the mathe-
matical techniques and that is the beginning of theory. At that point we move
from this real world where machines and people and algorithms exist, to the
abstract or formal world where we can prove theorems – and that is a very big
deal. We prove theorems, gain insights, and then we go back to the real world
and interpret those results and organize the real world.

So how do we formalize the notion of an algorithm? How do we represent
the Turing machine formally? Formally a TM is a quadruple. It is a sequence of
four things called sigma (Σ), gamma (Γ),Q, and delta (δ). Sigma is the input al-
phabet and as every alphabet it is a finite set of symbols, called input symbols.
Gamma is a superset of sigma. It contains all of sigma plus some more sym-
bols. Gamma is called the tape alphabet and in addition to the input symbols of
sigma, it contain a special blank symbol and possibly others. Q is a finite set of

3.2. LECTURE 2 41

states which includes a start state s and a halt state h. Delta, the transition func-
tion, is a function from all the non-halting states and tape symbols to the set of
all states, tape symbols and two special symbols L and R representing left and
right. L and R are intuitively the directions of the movement of the read/write
head.

42 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 2

Autumn 1999 5 of 11

Computation – formal definition

A configuration of a Turing machine M is a
triple C = (q, wl, wr) where q ∈ Q is a state and
wl and wr are strings over the tape alphabet.

We say that a configuration (q, wl, wr) yields in
one step configuration (q′, w′l, w

′
r) and write

(q, wl, wr)`
M

(q′, w′l, w
′
r) if (and only if) for some

a, b, c ∈ Γ and x, y ∈ Γ∗ either

wl = xa wr = by and
w′l = x w′r = acy δ(q, b) = (q′, c, L)

w l w r

a yx bc

rww l’ ’

...... b bb b

or

wl = x wr = acy and
w′l = xb w′r = cy δ(q, a) = (q′, b, R)

w l w r

w l’ rw ’

yx ab c... ...b bbb

So this is a Turing machine formally. A TM is just these four things. Now we
want to say what a TM is doing. We want to define the notion of computation
formally. We do that in a few steps, the first being a definition of a configuration.
Intuitively a configuration is a snapshot of the machine. It is like a photograph
of the machine which tells us everything we want to know about the machine
at a certain point in time. So that if we know a configuration of the TM, we don’t
need to know its past. We can predict, given the definition of the transition
function of the TM and a configuration, its future behavior completely. So a
configuration and the transition function, tells us all we want to know about
the TM.

What do we want to know? It is three things: First, we want to know the con-
tent of the tape, all that is written on the tape. Second, we want to know the
position of the read/write head. Third, we want to know the state of the ma-
chine. These three things together with the definition of the transition function
delta, the rules, tell us everything we want to know about a TM. And if we know
them we can apply the rules and simulate the behavior of the machine.

We represent this intuitive idea of a configuration formally in the following
way: We say that a configuration of a TMM is a triple (q,wl, wr) where q is a state
andwl andwr are strings over the tape alphabet. The intuitive meaning of this is
that the machineM is in state q,wl is the portion of the written tape to the left of
the read/write head, and wr is the written portion of the tape to the right of the
read/write head. By convention we assume that the read/write head is scanning
the first symbol of wr. So these things represent the whole configuration: The

3.2. LECTURE 2 43

position of the read/write head, the state, and what is written on the tape,wlwr,
the concatenation of the two strings.

Now we continue with formalism by defining what it means that the con-
figuration (q,wl, wr) ’yields in one step’ configuration (q′, w′l, w

′
r). Intuitively it

will mean that configuration (q′, w′l, w
′
r) follows from configuration (q,wl, wr) by

the application of one of the rules, the delta-function. There are two situations
really: The situation where the head moves to the left and the situation where
the head moves to the right. The two figures on the foil represent these two
situations, and this bunch of equations is just a formal way of saying it.

44 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 2

Autumn 1999 6 of 11

Note:
wl is the written portion of the tape to the left
of the read/write head.
wr is the written portion of the tape to the
right of the read/write head, inluding the
square the head is currently scanning.

We say that a configuration C = (q, wl, qr)
yields configuration C ′ = (q′, w′l, q

′
r) and write

C
∗
`
M
C ′ if (and only if) there is a sequence of

configurations C = C1, C2, · · · , Cn = C ′ of M
such that

Ci `
M
Ci+1 for i = 1, · · · , n− 1

We say that Turing machine M computes
function f if (and only if) for all w1, w1 ∈ Σ∗

(s, ε, w1)
∗
`
M

(h, ε, w2)⇔ f(w1) = w2

Now we are defining another relation which is the ’yields’ relation. It’s a rela-
tion between configurations. We say that configuration C yields configuration
C ′ if there is a sequence of configurations C1 to Cn of TM M such that they all
yield another in one step: C1 yields in one stepC2, C2 yields in one stepC3, and
so on all the way up to Cn.

We can now define the notion of computation of a function. We say that
a TM M computes function f if for all w1 and w2 in sigma-star, configuration
(s, ε, w1) yields configuration (h, ε, w2) if and only if f(w1) is w2. What is configu-
ration (s, ε, w1)? It is a starting configuration wherew1 is written on the tape and
the read/write head is scanning the first symbol of w1. Epsilon is just nothing,
it’s empty, so the tape is empty to the left of the input string.

So if this configuration yields a halting configuration where there is again
nothing written to the left of the read/write head and the read/write head is
scanning the first symbol of w2, then we say that effectively the Turing machine
has turned w1 into w2. It has computed the function f .

3.2. LECTURE 2 45

(This is a blank page)

46 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 2

Autumn 1999 7 of 11

We say that Turing machine M decides
language L if (and only if) M computes the
function

f : Σ∗ → {Y,N} and for each x ∈ L : f(x) = Y

for each x /∈ L : f(x) = N

Language L is (Turing) decidable if (and only
if) there is a Turing machine which decides it.

We say that Turing machine M accepts
language L if M halts if and only if its input is
an string in L.

Language L is (Turing) acceptable if (and
only if) there is a Turing machine which
accepts it.

The next very important notion is a Turing machine as a decision procedure.
We say that a TM M decides language L if M computes the function f from
sigma-star to {Y,N} – where ’Y ’ and ’N ’ are two special symbols in the tape
alphabet – such that for each x in L, f(x) is Y . Meaning that if the input is in
L then the machine will say ’Yes’, and otherwise the machine will say ’No’. This
function is a so-called total function because for every possible string it is going
to say either ’Yes’ or ’No’ depending on whether the string is in the language.
If M computes this total function then we say that Turing machine M decides
language L. And we are going to say that the language L is decidable if and only
if there is a TM which decides it.

When you will be reading these definitions at home you will see that they
are just completely natural. They are just really bread and butter, but they allow
us to formalize the notion of solution and the notion of computation in such a
way that we can now just apply these rules completely blindly and formally in a
given situation, and we can apply these formal objects in mathematical proofs.

We are going to use one more notion. We say that a TM M accepts language
L if M halts if and only if its input is a string in L, and we say that a language
L is Turing acceptable, or simply acceptable, if and only if there is TM which
accepts it. What does this mean? Notice that a machine can actually not halt.
A machine can just compute forever. It can be in an infinite loop, maybe just
going off to the blank part of the tape and then moving alternately left and right
forever. So the machine can end in an infinite loop and never finish. If that
happens we say that the machine doesn’t halt.

3.2. LECTURE 2 47

This level of formalism is not really going to be characteristic for this class
or for theory of computation as such. We are not going to deal with such things,
typically. There is a reason why I am doing this today, why I am going to this
level of detail and this level of formalism. The reason has to do with our pyramid
of knowledge.

Most of the time we will be talking about TMs and all sorts of other things on
a very high level. I will be informally describing a procedure, a proof, and so on.
I will be spending time on top of the pyramid. But when I do that you will have
to know that in fact all those informal notions can be completely formalized,
completely in the sense that they become mathematical things, mathematical
objects.

That is what is meant by building the pyramid. When I describe a TM in-
formally then you know that pretty much automatically you are able to make a
completely formal description of that TM. Maybe it would take 5 months and
3000 pages of text to do that, but never the less you are able to do it. You are
not going to do it because it is terribly boring, it’s completely stupid and in fact
wouldn’t add anything to our understanding. But it is important to know that it
is possible to do what we are doing informally in a completely formal way. Be-
cause that gives us the foundation in theory. That gives us a solid ground to rest
on. So we are now building a foundation, we are building the lower level of the
pyramid, and that’s what these definitions are about.

48 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 2

Autumn 1999 8 of 11

Example
A Turing machineM which decides
L = {010}.

... b b0 1 0 ...b

eq
3q 2q

1q

s

h

M = (Σ,Γ, Q, δ) Σ = {0, 1}
Γ = {0, 1, b, Y,N} Q = {s, h, q1, q2, q3, qe}

δ :

0 1 b

s (q1, b, R) (qe, b, R) (h,N,−)

q1 (qe, b, R) (q2, b, R) (h,N,−)

q2 (q3, b, R) (qe, b, R) (h,N,−)

q3 (qe, b, R) (qe, b, R) (h, Y,−)

qe (qe, b, R) (qe, b, R) (h,N,−)

(’−’ means “don’t move the read/write head”)

I will now show you an example of a TM which decides languageL consist-
ing of only one string, namely ’010’. You will see further examples of TMs and
computations and things in the groups. Now I just want to illustrate very briefly,
in a few steps, how one goes about creating this kind of machine.

So think that there is a tape where ’010’ is written and the rest is blank. You
know that by convention, if this is the input then the TM will be scanning the
first symbol and its finite state control will be in state s. In order to define the
TM we have to define these 4 things: Sigma, Gamma, Q and delta – with delta
being the most important part, the heart of the matter, the rules.

So we will say that Sigma is ’0’ and ’1’, because that’s how the input is written.
We will say that Gamma is ’0’, ’1’, ’b’ (blank), ’Y ’ (Yes) and ’N ’ (No). Possibly for
a more complex computation we may need some more symbols here, but this
will be good enough for this simple, simple machine. Q is going to have always
state s, state h, and then possibly some more states. We will figure that out as
we go along. We say we need q1 and then possibly some more q’s.

Delta will be defined by a table where for each pair of symbol and state we
are going to say what the machine does. If the machine is in state s scanning
a ’0’ initially, then we want to say: "So far so good, everything is fine." So this
state q1 will mean "I have seen a ’0’ as the first symbol. I erased it and moved
the read/write head to the right." So if we are in s scanning a ’0’, then we change
state to q1, replace the ’0’ by a ’b’ and moves the head to the right.

What should come next is a ’1’, so if our machine is in state q1 and it is scan-
ning a ’1’ then everything is fine. Then we move to state q2. So q2 means that I

3.2. LECTURE 2 49

have seen ’0’ and ’1’ as the two first symbols. That is the meaning of state q2.
In the example we are now in q2 and scanning a ’0’. q2 and 0 will mean: "Ev-

erything is fine, the input is just right so far. Go to the right and see if there is
a blank there." So state q3 means that the first three symbols were OK. If we are
in q3 and are scanning a blank, then we want to write ’Y ’ and halt because the
input string is in language L. But in our definition of a TM we are not really
allowed to stand still, we have to move either to the right or to the left.

So what can we do? We can augment the definition of a TM with the op-
tion ’strek’, which means don’t move anywhere. That gives us a shorter program
(less number of states). If we want the definition of the TM to be as simple as
possible, then we can move to the right and then come back and halt. That’s a
possibility here, but it is a little messier.

And now we have to define the rest. What happens with all the other possi-
bilities? If the machine is in state s and it’s scanning a ’1’, what should it do? It
should basically erase the rest of the input and come to the end of it and halt by
writing a ’N ’. So let’s have another state qe (’e’ for erase or error) which means:
"What I have seen so far did not satisfy me. I reject, I don’t want to accept this
input. It’s not in the language." So as soon as the machine is in qe it is just going
to be replacing what it sees by blanks and move to the right.

State qe with anything that is non-blank keeps us still in qe. We erase the
symbol and move to the right. If we are in qe and we see a blank, we have come
to the end, erased the whole thing. Then we write a ’N ’ and stay where we are
(’−’).

I am such a tidy person, so I try to clean up the tape and have just one thing
written on the tape in the end (’Y ’ or ’N ’). But of course we could write a spe-
cial symbol ’N ’ and halt immediately, and not worry about the rest of the tape.
That’s completely acceptable, but then we have to redefine the definition of a
TM computing deciding a language!

As I said, almost every textbook has its own unique definition of a Turing
machine, but as will be obvious in due time, they are all equivalent in a certain
sense. So these are just irrelevant details.

50 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 2

Autumn 1999 9 of 11

Church’s thesis
’Turing machine’∼= ’algorithm’
Turing machines can compute every function
that can be computed by some algorithm or
program or computer.

’Expressive power’ of PL’s
Turing complete programming languages.

’Universality’ of computer models
Neural networks are Turing complete (Mc
Cullok, Pitts).

Uncomputability
If a Turing machine cannot compute f , no
computer can!

So, we know how to be formal if we really want to, and it will be rare that we
do want to be this formal. Now we step back to the top of the pyramid.

This formalism that I have just described gives us one side of a bridge. We
are building a bridge between the reality and the formal mathematical world.
So we have seen a Turing machine, its formal definition. That’s one end of the
bridge. The other end is how this attaches to reality. Why is the TM really a good
representation of the notion of an algorithm? That ’why’ is something that we
cannot prove formally, because that side of the bridge exists in the real informal
world. We can only argue informally. And that has been done by a guy named
Church who lived in Turing’s time.

By the word ’thesis’ we mean something that is not formally proven, but that
is argumented well enough so that people believe in it. Church’s thesis – or
Church-Turing’s thesis – says that the formal notion of a TM is roughly equiva-
lent to the informal notion of an algorithm in the following sense: If something
can be computed by an algorithm, then that something can be computed by an
TM, and vice versa.

Now how can we argument such a thing, how can we argument this kind
of thesis? By showing lots of examples, basically. So it is possible to construct
TMs for all sorts of algorithms that one normally uses, such as adding and sub-
tracting numbers. And then you compose these TMs, make more complex al-
gorithms. You can make TMs that simulate basic statements in a programming
language such as Pascal. It has been done. There is a book where most of the
book is actually that: descriptions of TMs which simulate basic Pascal state-
ments. And then you know that whatever you can write in Pascal programming
language, you can do it also with TMs. Which shows that TMs are as powerful
as general purpose programming languages.

3.2. LECTURE 2 51

There is something quite wonderful that happens as soon as you have this
kind of very simple, yet completely powerful notion of computation, such as
the TM. You can talk about the expressive power of programming languages,
and prove formally that a certain programming language is what we call Turing
complete. This now becomes a formal notion. To prove formally that I am able
to do in my programming language as much as a TM can do, I basically just need
to prove that I can write a TM in the programming language. Because if I can
do that, then I know that my programming language can encode or represent
any sort of computation that exists in this world. It is as powerful as any other
programming language. If I cannot do that then something is missing. Then my
programming language cannot express all algorithms.

This tells us that in fact all programming languages are in a way equivalent.
As soon as we are able to simulate the TM in the language, we are able to write
all possible algorithms in that language. It’s a wonderfully powerful statement.
You wonder about a language such as Prolog: Can we really write everything in
Prolog that we can in Java? Well, you don’t have to simulate all of Java with Pro-
log to prove that. It is enough to just simulate the TM, to write a TM in Prolog.
The TM is wonderfully simple. It takes 5 lines to write a TM in Prolog. Then you
have proven that the Prolog language is Turing complete, that it is as expressive
as any other programming language. Expressive meaning that it can express all
possible algorithms or computations.

Another issue is the universality of computer models. If a computer model,
or a real computer can simulate the TM, if it can do whatever a TM can do, that
means that it can do whatever any other computational device can do. It is
universal. There have been interesting applications of this idea.

For example the two gentlemen Mc Cullok and Pitts, who were actually re-
searchers in neurological/cognitive science, produced a model which has later
become a very popular model of computation, called the neural nets. They are
used in algorithm design for solving difficult problems in artificial intelligence.
A neuron is something that exists in a human being and of which our brain and
our nerves are made. Mc Cullok and Pitts were interested in proving that their
model of a neuron is in a certain sense complete. And they did so by proving
that their neurons, when put together, can simulate a TM. What this means is
that their model of a neuron is in a certain way complete and meaningful. Be-
cause we know that humans can execute algorithms, that we can certainly do
whatever a computer can do. And if the model of our brain, of our neuron, is go-
ing to be complete then it has to be able to do at least as much as any algorithm
can do. That has been proven by simulating a Turing machine using neurons.

The final issue, and that is the issue we will be dealing with here in this class,
is uncomputability. We want to prove that a certain problem can not be solved
by any algorithm – not by a Simula program, not by a Pascal program, not by a
Prolog program, not by the Mac computer, nor the PC, nor any computer that
exists in this world. It is a very powerful statement. This powerful statement, to
be proven, requires just a very simple thing: We need to prove only that a Turing
machine cannot solve that problem. So we don’t have to go through all the com-
puters in this world, through all programming languages, all sorts of things. It is
sufficient to prove that a TM cannot do it, because of the Church’s thesis which
says that a TM can do whatever an algorithm or program or computer can do.

So the beauty of this model is that because it is a very simple model, it is
also simple to do proofs. It is much simpler to prove that a TM cannot do some-
thing, then to prove that all the computers in the world cannot do it. Still that
statement is sufficient. We prove that a TM cannot do something. By Church’s
thesis we have proven that nothing – no computer, no programming language
– can do it. It is a very, very fundamental thing.

52 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 2

Autumn 1999 10 of 11

Uncomputability
What algorithmic can and cannot do.

Strategy
1. Show that HALTING (the Halting problem)

is unsolvable

L

Solvable

Unsolvable

H

2. Use reductions R
7−→ to show that other

problems are unsolvable

R1 R
2

We move on to our first big issue about computation, which is uncomputabil-
ity. It is a very big issue, very important. We want to be able to prove that certain
problems can not be solved by algorithms. The strategy will be in to steps: Step
1: We will come up with a first unsolvable problem. That will be the Halting
problem. The unsolvability of the Halting problem is the Turing theorem, which
Turing proved in 1936. Step 2: Once we have the first unsolvable problem, we
can prove that all sorts of other problems are unsolvable by using a technique
called reduction. We represent reductions by this kind of arrow (7→).

Language LH represents the Halting problem. We will see what that it is in
a moment. When we reduce LH to a language L1 we have shown that L1 is as
difficult as LH in the following sense: If L1 can be solved then LH can also be
solved. The Halting problem has in a certain way been converted (or reduced)
to the problem represented by language L1. That’s the meaning of the reduc-
tion. Now, since LH is provably unsolvable, then if there is a reduction from LH
to L1, that means that L1 is also unsolvable. Because if we on the contrary as-
sume that L1 is solvable, then we are able to solve the unsolvable problem LH
by using the reduction to L1, and that is obviously a contradiction.

By using reductions from the first unsolvable problem, or later from any un-
solvable problem, we will be able to prove all sorts of new problems unsolvable.
These two steps will give us the technique for proving problems unsolvable.

3.2. LECTURE 2 53

(This is a blank page)

54 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 2

Autumn 1999 11 of 11

Step 1: HALTING is unsolvable
Def. 1 (HALTING)

LH = {(M,x)|M halts on input x}

Lemma 1 Every Turing decidable language is
Turing acceptable.

Proof (by reduction): Given a Turing
machine M that decides L we can construct a
Turing machine M ′ that accepts L as follows:

M

YES

NO

halt

M’

input

Lemma 2 The complement of every decidable
language is decidable.

(The complement of language L isLC , Σ∗ \ L.)

Proof: Given a Turing machine M that
decides L . . .

M

M’

YES

NO

YES

NO

Our goal now is to show that the Halting problem is unsolvable. The Halting
problem has to do with the question: Does TM M halt for a given input x? It is
formalized as the formal language LH consisting of all (concatenation of) pairs
of strings M and x such that TM M halts given x as input.

String M is a code for TM M . Sometimes people invent special notation to
distinguish between strings and objects. I am not doing that, so I am using M
both for the machines and for machine codes, hoping that the distinction will
be clear from the context.

So LH consists of pairs, TM codes and input codes, such that the TM halts
on that input. Now we need to build a little bit of theory before we can prove
that the Halting problem is unsolvable. We are going to prove a few lemmas.

The first lemma is going to be that every Turing decidable language is Tur-
ing acceptable. If we can decide a language we can also accept it. If there is an
algorithm or TM which decides the language, then there is an algorithm which
accepts the language. The proof is very easy, but we will explain it in some detail
because it is our first meeting with a reduction. I am going to represent these
reductions with ideograms, with little pictures, which will be very easy to inter-
pret. So that we don’t have to use many words and a lot of ink, but just make
simple pictures, look at them and understand what is going on immediately.

I am making a reduction by using M as a kind of a subroutine or subproce-
dure or building block for constructing another machine calledM ′which solves
another problem. So when I use machine M to create machine M ′, I am saying
the following: If there is a machine M that solves problem 1, then I can use it

3.2. LECTURE 2 55

and create a machineM ′ that solves problem 2 and by doing so, I have reduced
problem 2 to problem 1. If problem 1 can be solved, then so can problem 2.
That is what I have proved by this picture.

Now here is how it works in the concrete case: Suppose I have the machine
M which decides language L. So given input, if the input is in L this machine
is going to say ’Yes’, if the input is not in L the machine is going to say ’No’. So
my new machine is going to do exactly the same as the old machine, except
that when the old machine will write ’Yes’ and halt, the new machine will just
simply halt. In fact this is no change at all. The machine halts here. The change
happens when my old machine writes a ’No’ and halts. At that point my new
machine is going to enter into an infinite loop and not halt.

So it is clear that if machine M decides a language L, then machine M ′ is
going to accept language L. It is going to halt if and only if the original machine
says ’Yes’, which happens if and only if the input is in L. It is going to enter an
infite loop if and only if the original input is not in L. So by this little reduction I
have proven this fact that every Turing decidable language is Turing acceptable.

Lemma 2 says that the complement of every decidable language is also de-
cidable. What is the complement of a language? Remember that a language is a
set. So the complement of a language is by definition Sigma-star, all the strings
over the input alphabet, minus L. So it is whatever is not in L. But intuitively,
when we think of languages as problems, then we think of a complement of a
language as the reverse problem. A problem is typically defined by certain prop-
erty: Decide whether this input has a certain property. If that property defines
the language L, then the complement of L would be the inverse property: De-
cide if the input doesn’t have the property. So property and non-property they
correspond to the language and the complement of the language, intuitively.

For now the complement of a language is just the set complement, simply.
To prove that the complement of every decidable language is decidable we use
the following reduction: Given a M which decides L we construct M ′ that de-
cides LC , simply by reversing the ’Yes’ and ’No’, by reversing the answers given
by the machineM .

I hope you are not getting too bored. We have to be a little bit formal in this
class. But the formal machinery we build now will later allow us to go faster,
to be more on the high level. We will then deal with the intuitive, interesting
notions, but still now that we can bring them down to the ground, to something
which is completely formal.

We continue next time with a couple of more lemmas, the proof of the Tur-
ing theorem, and then we will see the basic technique for proving that other
problems are unsolvable.

56 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

3.3 Lecture 3

IN210 − lecture 3

Autumn 1999 1 of 13

Review
Objective
techniques — how to prove that a problem is

unsolvable

insights — what sort of problems are
unsolvable

Unsolvable

Solvable

unsolvable ; undecidable
(by algorithms) languages
problems

solvable ; decidable
problems languages

Our goal is to be able to distinguish between the unsolvable problems which
cannot be solved by algorithms, and those that are properly solvable. We have
formalized this notions of unsolvability and solution by algorithm by saying that
we model the unsolvable problems by undecidable languages – we have defined
what this is – and solvable problems by decidable languages.

Our objective now is to be able to make a cut through the middle of this uni-
verse of problems or languages in order to distinguish between the unsolvable
ugly dark guys and those that are properly solvable, the nice guys.

We want two things. We want techniques which will allow us to prove that a
certain problem is unsolvable. We also want insights. We want to be able to just
intuitively get a feeling for what sort of problems are those that are unsolvable.
So that when you come across one such problem in your life, you can imme-
diately recognize it and say: “Look, this problem is probably unsolvable”. So
you don’t bother with it. You don’t waste your life trying to solve an unsolvable
problem.

3.3. LECTURE 3 57

IN210 − lecture 3

Autumn 1999 2 of 13

Meaning

• All algorithms in the world live in the
basket

• Infinitely many of them — most of them
are unknown to us

•Meaning of unsolvability: No algorithm in
the basket solves the problem (decides L)

•Meaning of solvability: There is an
algorithm in the basket that solves the
problem (but we don’t necessarily know
what the algorithm looks like)

Now a little bit about the meaning of this, what we are doing. We introduce
another ideogram here, which is this big basket. It is where the algorithms live.
So all the world’s algorithms live in this basket. Every algorithm is there. The
meaning of unsolvability is that for a given problem there is no algorithm in the
big basket. So none of the world’s algorithms solves the problem. That’s the
meaning. One subtle point, which we will return to later, is that in order for a
problem to be considered solvable we don’t have to be able to find the algorithm
which solves it, or to decide which algorithm is the correct one. It is enough that
the algorithm is in the basket!

58 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 3

Autumn 1999 3 of 13

Techniques
To prove that

• L is solvable: Show an algorithm

• L is unsolvable: Difficulty: Cannot check
all the algorithms in the basket. Cannot
even see most of them, because they have
not yet been constructed . . .

Strategy
1. Show LH (HALTING problem) undecidable

using diagonalisation .

LH

2. Show another langauge L undecidable by
reduction: If L kan be solved, so can LH .

LH
L

About the techniques we are using: If you want to prove that something is
solvable, usually you will show an algorithm for the problem. The algorithm
solves the problem, and showing the algorithm solves the problem of proving
solvability!

Unsolvability is a little bit more of a tricky matter, because there is a diffi-
culty. And the difficulty has to do with the huge basket full of algorithms. The
problem is that not only are there infinitely many algorithms in the basket, but
actually most of them have not even been constructed. We don’t know what
they are. So you cannot possibly go through this whole basket and check one
algorithm after another and say in the end that none of them solves your prob-
lem. So what do you do? How can you prove that a problem is unsolvable?

And the solution is this little strategy here: We find one unsolvable guy, one
unsolvable problem, the first one. And that will be the Halting problem. We
prove that the Halting problem is unsolvable by using this powerful technique
that we have seen already, diagonalization.

So diagonalization will give us the first unsolvable problem, the Halting prob-
lem. And once we have that, then we can use it in a technique called reduction
to prove that all sorts of other problems are unsolvable by reducing our unsolv-
able problem – usually the first one, but you can reduce any other unsolvable
problem – to another problem. And the meaning of this is the following: When
I reduce an unsolvable problem to another problem L, then it turns out that if
I can solve L – if I can decide L – then I can also decide the original unsolvable
problem. But since the original problem is unsolvable, this amounts to an argu-

3.3. LECTURE 3 59

ment that the new problem L is also unsolvable. So these two steps combined
give us a technique for proving unsolvability of all sorts of problems.

60 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 3

Autumn 1999 4 of 13

Lemma 1 L decidable⇒ L acceptable

Lemma 2 L decidable⇒ Lc decidable

We proved lemma 1 and 2 last week. We
continue today with some more lemmas and
the main theorem.

Lemma 3 If both L and its complement Lc are
acceptable then L is decidable.

Proof: Given Turing machines M and M ′

which accept L and Lc respectively we can
construct a machine M ′′ which decides L as
follows:

M

M’

input

halts

halts

YES

NO

M’’

In order to prove our first problem unsolvable, we need to build up a little bit
of theory. We started doing that last time, and we proved two lemmas. Lemma
1 says that if a language is decidable, then it is also acceptable.

Decidability and acceptability are two notions of a Turing machine solving
a problem – deciding whether a word is in the language or whether something
has a property or not. You can think of the formal languages as being properties.
So each language is a set of strings that has a certain property, for example the
strings that are sorted and things like that. We will see a lot of them later.

There are two ways in which an algorithm can go about deciding whether
an input has a certain property. They give rise to decidability (saying ’Yes’ for
all strings in the language, saying ’No’ for all strings not in the language) and
acceptability (halting for all strings in the language, non-halting for all strings
not in the language). Lemma 1 says that decidability is a stronger notion, strictly
stronger in the sense that everything that is decidable is also acceptable. We
will see that the reverse is not true, there are acceptable languages that are not
decidable.

Lemma 2 says that if L is decidable then its complement is also decidable.
Remember that the complement is intuitively the reverse property. ‘Sorted’ is
say a property, ‘unsorted’ (non-sorted) gives rise to the complement of the lan-
guage. That’s how you think about the language and its complement, intuitively.
FormallyLC is just a set complement ofL. A formal languageL is a set of strings.
LC is the set complement, namely all the strings that are not in L.

We continue today with lemma 3 which says that if both a language and its

3.3. LECTURE 3 61

complement are acceptable, then the language is decidable. How can we prove
this? We use another one of those boxes. This box is an ideogram and it shows
us how to construct an algorithm M ′′, given two algorithms M and M ′.

So assuming that M and M ′ exist which respectively accept L and LC , we
can construct a machine M ′′ which decides L, in the following way: We run the
two machines M and M ′ in parallel. We give them the same input. The input,
being a string, must always belong to either to L or LC . Since M and M ′ by
assumption accept L and LC , one of those machines will eventually halt. If M
halts we say ’Yes’, if M ′ halts we say ’No’. That gives us M ′′.

Now the question is how do we run two machines in parallel by using only
one machine, M ′′? And the answer is: Its fairly easy. You basically run one
machine a little bit and then store its state and all you need to know about it,
its configuration. Then you run the other machine a little bit, and so on. And
you can allocate a part of the tape for one machine and a part of the tape for the
other machine. If you run out of tape then you have to do some copying and
erasing and moving the data from one place of the tape to another, and so on.

So these are just messy details which you can easily reconstruct yourselves.
They can be done. So we are not going to deal with such details a lot in this
class, especially not in the lectures, but I do recommend that you spend some
time with them and really check that you could in principle, given enough time,
create such a machine – that you could give all the details.

62 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 3

Autumn 1999 5 of 13

Lemma 4 LH = {(M,x)|Mhalts on input x} is
Turing acceptable

Proof: The universal Turing machine Mu

accepts LH.

•Mu works like an ordinary computer: It
takes a code (program) M and a string x as
input and simulates (runs) M on input x.

•Mu exists by Church’s thesis.

• To prove existence of Mu we must
construct it. Here is a 3-tape Mu:

q1

M ’su ... rules of M

...

(s,0)

... 0 1 0 b ... tape of Mb

,b, R) ...

state=s ...counters

control
finite

b

(q1

Lemma 4 gives us the actual Halting language or Halting problem, LH . LH
consists of pairs ofM and xwhereM is a Turing machine code and x is an input
code. Notice that bothM and x are strings, therefore the set of all pairs ofM and
x (actually the string concatenations of M and x) is a formal language. So the
language consists of those pairs which are such that the machineM halts given
input x, in other words, that M accepts x.

So lemma 4 says that this language is Turing acceptable. There is a Turing
machine which accepts LH . We call that Turing machine the universal Turing
machine, Mu, and since this Turing machine is going to play an important role
in our reductions, and in fact in theory in general, I will describe it in some
detail. Notice that Mu is in principle what we call a general purpose computer
or a stored program computer. Because what it does is exactly what your typical
computer does. It reads both the program and the input, and then runs the
program on the input. So we want to see that such a Turing machine indeed
can be constructed.

And you would expect that it must be so because of the Church-Turing thesis
which says basically that whatever you can do on an ordinary computer, you
can do it also with a Turing machine, and vice versa. And since we believe in
this thesis by and large, we are ready to believe that Mu exists, and for being
convinced about its existence that might be enough. But that is not enough for
a formal proof because we want to prove that Mu exists and then use it further
for all sorts of other proofs so that we have a consistent and well defined theory.

So to prove the existence ofMu we need to construct it. I will use a construc-

3.3. LECTURE 3 63

tion which is standard and which uses 3 tapes. It is fairly easy to see that any
Turing machine which uses some number of tapes – k tapes – can be simulated
by a Turing machines that uses only one tape, with some storage management,
garbage collection, moving data left and right when the machine runs out of
tape, etc.

So now we have 3 tapes and we use them as follows: One tape is used for
simulating the tape of M . Remember what we are doing: We are simulating or
running, machine M on input x. When the simulation starts this tape of M will
contain the input x, ‘010’ in our example.

The second tape will store the program ofM , the description of M , and the
most important part of it is the transition function delta, the rules. So you can
imagine that this tape here has some encoding of the transition table ofM . You
cannot just store all sorts of things like q1 and so on. But these are encoded with
0’s and 1’s – imagine your favorite encoding. So there is some work actually for
the poor, little Turing machine – which is rather kind of a silly, not very clever
device – to figure out this code, but imagine that this can be done. And again
you can understand actually how the details work out if you work with them a
little bit.

Mu will keep track of the state of M and some other data on its third tape.
So the third tape is kind of a work tape for Mu where Mu keeps its local data,
its variables and things. One of them is the state of M . So initially M , which is
being simulated, is in state s and M is looking at the first character of its input,
a ’0’. And thenMu will use its second tape. It will look left and right – go through
the transition function of M – until it finds the entry of the transition function
which corresponds to the current situation, which is a ’0’ being scanned and s
being the state.

So it finds out that M in that situation needs to change the state to q1, erase
the character that is being scanned and move its read/write head to the right. So
Mu will do exactly that action: Replace the 0 on the first tape by a blank, move
the head of the first tape to the right, and change the state stored on the third
tape – replacing the s by q1. And q1 is again a code of something. We don’t know
in advance how many statesM will have. So we need to use some counters here,
some ways of representing these q’s. I say here s and then q1, but what you really
need is to be able to count up to n states. So when we represent q1 by 0’s and 1’s
it will be a string and in order to figure out exactly which q this is, we will have
to use some counting. Details, details, details.

Aside from these details the whole thing is fairly simple and easy. Now the
story continues. A new step ofM is simulated byMu: The third tape says thatM
is in state q1, and the read/write head of the first tape is scanning a ‘1’. AgainMu

will search through the second tape until it finds the corresponding rule, apply
it, etc. And then of course whenM halts,Mu will also halt. IfM says accept then
Mu knows thatM has accepted, or ifM says ’Yes’Mu knows thatM has said yes.
So the simulation is rather simple and it is easy to see how Mu can do exactly
whatM is doing.

In particular, if M accepts its input x then Mu simply halts and accepts its
input (the concatenation of the strings M and x). So effectively Mu accepts
LH , the Halting language, or solves the Halting problem in this accepting, weak
sense.

64 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 3

Autumn 1999 6 of 13

Lemma 5 Ld =
{M |M does not halt given its own code as input}
is not Turing acceptable.

Proof: Suppose there exists Md which accepts
Ld. Does Md accept its own code?

• If yes — it accepts a string which is not in
Ld.

• If no — it fails to accept a string which is in
Ld.

So in either case it fails, hence a
contradiction.

Note: Ld is the diagonal language — a special
version of LHc.

Now the final lemma, lemma 5, which will actually give us the first unsolv-
able problem. It says that Ld is not Turing acceptable. Ld consists of machine
codes which have the property that they don’t accept their own code as input.
In other words: Ld consist of all Turing machine codes M which describe ma-
chines that do not halt given their own code as input. What a strange problem,
what a strange language. We will see in a moment where this is coming from.

So lemma 5 says that Ld is not Turing acceptable. That is what we are going
to prove. And the proof will be a diagonalization argument, but in the beginning
it will not be completely clear why this is diagonalization. Afterwards I will show
you a second argument which is the diagonalization that we are used to, and
then everything will fall into place. But the diagonalization proof in disguise is
sleek and elegant and very short, so let us look at it first.

Towards a contradiction we suppose that there is a machine Md which ac-
cepts Ld. What happens if Md is given its own code as input? Does Md accept
its own code? There are two possibilities: ’Yes’ and ’No’.

If ’Yes’, if Md accepts its own code, then Md accepts a string which is not in
Ld. Because Ld is defined as all machine codes which do not accept their own
code. So if Md accepts its own code, then it accepts a string which is not in Ld.
In this caseMd is not a proper machine forLd.

If ‘No’, ifMd doesn’t accept its own code, then it fails to accept a string which
is in Ld, namely its own coce. Because if Md does not accept its own code then
the code of Md belongs to Ld, and therefore Md should have accepted it.

So Md in either case fails to accept Ld, which completes the contradiction.

3.3. LECTURE 3 65

So the assumption that there exist such a machine Md, must be wrong.
As these sleek concise arguments go, you need to spend some time on it,

look at it and ponder it and see actually how beautiful and elegant it is, and that
it really does its job. The question is how in the world did people come up with
this strange looking Ld, and this strange looking argument?

66 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 3

Autumn 1999 7 of 13

Alternative proof of lemma 5:

ε 0 1 00 01 10 11 000 · · ·

ε

0

1

00 1 0 0 6 10 0 1 0 0
01 0 1 0 1 6 01 1 1 0

10

11

000
...

•We have strings as column labels

•We have Turing machine (codes) as row
labels

• The 1’s in each row define the set of strings
each TM accepts.

• After flipping the diagonal elements, the 1’s
on the diagonal represents those machines
which don’t accept their own code as input

• No Turing machine can possibly accept
that diagonal language!

The explanation and complete clarity comes when you look at the same
problem in terms of our huge matrix where we represent all algorithms (all Tur-
ing machines) and the languages which they accept (the strings for which they
halts).

So we once again look at this big matrix. We have all the strings as column
labels and all strings as column labels, and some strings among the row labels
are going to be Turing machine codes. So suppose that these yellow-shaded
rows are Turing machine codes. And whenever we have a Turing machine code
as a row label, we use the remainder of that row to represent the language that
the Turing machine accepts by putting a ’1’ for those strings which are accepted
by the Turing machine, and a ’0’ for those strings that are not.

So the empty string is accepted by the machine ’00’, ’0’ is not accepted, ’1’
is not accepted, ’00’ is accepted, ’10’ is not, and so on. The same for the other
rows – we just put 0’s and 1’s and so on. And then as in the proof in the first
lecture where we were talking about having more problems than solutions, we
look at the diagonal and we flip the diagonal – replace 1’s by 0’s and 0’s by 1’s.

So what is the diagonal here? The diagonal tells us what each Turing ma-
chine will do given its own code as input. And a ’1’ here means that the Turing
machine accepts its input. Now when we flip those 1’s into 0’s, then we have
1’s in those places where the Turing machine does not accept its own input, in
other wordsLd – the diagonal language. So in the technical jargon, this language
is called the diagonal language of the Halting problem. And because every valid
TM gives the wrong answer given its own code as input – remember that the

3.3. LECTURE 3 67

diagonal language was constructed by flipping all the diagonal elements – there
cannot be any TM which accepts Ld.

So this is a completely valid proof for lemma 5. And this alternative proof
gives us a clear diagonalization and a clear origin of Ld. So now we have the
whole thing.

68 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 3

Autumn 1999 8 of 13

Theorem 1 LH is undecidable.

Proof: Suppose Turing machine MH decides
LH. Then the following machine M ′ decides
Ld

c:

M’

MM copy

YES

NO NO

YESm,mm
H

• By Lemma 2 Ld is also decidable.

• Then Lemma 1 gives that Ld is acceptable.

•We have arrived at a contradiction since by
Lemma 5 we know that Ld is not
acceptable.

We are now ready to prove our first undecidability result, the big one, the
important one, which is that the Halting problem is undecidable! So we have
our first undecidability problem finally. And why is the Halting problem un-
decidable? Because if we can decide the Halting problem, we can also decide
Ld.

First of all notice thatLdc – the language consisting of Turing machine codes
which do accept their own code as input – is just a special case of the Halting
problem, where instead of giving as input a Turing machine M and some x, this
x is just another copy of M , the Turing machine code.

The box on the foil shows the reduction. If MH decides LH , then we have a
decision procedure M ′ for the complement of the diagonal language, Ldc: We
take the input M for M ′ and basically copy it two times, feed it to the machine
MH which supposedly solves the Halting problem, and say ’Yes’ ifMH says ’Yes’
and ’No’ ifMH says ’No.

So if MH exists, so does M ′, and then we have that Ldc is decidable because
M ′ decides it. But this cannot possibly be true because if Ldc is decidable, then
by lemma 2Ld is also decidable, and by lemma 1Ld is then acceptable, but as we
have seen (lemma 5) Ld is not acceptable. Hence we have a contradiction, and
MH cannot exist. In other words, the Halting language is undecidable, which is
what we wanted to prove.

3.3. LECTURE 3 69

IN210 − lecture 3

Autumn 1999 9 of 13

Conclusion

Ld

languages
(computable
functions)

decidable

Ld
c

undecidable
but acceptable

acceptable
not

LH

All languages⊃ Turing acceptable languages
⊃ Turing decidable languages

Now we have accomplished quite a bit. We have divided our universe of
problems into not only two classes, not only two sub-worlds, but actually three.
Just kind of surprising. Among all the unsolvable problems strangely there are
problems which are more unsolvable than others. There are problems which
are not acceptable, such as Ld, problems which are acceptable but undecid-
able, such as Ldc and the Halting language LH . And then of course all sorts of
problems that are both decidable and acceptable.

So we have divided all the languages into sets which contain one another.
The big set of all languages contains the Turing acceptable languages as a proper
subset, and that set contains the decidable languages as a proper subset. This
we have proven by these few lemmas and the theorem.

70 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 3

Autumn 1999 10 of 13

Meaning
An example with Π = 3.14159265359 . . . :

L1 = {X|X is a substring of the decimal
expansion of Π}

L2 = {K| There areKconsecutive zeros
in the decimal expansion of Π}

Classify L1, L2 as

• not acceptable

• acceptable but not decidable

• decidable

Note: Only problems which take an infinite
number of different inputs can possibly be
unsolvable.

Now I will talk a bit about the meaning of unsolvability. I will show you an
example which has to do with number pi (π), which is what is called a transcen-
dental number. π is an infinite number, it has infinite many digits. If you look
at the number 1/3, that is also an infinite number. But there is a huge difference
between the two numbers. This 1/3 number although it is infinite you can write
it in a certain way. All the digits are known because this digit 3 just repeats itself.
So the number 1/3 is kind of periodic.

It is known that number π is not periodic. There is no such repetition. Ba-
sically every digit that comes, it is kind of a creative thing. It comes out of the
blue, and it cannot be figured out trivially from the previous calculated digits.

So π is not repetitive. Nevertheless π can be approximated to an arbitrary
degree. Which means that we do have algorithms which give us as many digits
of π as we would like to have.

We look at two languages. In L1 we ask, given a decimal string x, whether x
is a substring of the decimal expansion of π. If x is equal to, say, 415 then x is in
L1 because π = 3.14159 . . . In L2, given an integer k, we ask whether there are k
consecutive 0’s in the decimal expansion of π.

So these two languages they are quite similar, right? And now I ask you: Can
you place L1 andL2 onto the map on the previous foil? For each ofL1 andL2, is
it not acceptable, or is it acceptable but not decidable, or is it decidable?

The obvious way to try to decide L1 is to make an algorithm that generates
the digits of π, and then run the algorithm and check if the substring x appears.

If the machine stops and answer ’Yes’ then everything is fine. But what if
the algorithm just runs and runs, searching for the substring x? Suppose you
wait 70-80 years, you are getting very old, your beard is very long. Everyone
thinks you are crazy, but you are still standing in front of the computer. And the

3.3. LECTURE 3 71

computer just doesn’t give you the answer. What then?
We are building intuition now. This is the difference between accepting and

deciding. Deciding means definitively saying ’Yes’ or ’No’. So if you are sitting in
front of a computer that decides a language then you know you may have to wait
for one million years, but ultimately the answer will come. Now, if your machine
is just accepting the language, you don’t even know that after one million years
the answer will come, it may never come. Because the way the machine says
’No’ is: It remains silent. So only positive answers come.

Language L1 can be accepted in exactly the way we were describing. So you
generate the digits of π and go consecutively through them and just keep check-
ing if x is a substring of π, and when you find it you say: ’Stop, I have found it!’
That’s the end. But if you don’t find it, then the algorithm just runs forever. It
doesn’t accept the strings that are not in the language. It only accepts the strings
that are in the language. SoL1 is acceptable, but accepting is a very weak notion
of solving a problem.

Whether L1 is actually decidable or not, we simply don’t know. So I cannot
tell you the answer. But we know for sure that L1 is acceptable, and we in fact
do suspect that it is not decidable. But we don’t know enough to prove it. You
will need to know the nature of this number π better in order to actually be able
to prove that L1 is undecidable. We cannot do that presently.

However we can prove that L2 is decidable, although we cannot really show
an algorithm. So this is an interesting case where we have a non-constructive
proof of decidability. And let me tell you how it goes:

Either there is an number n such that there are not more than n consecutive
0’s in the decimal expansion of π, or there is no such number. So, either there
is a maximum number of consecutive 0’s in the expansion of π, or there is not –
meaning that there are arbitrary many consecutive 0’s in the expansion of π. If
there is such a number n, then the algorithm is very simple: You compare your
k with n and if k is smaller then you say: ’Yes, there are k consecutive 0’s in the
decimal expansion of π’. If k is bigger then you say ’No’.

If there is no maximum number of consecutive 0’s in π – if there can be arbi-
trary many – then you always say ’Yes’. So in either case the algorithm exists. But
which algorithm is the right one – what is the maximum number of consecutive
0’s in the decimal expansion of π and is there such a maximum – we don’t know.
So we don’t know the algorithm, but we know that an algorithm for deciding L2

exists in the big basket of algorithms.
This is quite subtle and an indication that our notion of unsolvability is

maybe to weak, in the sense that some languages that are unsolvable in prac-
tice (we might even be able to prove formally that we cannot determine which
algorithm in the basket is the right one for deciding L2) are being classified as
solvable (because we have proven that there do exist an algorithm in the basket
for deciding L2).

The example is not a typical situation. We will see more typical situations
later on. But it does illustrate some subtle aspects of the meaning of acceptabil-
ity and decidability, which I wanted to point out to you.

Another fine point is that only languages with infinite number of inputs can
possibly be unsolvable. We can decide any language L which take only a finite
number of different strings as input, in the following way: We construct a large,
but finite array (as large as there are different inputs), and for each possible
input x we put a ‘1’ at the corresponding array entry if x is in language L, and
a ‘0’ otherwise. The algorithm which decides L will then, given an input x, do
a look-up in the array at the index corresponding to input x, and answer ‘Yes’ if
the array entry contains a ‘1’, and ‘No’ otherwise.

That is why we will only consider languages with infinite inputs in this class.

72 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 3

Autumn 1999 11 of 13

Reductions

M

(M,x)

input
M R LM

YES

NO

H

Meaning of a reduction
Image: You meet an old friend with a brand
new M$-machine under his shoulder.
Without even looking at the machine you say:
“It is fake!”

How the reduction goes
Image (an old riddle): You are standing at a
crossroad deep in the forest. One way leads to
the hungry crocodiles, the other way to the
castle with the huge piles of gold. In front of
you stands one of the two twin brothers. One
of them always lies, the other always tells the
truth. You can ask one question. What do you
say?

Now, theorem 1 has given us step 1 of our strategy for proving unsolvability.
We have our first unsolvable problem, LH . The second step is: We want reduc-
tions. We want to be able to reduceLH to another languageL in such a way that
if L is decidable, then so is LH . And since we know that LH is undecidable then
L can not possibly be decidable either. So that gives us a strategy, or technique,
for proving that all sorts of other problems are undecidable also. Which puts us
into business.

So, this technique is called reduction. I will represent reductions schemati-
cally. But you, when you write your proofs, you will have to spell out the whole
thing because we want arguments and not just pictures in the answers of your
homework and exam questions. I can afford to be sketchy because this is a
lecture and I have done my education, got all my degrees and things, so I can
improvise. But you have to be careful and strict.

As improvisation goes this green, outer box here represents MH , a solution
to the Halting problem, which is just about complete. So MH actually solves
the Halting problem provided one thing which is shown here in red – provided
ML. So the reduction is in fact almost a complete algorithm except that it calls
a subrutine. It uses a kind of a black box, a slot here – the red box – which we
claim doesn’t exist.

And by managing to produce this whole machine – minus this little red box
– that solves the Halting problem, we effectively show that the little red box can-
not possibly exist. Because if it does exist, then we plug it in here and this whole
machine solves the Halting problem. We know that that is impossible.

3.3. LECTURE 3 73

I invoke two images to illustrate this concept. We will see in a moment an
unsolvable problem which I callL$. The first image goes like this: Imagine that
you walk down Karl Johan’s street and you meet your old friend and he’s carry-
ing something rapped up in newspaper under his shoulder. You ask, after the
usual greetings exchange: “What is it that you are carrying?” And he says: “Well,
you know, I went to a store and I just bought a little machine that solves the L$

problem. It’s a new thing coming out of America, fresh from the shelf – nobody
knows about it yet.” And you say right away: “No, no, no, no, no. ThisM$, it can-
not possible exist.” And he says: “Oh, wait a minute. I mean, look: I just bought
it, number one. And number two: How do you know that it cannot exist? It’s
here, under my shoulder, and you didn’t even see what I had in the newspaper.”

The point is that you don’t have to see it. You know that it cannot exist. Why?
Because you have this other machine here, MH , and if your friend can bring M$

and plug it in here, then the whole thing is a complete machine for LH – for the
Halting problem. But since you know that such a machine cannot possibly exist,
then you know that his machine that solves L$ cannot exist either. So without
looking at it, without even bothering to see what the thing is, you know it cannot
exist. And that’s the power of the reductions.

Image 2 is about the way these reductions go, how you can think about them:
There is this old riddle where you are coming to an intersection which splits
into two roads: One leading to some kind of disaster, and another leading to
something very good. So this is the road you definitely want to take. And there
is a guy standing on the intersection. You know about this guy already. It’s one
of the two twin brothers. One of the twins always lies, the other one always tells
the truth. And you don’t know who is who.

The brothers they know the way because they live there. You want to ask the
guy the question where to go so that you for sure go this way (to the castle) and
not this way (to the crocodile).For some reason or other you are only allowed to
ask one question, so a lot depends on your question.

What do you ask? Do you know this? You do? OK, I will tell you what it is.
You ask the guy: “What would your brother said if I asked him: What is the way
to the castle?” And then if this is the lying brother he would lie about his other
brother, so he would say: “This way, this way!” (pointing towards the crocodile)
And if it is the truth-saying brother, he knows that his brother would lie, so he
says: “My brother would point to this way.” (to the crocodile) In either case it
is the wrong way you will hear, so you choose to go the other way. You kind of
negate the negation and get the right thing.

The same is true for reductions. So towards the contradiction you assume
you are given a solution to the undecidable problem. And then your reduction
will consist in asking this supposed machine a clever question in such a way
that the machine will actually answer what you really want to know – and that’s
the answer to the Halting problem.

So MR will in effect transform the question that corresponds to the Halting
problem, to the question which this supposed machine wants, so that if this ma-
chine ML can say ’Yes’ or ’No’ in the right way, then effectively it has answered
the Halting problem.

So this was just for explaining this box ideograms. The whole argument is
an argument by contradiction. You will see a few of them in group sessions, and
I very strongly recommend that you do reconstruct one reduction. You don’t
have to do a lot of these proofs, but at least one you should really understand
completely. And this one I am hoping to do right now. Here it comes.

74 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 3

Autumn 1999 12 of 13

A typical reduction

L$ = {M |M(eventually) writes a $ when
started with a blank tape}

Claim: L$ is undecidable

Proof:

M R M

M

(M,x)

H

NO

YES

NO

M’
$

YES

M’:
Simulate M on input x;
IF M halts THEN write a $;

Important points:

•M ′ must not write a $ during the
simulation of M !

• ’Write a $’ is quite an arbitrarly chosen
action!

I am showing a typical reduction, and I am going to do it slowly, but you may
even want to go into more detail at home than I am doing here.

The word ‘typical’ is shown in red, because you want to understand what I
am doing here as a kind of a template. You can prove all sorts of other problems
unsolvable in pretty much the same way. So if you understand this one proof
properly, you can understand and construct all sorts of other proofs.

The problem that I am showing undecidable is what corresponds to the lan-
guageL$, consisting of the codes of all Turing machinesM which will eventually
– when started on a blank tape – write a dollar sign.

The input is a Turing machine code. It’s a program. You can imagine it is
written in Java. And the question is: Does this Java program eventually write a
dollar sign? And notice that there is no input, so the input is irrelevant. Maybe
there is some input written on the input tape, but M will not even look at it. So
we can assume that M starts with an empty tape. And the question is simple:
Will M eventually write a dollar sign?

I claim that L$ is an undecidable language. Now, the proof of this claim is a
reduction, and I am using this whole situation to show you a typical reduction.
This reduction will construct a solution to the Halting problem, given a machine
M$ which decides L$. The heart of the reduction is this machine MR which
reduces the Halting problem to L$, our new problem.

The whole argument is by contradiction. We say: Assume towards the con-
tradiction that there is a machine M$ which solves the L$ problem. Then we
can create – by using that machine – a solution to the Halting problem, in the

3.3. LECTURE 3 75

following way: ... And then at the end of the argument we say: Since we know
that MH does not exist, the assumption that M$ does exist, must be incorrect
because it leads to a contradiction. What is the contradiction? The contradic-
tion is that MH exist. Because if M$ exists, so does MH . But we have proven
before that MH cannot exist.

So this whole argument is by contradiction and the heart of the matter is the
machine MR which produces M ′ givenM and x. So we know focus on that.

First I will explain what M ′ is and what M ′ does. M ′ is an instance of the
new problem L, produced by MR. M ′ is very simple, and in a typical reduction
M ′ will look like this, be some kind of variant of theM ′ shown here.

Remember that M ′ is a machine code. M ′ as a machine will simulate M on
input x and then write a dollar sign after M has halted, if it halts. Very simple.
And notice that givenM andx, the reduction fromM andx to thisM ′ is a proper
reduction in the sense which I will define shortly, namely that it maps the ‘Yes’-
instances to ‘Yes’-instances and ‘No’-instances to ‘No’-instances.

Why is it so? The key to understanding the reduction is this little line: “Sim-
ulate M on input x.” So M ′ is effectively running machine M on input x. And
then it is going to write a dollar sign. So it is going to write a dollar sign if and
only if this simulation eventually ends. Deciding whether the dollar sign will be
written amounts to deciding whether M will eventually finish dealing with x –
whether it will halt given input x.

There are two comments. Comment one: In its simulation M ′ must never
write a dollar sign. This is easy to fix because if for example M uses the dollar
sign, then you can simple modify the M by replacing the dollar sign by a cent
sign, by some other sign. So that’s an easy fix.

So you know that the dollar sign doesn’t have to be used. You can use any-
thing else instead. You can assume that the dollar sign cannot possibly be writ-
ten on M ′ tape during the simulation of M on input x. The only way a dollar
sign can be written is if M finishes its run on x, in which case the dollar sign is
surely written. So the dollar sign is written if and only ifM halts on x. So this is
a proper reduction.

Comment two: Notice that this writing of a dollar sign is in fact an arbitrary
action. We can say not a dollar sign, but ‘Hello’. DoesM ever say ’Hello’? Does
M ever wave its right hand? So, you can replace the line “writes a $” by "says
’Hello’". And then you have another problem shown undecidable, another re-
duction.

So using this as a kind of a template to make another reduction, is very sim-
ple. But that doesn’t mean that any action goes. Because sometimes it is im-
possible to modify the first part (simulation of M on x) so that the action never
happens. A simple example is deciding whetherM ever moves its head right or
left.

You can say: 1) Simulate M on x. 2) Move your head left or right. It’s seems
like you have proven this question of whether the machine ever moves its head
left or right, undecidable. But you haven’t really because you cannot eliminate
the movement of the head from the simulation. It is not impossible. This is
subtle.

So this is why you cannot use this idea to prove that anything is undecidable.
Up to here the story is extremely simple, and I am hoping you can understand
it completely when you look at your notes for ten minutes at home. Please do
so, because if you understand this you have understood a major part of this
class. In fact it is a major part of algorithm theory, and a major part of this
whole business of producing algorithms, which has to do with whether there is
an algorithm for something or not.

76 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 3

Autumn 1999 13 of 13

MR:
Output the Mu code modified as follows:
Instead of reading its input M and x, the
modified Mu has them stored in its finite
control and it writes them on its tape. After
that the modifiedMu proceeds as the
ordinary Mu untill the simulation is finished.
Then it writes a $.

Reduction as mathematical function
Given a reduction from L1 to L2. Then MR

computes a function

fR :
∑∗

→
∑∗

which is such that

x ∈ L1 ⇒ fR(x) ∈ L2

x 6∈ L1 ⇒ fR(x) 6∈ L2

L2L1

Σ* Σ*

The heart of the matter is the machineMR which produces M ′ givenM and
x. This is an important part which defines actually what we mean by a reduc-
tion. So a reduction is actually an algorithm which we here callMR, which com-
putes a certain function, let’s call it fR, that maps strings to strings in the follow-
ing way: If string x is in L1 then the string f(x) is in L2 and if string x is not in L1

then the string f(x) is not inL2. To make the things more clear we use a picture.
This time the oval represents the set of all strings, and here is L1 and here is L2.
So the essence of the reduction is that it is going to map strings inL1 into strings
in L2, and strings that are not in L1 into strings that are not in L2. Or in other
words, it is going to map all the ‘Yes’-instances of L1 into ‘Yes’-instances of L2,
and all the ‘No’-instances of L1 into ‘No’-instances of L2.

In our example the Halting problem isL1. When we are reducing the Halting
problem to this other problem L$ (which is L2 in the definition above), we are
computing an instance of L$, which is M ′. So the reduction machine MR will
take an instance of the Halting problem and compute an instance of the new
problem L$ in such a way that if the LH instance is a ’Yes’ instance then the L$

instance is a ’Yes’ instance, and if theLH instance is a ’No’ instance then the L$

instance is a ’No’ instance. That’s the meaning of the reduction. So if we can
produce such a thing, and that is exactly what we did on the previous foil, then
we have reduced the Halting problem to L$. And if we can say ’Yes’ or ’No’ to L$

– if we have the little red box – then we have the whole machine complete and
we can solve LH . Which completes the contradiction.

What comes now is a more subtle, but still simple, and I do want you to

3.3. LECTURE 3 77

understand this also in full detail, in which case you will just fly through this part
of the exam. It’s extremely simple once you understand one reduction properly
and completely. Then all of them are very clear and you can produce new ones
very easily.

We now look at MR – the reduction – as a machine. How does it function?
What is it? What is really this MR? This is the heart of the matter because MR is
our reduction. The machine MR is what we are constructing. M ′ is just some-
thing that is being output by MR. M ′ is not a machine. It is just a code. It is a
piece of software. It is a string. So the tricky part here is understanding what is
hardware and what is text. M ′ is text. MR is hardware.

What is MR as hardware? First, what does MR do? MR will take the string
(M,x) as input and produce the code for M ′, which is also a string, as output.
So MR will turn one string into another. MR will output M ′, and M ′ will consist
mainly of the code of the universal Turing machineMu, but it will be modified a
little bit. And most of what MR does is actually this simple modification of Mu.
When we understand this little modification, then we are done, basically.

Remember that the code of Mu is just a string. MR stores in its memory – in
its state control – a slightly different version of the standard Mu code. We will
go into details a little later. So MR basically has a big program which is almost
finished. It just needs some things to be put into certain slots. So it has this
modified Mu piece in its state control and then it reads M and x, put them into
the empty slots of the modifiedMu piece, and output the whole program asM ′.
MR is finished.

So this is how MR functions, and now let’s see what the modification are
about. How is Mu actually modified? This Mu that MR is storing in its hardware
– in its finite control – is non-standard in the following sense: Instead of reading
its input M and x, Mu has both M and x stored already in its finite control.
And it begins its operation by writing them – by writing M and x – on its tape.
Following that moment this Mu operates precisely like the standard universal
Turing machine: It runs M on input x, and does exactly what M would do on
input x. And after the simulation, if it ever ends, Mu will write a dollar sign on
the tape. That’s really the whole story.

MR has a stored text, the modified Mu. It’s a text of a program, which is
almost finished. It just needs to be modified a little bit. And in this text, at the
very beginning, there are commands which say: Write on the input tape the
following text. And this following text is missing, it’s like there is an empty slot
there.

And all thatMR does is that it takes its own input – which is the pairM and x
– and writes it into that particular slot, and outputs the result. The result is this
whole piece of code M ′. So his whole piece of code M ′ will begin its operation
by writing M and x on its tape. M and x are stored as constant strings in M ′.
And then following that moment M ′ will function exactly as Mu. It will look at
what is written in its input tape, which is M and x. It will run M on input x and
do exactly whatM is doing.

So M ′ will of course after this whole simulation, write a dollar sign. And
this will happen of course if and only if M halts on input x. And naturally if M
would be using normally a dollar sign, then MR will go through M and x and
just replace every dollar sign with a cent sign. So there is a little subprogram
which says: Replace all the dollar signs by cent signs in M and x. So that M
doesn’t possibly write a dollar sign.

So this is the end of the story. If you look at this reduction very carefully
then you know all the reductions of a certain kind. You will see a few of them in
the group exercises. You can try creating your own reductions. They all have to
do with actions of Turing machines. So what does a Turing machine do? Well,

78 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

just about anything. It decides, given a Turing machine as input, whether the
Turing machine is going to smile, wave its hand, give you a wink of the eye, etc.
It’s all undecidable. Because anything goes as an action in the reduction we
have went through. Except some very trivial actions which we cannot prevent
from happening during the simulation ofM on input x. For example whether it
will ever move its read/write head or whether it will ever write anything given a
blank input tape.

So the properties of programs are by and large undecidable. For example
in syntax checking, we would like to know if a program is semantically correct.
Say I give you a student assignment: Make program for sorting. And I would
like to have a kind of a piece of code that checks your program automatically.
Are they correct or not, are they correct sorting programs? Well, there is no such
a program that checks whether programs are correct, simply because it is not
even possible to check whether the program halts or not. Not even that. Of
course, for some programs you can deduce that they will stop or not, but not
for a random program.

Whether the program does any sort of action such as solving sorting is un-
decidable because you can always create a M ′ which says: SimulateM on x and
then run the sorting algorithm. So the sorting algorithm will be run if and only
if M halts on x.

So these proofs will be actually very easy. You just need to understand one
of them, and that one we have seen today. So please pondering on it a little bit,
try to understand all this details. It’s a little bit messy to understand because
machines produce each other and some machines are code. Some actually are
supposed to exist and some don’t exist, for example M$. Understand all of this
and you have understood a major part of this course.

We continue next time with other kinds of reductions – reductions which
have nothing to do with Turing machines. So that we can talk about other kinds
of unsolvable problems also.

3.3. LECTURE 3 79

(This is a blank page)

80 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

3.4 Lecture 4

IN210 − lecture 4

Autumn 1999 1 of 13

Review

LH LH
L

• show LH unsolvable by diagonalization

• show L unsolvable by reduction

Reductions

M R M

M

(M,x)

H

NO

YES

NO

M’
L

YES

M’:
Simulate M on input x;
Do <ACTION>;

Algo:
8

We begin as always on the top of the pyramid. We look at what we are do-
ing. So right now we are dividing the universe of problems into two very basic
classes: Those that can be solved by algorithms and those that cannot. We have
been developing a technique which allows us to divide the problems into un-
solvable and solvable.

The technique has consisted of first finding the first unsolvable problem,
which was the Halting problem, or the Halting language (LH) when formalized.
That we have done by using a fundamental proof technique called diagonaliza-
tion. And then we have seen how to use another fundamental technique called
reduction to show that all sorts of other problems are unsolvable or, formally,
that all sorts of other languages are undecidable. We do that by reducing the
first undecidable language LH to the new language L, which we want to show
undecidable.

We have seen one such reduction last time, and we have also seen that that
reduction can easily be adapted to show all sorts of other problems undecid-
able. I am representing the reductions by a box diagram, by an ideogram: I am
showing in green an algorithm for solving the Halting problem, or a Turing ma-
chine that decides LH , which has all the details provided (in black) except one
thing (shown in red): A Turing machine ML that decides L, the language that is
being shown undecidable.

The whole argument is by contradiction: If someone can provide ML, then

3.4. LECTURE 4 81

the whole thing is an algorithm that decides LH – a solution for the Halting
problem. Since we know that a solution for the Halting problem cannot exist,
then ML cannot exist either, so language L is also undecidable.

The heart of the reduction is the machine MR which given M and x – an in-
stance of the Halting problem – creates M ′ which is an instance of L, the new
problem being shown undecidable. M ′ is a program, a Turing machine code,
which will simulate M on input x and then do some action – whatever that ac-
tion is.

In our reduction last lecture the action was ’write a dollar sign’. And remem-
ber that we must secure that this action does not take place in the first line of
the M ′-program – during the simulation ofM on x – otherwise the whole thing
won’t work. So if we can secure that this action happens only in the second
statement of M ′, and there only if and only if M halts on x, then we have that
M ′ will do ’action’ if and only if M halts on x. Therefore deciding whether M ′

will do this action is equivalent to deciding whetherM halts on x.

82 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 4

Autumn 1999 2 of 13

Example
Theorem 1 Equivalence of programs (Turing
machines) is undecidable.

Proof:

MH

M
NO

YES

NO
E

YES

M R
(M,x)

M’’

M’

M’:
Simulate M on input x;
Accept;

M”:
Accept;

•M ′′ accepts all inputs.

•M and x are constants to M ′.

•M ′ accepts all inputs if and only if M halts
on input x.

Here is another example. I am just showing how this M ′ can be modified
to show all sorts of problems undecidable. So imagine that I am teaching an
algorithm class and I have given an assignment to my students to write sorting
algorithms.

I have this idea: I am going to create a correct sorting algorithm myself, and
then I will create this wonderful program (machine) ME which tests equiva-
lence of programs. Which means that ME is going to say ’Yes’ if the two input
programs, e.g. two Pascal programs, are equivalent, meaning that they the do
exactly the same thing on the same input.

If I can have that machine ME then I can test a student’s program by com-
paring it to my correct sorting program: I give the student’s program and my
correct sorting program as input to ME , and if ME says ’Yes’ then I know that
the student program is correct, and vice versa.

So it is a nice plan, however it cannot work, because this tester of equiva-
lence of programs, ME , cannot possibly exist. The proof is here on this foil. I
am not giving you the whole proof. I am just giving you the heart of the matter,
the reduction.

MR is as usual going to take M and x as input and produce M ′. M ′ is going
to simulate M on x as usual and then accept. It will accept its input whatever
the input happens to be. SoM ′ is not even looking at its input. As explained last
lecture M ′ is going to write essentially both M and x on its tape, then run the
universal Turing machine – simulate M on x – and then it is going to accept its
unseen input. And that will happen if and only if M halts on x. So M ′ is going

3.4. LECTURE 4 83

to accept whatever its input is if and only ifM halts on x.
I have also this M ′′ which is a part of my reduction. M ′′ basically does noth-

ing, it just accepts. So M ′′ will accept always.
Now remember that M and x are constants in M ′. So M ′ is going to ac-

cept always its input if and only if M halts on x. Therefore the two machines
M ′ and M ′′ are going to be equivalent if and only if M halts on x. So if ME

can test whether two input machines are equivalent, this whole thing shown in
green solves the Halting problem – it tests whether M halts on x. And since we
know that the Halting problem is unsolvable, thenME cannot possibly exist. So
equivalence of programs (Turing machines) is undecidable.

It is easy to see how we can show that all sorts of questions which have to do
with Turing machine properties, or what a Turing machine is doing, are unde-
cidable.

84 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 4

Autumn 1999 3 of 13

Insights
Theorem 2 (Rice; its basic message) Most
“interesting” properties of programs (TMs) are
undecidable.

But what about the unsolvable problems that
are not related to programs/TMs?

Today
• A technique (reduction) for proving

unsolvability of non-TM problems

• Important insights — physiognomy of
unsolvable problems

Question: How to come out of the world of
TMs and into the world of general problems?

Answer: View the Turing machine
computation as pattern matching.

At this point your intuition tells you that in fact most questions that are re-
lated to properties of Turing machines (programs) are undecidable. I give you
a program and ask: ’What is this program doing?’ You won’t be able to design
algorithms for answering such questions. That’s the basic insight.

There is a theorem which captures this insight, which makes it formal. It is
called Rice’s Theorem. We are not going to cover it in this class, but its basic
message is that most of the interesting properties of programs or Turing ma-
chines are undecidable. And it is easy to see how this basic insight follows from
just the proof and the argumentation that I have just went through.

The basic question for today is: What about those problems that have noth-
ing to do with Turing machines or with programs and their properties? How do
we prove those unsolvable? We will see today a reduction technique which al-
lows us to prove unsolvability of problems which apparently have nothing to do
with Turing machine properties.

By going through this proof technique we are going to gain important in-
sight. We gain intuition. We are going to see what typical unsolvable problems
look like, so that when you meet one, you are going to recognize it immediately.
And that is very important. Because then we won’t waste too much time trying
to solve unsolvable problems. We will know how to avoid them, and when we
meet them we will know how to prove that their are unsolvable and be done
with them, as opposed to trying to solve them.

We are going to see a reduction from LH to a new class of languages which
have nothing to do with Turing machines. The basic question is how to come

3.4. LECTURE 4 85

out of this world of Turing machines and programs, and go out into the world
where general problems live. So how do we transform something which is fun-
damentally a question regarding Turing machines into more general questions?

The answer is a general technique which we are going to see over and over
again. It is another fundamental technique. The technique has to do with view-
ing the Turing machine computation as essentially pattern matching.

86 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 4

Autumn 1999 4 of 13

b b bb1 0

b b b bb0

b b b b bb

b b b b b b

b b b b b b

1q

2

q3

q

Y
h

b

0

1
s
0

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

configuration (tape,
state, r/w head)

(steps)
time

Turing machine rules (δ) become templates:

δ(s, 0) = (q1, b, R) is
b

b
s
0 1

and

q1
1

s
0 1 0

but also
Y

X Y
s
0

and
b

Y
s
0 Z

and

q1
Z

s
0 Z W

for all X, Y, Z and W ∈ {1, 0, b}.

We also have
Y

X Y Z
for all X, Y, Z ∈ {1, 0, b}.

We are going to represent the Turing machine computation in a certain way
which will allow us to step out of the world of Turing machines into something
else. And that something else will essentially for the time being be something
like pattern matching.

We are creating another big matrix. It is an infinite matrix where the rows
represent configurations of a Turing machine, and where the vertical dimen-
sion represents time. Time, or number steps during an execution of the Turing
Machine, grows upwards.

How do we represent configurations? Here on this foil I am showing a com-
putation of our favorite Turing machine which will accept only the string ’010’.
As usual we see the blank squares and the input ’010’. There is only difference,
and that is that I am encoding the state and the position of the read/write head
by using a double character: I am putting together the state and the symbol

scanned (
s
0), and that allows me to both record the state and position of the

read/write head. The rest is just straightforward.

So this little idea gives me a complete encoding of a configuration. In the
matrix on the foil I have in the bottom row the initial configuration where the
input is written on the tape. The machine is then in the initial state and it is
scanning the first character of the input. And then the machine is going to re-
place the first the character of the input with a blank, change its state to q1 and
move its read/write head to the right, scanning the next character. This is shown
in the second row of the matrix. Then it will essentially do the same again and
again, checking whether the input is ’010’. And if the input is ’010’ the machine
is going to halt and say ’Yes’. That’s what we have seen. The matrix on the foil is
the full computation.

3.4. LECTURE 4 87

So we can represent the computation by using this matrix. And then we can
represent the rules of the Turing machine – the delta function, its program – by
a bunch of templates. These templates are of the following kind: If we have the
rule d(s, 0) = (q1, b,R) then we create the templates shown on the foil.

A template is a pattern consisting of four things which I can hold in my hand
and then place where it fits. It is a tile. Now imagine that I don’t have the second
row in the matrix. I only have the first row which is the initial configuration, and
which is well defined because I know the input. Then I can do the following:

I have a bunch of templates which represent my Turing machine program,
and an unlimited supply of each template. I try to match the templates against

every position in the matrix. For example the blue shaded template
b

b
s
0 1

matches the substring b
s
01 on the first row. When I find a matching template,

then I know what to put in the middle square on the second row. In this case I
put a blank.

Then I look at the next three characters which is
s
010. Again I try to find the

right template among these templates, and I find

q1
1

s
0 1 0

. So I know that I

have to write
q1
1 in the square on the second row just above the ’1’ on the first

row. Then I look at the next 3-tupple of squares on first row, and the next one,
and the next one, and so on.

If I have a set of templates which give me the rules of the Turing machine,
then I am able to produce a new configuration given the preceding configura-
tion. I am able to produce the rows of this matrix one by one, given the tem-
plates.

The natural question is: How do I create the templates? It is not so difficult.
If the rule of the Turing machine is d(s, 0) = (q1, b,R), then I have to produce

the two templates
b

b
s
0 1

and

q1
1

s
0 1 0

. The first template is saying what

happens with this 0 that is being scanned: It is being turned into a blank. And
then the second rule tells me that I have to move the read/write head to the
right. These two templates together tell me basically all about the rule.

But the two templates are made for this specific situation where I have a ’1’

to the right of
s
0 and a blank to the left of

s
0. But I can have any sort of character

on the left side and any sort of character on the right side, and this rule would
still apply. So I have to produce also these two templates for all combinations
of input characters. Since the alphabet is finite, the number of templates pro-
duced is also finite. It is the same for this second template. I have to create all
combinations, but again there is a finite number of them.

I also have to produce templates which allow me to copy the characters
where the read/write head doesn’t reach and the rules don’t apply. In that case
I am copying up the character in the middle position. For example if I have the
010 then I copy the 1 up. So for all possible combinations of characters I create
such a template, but again there is just a finite number of them.

So it is easy to see how I can turn a Turing machine into a bunch of tem-
plates, and how I can turn a computation of a Turing machine into this kind
of matrix.I have effectively turned the machine into a template matching situa-
tion, and now I can ask questions about this template matching situation which
will correspond to asking about what the Turing machine is doing – and in par-
ticular whether it halts or not.

88 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 4

Autumn 1999 5 of 13

Halting configuration
• row with square h

α

• finitely many rows (matrix is bounded in
vertical direction)

An unsolvable Tiling problem
Input: A finite set of tiles with one designated
tile (which must be placed by the entrance
door). The tiles cannot be rotated or flipped.

Tiling: Y es!
←→

No!
←→ . . .

Question: Is the set of tiles complete? (Given
an unlimited supply of each tile, can any
room be tiled?)

The Tiling problem (LT) is unsolvable
because we can make the reduction

LH
C 7−→ LT

The halting of the Turing machine translates into the situation in the matrix
where the halting configuration is produced, namely where we have a row in the
matrix which contains h as a state. We can always make this row canonic: We
can say that all machines erase the tape before they halt in state h or produce
the answer ’Yes’, and so on.

So the question whether there is a row containing state h is equivalent to
the question whether the Turing machine halts. Given a bunch of templates
like this, we can ask whether this kind of row ultimately will be produced by
starting from the input row. And that is the Halting question, translated into a
pattern matching question. Equivalently we can ask whether there are finitely
many rows in the matrix or infinitely many. If there are infinitely many rows in
the matrix that is produced by this set of templates, that means that the corre-
sponding Turing machine does not halt. It just runs forever. If there are finitely
many rows, that means that the Turing machine halts.

Now you are ready to see a problem which on the surface has nothing to do
with Turing machines, but in reality of course it is just the Halting problem in
disguise. I am showing you a simple unsolvable pattern-matching problem, a
tiling problem in this case.

Imagine that you are given a set of tiles like those on the foil. There is a finite
number of different tiles, and each tile has a color pattern. What do we do with
tiles? Of course, we tile floors and walls. We put them next to each other. But
we put them together in such a way that the adjacent surfaces – the triangles –
have matching colors, so that they together make a square.

3.4. LECTURE 4 89

Imagine also, for some reason, that these tiles cannot be rotated, they can-
not be turned. They just have to be as they are. The last constraint is that we
have one designated tile which must be placed, say, by the entrance door – there
is one tile which has to be there in the first row of tiles.

So we have a finite set of tiles (but an infinite supply of each tile type) which
cannot be rotated or flipped, and we also have one designated "entrance" tile.
The question that we ask about this tiling system is whether this set of tiles is
complete – whether it can tile any room, regardless of its shape and size.

Apparently this question has nothing to do with Turing machines, but we
will see that this is exactly the Halting problem in fact, disguised a little bit. We
see this by showing the reduction from the Halting problem to this tiling ques-
tion. The reduction will basically follow the same line as the creation of the
template matching problem and templates from a given Turing machine.

90 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 4

Autumn 1999 6 of 13

I0 I0
b

II0 0
b s

0
1II0 1 2II

1
II3 3

b
b

b

b

b

b

b
b

b

q’
1

q’
1

b

b

1
1

q

1
1

q

2
q
0

s
0

b

0

0

II2 3
0

b

b

1

b q’2
b q’

2

b 0

.. ..

..

..

..

..

..

• Tiles for rules of Turing machine M :

q’
1

b
s
0

and
q’

1 1
1

q

1
for δ(s, 0) = (q1, b, R)

• Tiles for tape symbols “far away” from

read/write head:
1

1
and

b

b
, etc.

• Designated tile:

s
0 II0 1

• Tiles for input string x: 1 2II
1

, etc.

•We can tile forever (tile any room) if and
only if M doesn’t halt on input x!

To illustrate the reduction I am using exactly the same Turing machine as
before. I am only showing the idea – how to construct tiles given a delta function
– and you will see that these tiles they are really just the templates we have just
seen. For example the rule d(s, 0) = (q1, b,R) is represented by two tiles. The
first tile is saying: "If you are in state s and you are scanning a 0, then move your
head to your right and enter state q1." The right side of the tile says "q1

′
". I am

using the superscript "’" to link this tile with another tile because we need two
tiles to represent a rule.

And the other tile is going to say: "If you are coming to the right from this
situation which we labeled q1

′
then by all means enter q1 and copy this 1. Every-

thing is fine."
So these two templates, which must be positioned side by side, they repre-

sent basically what we have just seen, and again we will have to create all sorts
of other tiles to cover all possible situations to which this rule applies. But there
is only a finite number of different tiles, so we make them.

And then we have a designated tile which corresponds to this particular
square on the tape where the first character of the input is shown. We also use
that tile to show that the machine is in state s, the initial state, when the com-
putation starts.

Finally, we need a way to distinguish the first row of tiles from the other rows
so that we are able to encode the input in the first row. Here we do this by using
tiles with special symbols (I0, I1, etc) written on the left and right side, so that
there is only one tile that matches on the left side and only one tile that matches

3.4. LECTURE 4 91

on the right side. This little trick, which ensures that there is only one way to tile
the first row, allows us to encode the input easily.

This is basically the end of the story. I am giving you a finite set of tiles, say,
25 of them exactly. I give you an unlimited supply of each of the 25 different
tiles and a designated "starting tile". Then I tell you: "Look, you are allowed to
use your entire lifetime – there are no restriction on how much thinking you can
do and how much programming – but your task is to come up with a program
which is going to check whether or not this set of tiles is complete, whether we
can use them to tile any room."

Can you make such a program which will decide whether any finite set of
tiles with one designated "starting tile" is complete? The answer is "No, it is not
possible." Because if you could construct such a program, then we could use it
to solve the complement of the Halting problem, which we know is impossible.

This looks kind of strange: Given this bunch of tiles – which you can place
in your hands and put into your pocket – there is no program that can check
whether this finite set of tiles is complete, whether it can tile any room.

92 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 4

Autumn 1999 7 of 13

An unsolvable grammar (language
definition) problem
Grammar G = (T,N,R)

T , set of terminal symbols

N , set of nonterminal symbols, containing
the start symbol S

R , set of derivation rules:

S→ (S) R1

S→ ()S R2

S→ ε R3

A derivation of the string
(
()()
)

:

S
R1

`
G

(S)
R2

`
G

(
()S
) R1

`
G

(
()(S)

) R3

`
G

(
()()
)

The language defined by G is the set of all
strings that are derived by G.

In context-free grammars the left-hand side
of each rule consists of exactly one
non-terminal.

I will now show you an unsolvable grammar problem. I will briefly tell you
about grammars – what they are and what they serve for. Formally they are
ways of defining languages. So a grammar is a way to define a spoken language,
like English. But in our little world these grammars serve for defining formal
languages, sets of strings, which is kind of the same thing. Because a grammar
in the real world will define what words and what sentences are allowed in a
certain language – what can be said and what cannot be said.

In this more general and abstract context of formal languages, we define
strings and sets of strings. And then we can use the same idea to define the
strings in any kind of context. In particular we can define what programs are
valid in a certain programming language. Programming languages are com-
monly defined by grammars, and they are defined by what is called context-free
grammars.

Let us first see what these grammars are and how they define languages and
strings. Formally a grammar is a triple. It consists of three things: A finite set of
terminal symbols T , a finite set of non-terminal symbols N , and a finite set of
derivation rulesR.

Here on this foil we are writing terminal symbols in small letters and non-
terminal symbols in bold capitals. There is one specific designated non-terminal
symbol called S – the start symbol. And then the derivation rules will tell us how
to derive strings. In our example derivation rule 1 is saying: If you see an S you
can replace it by the string "(S)". Derivation rule 2 is saying that you can replace
an S by the string "()S". And finally rule 3 is saying that you can erase an S – this

3.4. LECTURE 4 93

ε here means you replace it by nothing.
These 3 rules give us a way of defining all strings which consist of balanced

parentheses. On the foil I am showing you a derivation of the particular string
"(() ())" by using the rules of the grammar. Every derivation must start from the
start symbol S, and then via successive application of the rules – replacing non-
terminal symbols by strings consisting of non-terminal and terminal symbols –
we derive in the end a string consisting of terminal symbols only.

So in this case we first use rule R1, then R2, R1 again and finally R3. The
whole sequence is a derivation of the string "(() ())". And if this derivation exists
then we say that the string "(() ())" is derived by the grammar, or that the string
belongs to the language defined by the grammar. The language defined by the
grammar is of course the set of all strings that can be derived by the grammar.

We talk about several kinds of grammars. Context-free grammars define a
limited family of languages. They are such that on the left-hand side of a rule,
only non-terminal symbols can appear. So a rule of a context-free grammar
says: Whenever you see the non-terminal S you can replace it by the string on
the right-hand side, and whenever you see an A you can replace it by this other
string, and so on.

94 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 4

Autumn 1999 8 of 13

Example

G = (T,N,R)
T = {Mark, Ann, I, love, you, very, much}
N = {S, A, B}
R = S→Mark A Ann

A→ I love you B much
B→ very B
B→ ε

As an example I give you a little grammar, and you can try to guess what sort
of strings the grammar can produce. The grammar consists of terminals, non-
terminals and rules. Terminal symbols are ’Mark’, ’Ann’, ’I’, ’love’, ’you’, ’very’
and ’much’. So these are the terminal symbols. S, A and B are the non-terminals.
The rules say that S can be replaced by ’Mark A Ann’. A can be replaced by ’Love
you B much’. And B can be replaced by ’very B’ or it can be erased.

So it is easy to see that this grammar is producing a set of rather boring and
dull love letters of the following kind:

"Mark
I love you very very very very very much
Ann"

3.4. LECTURE 4 95

(This is a blank page)

96 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 4

Autumn 1999 9 of 13

General grammars
• The left-hand side of each rule can have

both non-terminals (at least one) and
terminals

• A Turing machine M with input x can
easily be encoded as derivation rules:

— TM rule δ(S, 0) = (q1, b, R):
s
0 1→ b q1

1

s
0 0→ b q1

0
etc. (“box symbols” are non-terminals)

— Derivation rule for input string (’010’):

S→ B s
0 1 0 E

— Rules for inserting and removing blanks

— Rule for removing the last non-terminal:

h
Y → h

• Reduction LH 7−→ LG:
M halts for input x if and only if the string
“h” can be derived by grammar G.

Question: Programming language syntax is
defined by contex-free grammars, and not by
the more powerful general grammars. Why?

The point is that there are certain things which can be expressed by these
grammars and certain things which cannot. There are limitations to how much
you can say using a context-free grammar. A more general grammar would al-
low us to get around these limitations by allowing us to put the non-terminal
symbols on the left-hand side into a context and say: This non-terminal sym-
bol in this particular context of terminal symbols can be replaced by this other
string of symbols. So essentially this string can be replaced by this other string.

The basic message that I am conveying here is that a general grammar can
be used to encode the computation of a Turing machine in exactly the same way
in which we have been using the patterns for the same purpose. And that makes
an essential difference between general grammars and context-free grammars.

I am giving a hint about how you can use a general grammar to encode the
code of a Turing machine, its program. Again we are using that same Turing
machine we have seen before. The first derivation rule is saying: If you happen

to see this non-terminal
s
0 followed by a ’1’, then replace the box symbol by a

blank and the ’1’ by the non-terminal
q1
1 . This derivation rule, together with its

twin brothers which have a ’0’ or ’b’ instead of the ’1’, corresponds to the Turing
machine rule d(s, 0) = (q1, b,R).

I also make a derivation rule for the input string: S→ B
s
0 1 0 E.

If I begin with an S this general grammar will essentially do what my tem-
plates were doing before: It will tell me how to produce each row of the matrix

3.4. LECTURE 4 97

starting from the preceding row.
You can see that this is exactly the same thing as the one we have seen be-

fore. Here we are creating strings by applying the rules. Before we were creating
rows of the matrix by applying the templates. But the templates and the rules
they are similar things, they can represent one another so the two situations are
equivalent. They can easily be translated into one another.

The basic message is that deciding whether or not a certain string is deriv-
able by a certain general grammar is unsolvable by algorithms. Why? Because
if I can decide whether or not a certain grammar derives a certain string, then I
can decide whether this grammar derives the string "h", which says ’halt’. So
if the string "h" can be generated by the grammar, that means that the cor-
responding Turing machine reaches the halting configuration beginning from
this particular input, which is the answer of the Halting problem.

It is easy to see that this transformation of a Turing machine – its rules and
input – to a general grammar is something that can be done automatically. You
can imagine writing a program that takes the rules of the Turing machine and
its input and creates these rules of the grammar automatically. That program is
the reduction.

So givenM and its input x the program can generate the grammar such that
the grammar will derive the string "h" that corresponds to the halting config-
uration of the machine, if and only if the original Turing machine M halts on
its input. So deciding whether or not a given grammar derives a given string is
equivalent to deciding whether or not a given Turing machine halts on a given
input. Both problems are undecidable.

And then we have this practical question: Programming language syntax
is usually defined by context-free grammars, and never by general grammars.
Why is that? Well, as you will see in some later classes (IN211 and IN310) it is
usual to define a programming language by using a context-free grammar, and
then this context-free grammar is used to produce a compiler. What a compiler
will do as the first thing is: It will check the syntax. Before it tries to translate the
program into machine code, it will check whether or not what you have written
is really a program or not. And you are familiar with this already because when
you try to write Java or C code, then if you make some syntactic errors, then the
compiler is going to complain and say: "Look, you forgot a comma there." Or: "I
don’t know what you are doing, it’s just some kind of nonsense." And then you
look at the line and you see that you have done some mistake.

If the syntax is correct – if your program is a correct program – then the com-
piler goes on to actually interpret the program as machine instructions by using
semantic rules, by trying to give meaning to the sentences. But by and large,
when the syntax is wrong there is no meaning, and the compiler will complain
right away.

So the first thing the compiler does is: It checks whether or not your pro-
gram is properly written, whether it is a valid program. The point is that if your
grammar can only be written as a general grammar, then no compiler would be
able to check whether or not your program is a valid program, because such a
compiler could also be used to solve the Halting problem. So it is completely es-
sential that programming languages can be defined by context-free grammars,
because then they can have compilers.

98 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 4

Autumn 1999 10 of 13

Can machines think?
Example: Theorem proving in a formal
system

(x + y)2 ≡ x2 + 2xy + y2 (Theorem)
(a + b)(c + d) ≡ a(c + d) + b(c + d)

... (Rules/axioms)
ab ≡ ba

Question: Can algorithms prove/verify
theorems?

Answer: Not if the rules can encode a Turing
machine . . . But algorithms can accept
theorems.

Algorithms can also enumerate theorems.

Example: Theoremhood in first-order logic is
undecidable (IN 394)

Question: What about automatic program
correctness proving?

We continue to use the little technique that we have developed, in order
to explore the limits of what can be done by machines. We now turn to the
more general question: "Can machines think? What are the limitations to using
computers to solve human problems?"

One common problem that requires some intelligence is proving theorems.
In mathematics you have some kind of mathematical expression on the left-
hand side of the equation and another one at the right-hand side. This is ba-
sically a theorem: Are these two expressions identical? Is it always true that
(x+ y)2 is equal to x2 + 2xy + y2?

What is usual in mathematics is to use some kind of rules called axioms to
transform the left-hand side of the equation into the right-hand side, which
amounts to proving that these two are equivalent. So these rules are such that
they always turn something into something that is equivalent to it.

For example, we have a rule that says that (a + b)(c + d) is equivalent to
a(c + d) + b(c + d) And we have the commutativity rule which says that a · b is
equivalent to b · a. Things like that, where a, b, c and d are algebraic terms.

So these rules tell us how we can transform strings into other strings, and
then again you are beginning to recognize the situation. The axioms are basi-
cally some kind of patterns which tell us how to turn one string into another,
and thereby derive different strings. And we can again see the similarity be-
tween this and our original template matching. We are again being ask whether
starting from a certain string and applying certain rules or axioms or templates,
whether we can derive a certain other string.

What does this situation remind us of? It most remind us of our original
matrix and templates question and of the Halting problem. These questions are
completely similar, in fact they are like twin brothers. If you just use abstraction

3.4. LECTURE 4 99

a little bit and ignore the fact that here we are still talking about the alphabet and
the configuration and things, then you see that we are just giving some kinds of
rules which tell us how we can turn one string into another string and that one
into another string and that one into another string, and so on.

So by and large here we are dealing with exactly the same situation. Without
going into details we can answer this question "Can algorithms prove or verify
theorems?" by saying "No" if the rules we are talking about are rich enough – or
powerful enough – to encode a Turing machine.

As an example imagine that you are given a formal system, something like
arithmetic, and you are asked whether or not a program can prove theorems in
that arithmetic. Arithmetic is a pretty rich kind of formal expression, so your
intuition tells you that this is probably undecidable. But to prove it you would
naturally encode the rules and input of a Turing machine as the axioms of the
formal system. And if you can do that, then in a very short time you have a proof
that programs or machines cannot prove all theorems in that formal system.

This has been done. For example there is a well-known result which says
that theoremhood in the first order logic is undecidable. We speak more about
this in a graduate version of this class, IN394, which is taught usually in Spring.

First order logic is one of the very, very basic formalizations of mathematical
or scientific thinking. So this result amounts to saying that what is true and what
is false in a kind of a scientific or mathematical sense, cannot really be proven by
algorithms. This theorem, when properly interpreted, gives a very fundamental
limitation on what machines can and cannot do.

We can notice however that machines can enumerate theorems. And algo-
rithms can also accept theorems. Given this as a hypothetical theorem, you can
easily come up with an algorithm which is going to say ’Yes’ if this is a theorem.
How? By trying all possible derivations.

In any kind of situations a number of rules can be applied to the string, and
because we are talking about finite axiomatizations, we have only a finite num-
ber of rules. So you apply all of these rules, one by one, to this situation and see
what are the possible next strings. And then to each one of these next strings
you apply all possible rules, and so on. This may take a long, long time to do.
But a finite situation always results in finitely many possible next situations, and
then each of them in finitely many next situations.

So that if something is a theorem, the proof will be constructed in finitely
man steps, but we don’t know how many. If something is not a theorem the
proof will never be constructed, so this machine will just run forever and ever.
In this concrete, practical situation we again see the meaning of the fact that we
have to kinds of unsolvability, and that Theoremhood will typically be of about
the same difficulty as the Halting problem, namely it is something that can be
accepted but not decided.

A very popular problem in computer science practice is proving program
correctness automatically. It is a step beyond the usual compilation where you
are just checking the syntax and translating the program into something. Prov-
ing program correctness is a very, very big issue. Why? Because more and more
essential things depend on computer programs: banking, defence systems, nu-
clear power plants, etc. And if we can have a real proof that the program is
correct, then a lot of both practical and legal issues are resolved, even kinds of
life-and-death issues in some situations.

So we would very much like to have programs proving other programs cor-
rect. Obviously there are limits to how much can be done. The insights that we
have reached should give us a rather clear idea of where those limits lie. Re-
member, even deciding whether a general program merely stops or not for a
given input, is undecidable.

100 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 4

Autumn 1999 11 of 13

Closing remarks on
unsolvability

L
LH

Two kinds of reductions:

• to Turing machine questions

• to general questions

The reductions give us a tool for proving
undecidability and insight into the
nature/physiognomy of unsolvable problems.

I finish the story about unsolvability by putting what I have said together
into a little diagram, an "egg". What unsolvability is about, it is about cutting
the egg in two halves, or dividing the universe of all problems into to subclasses
– the unsolvable problems and the solvable problems.

We have seen two kinds of reductions for proving problems unsolvable af-
ter we had used a technique called diagonalization to prove our first problem,
the Halting problem LH , unsolvable. The first kind was applicable to Turing
machines questions. The second kind to more general questions, usually some
kind of pattern matching, theorem proving sort of questions.

These techniques have on the one hand given us tools for proving for con-
crete problems that they are unsolvable. And at the same time they have given
us essential insights so that we can recognize unsolvable problems when we
see them. Related to Turing machines or programs the insight we have gained
is that just about any properties of Turing machines or programs are undecid-
able. And a similiar insight has been gained about these general questions of
pattern matching problems or theorem proving problems. Most such problems
will be undecidable. In fact, provided that the systems in which we are cod-
ing the questions or axioms are rich enough to encode the Turing machine, the
questions will usually be undecidable, and so on.

So now we have both an idea of what sort of problems are undecidable and
the techniques for proving that. We are about to leave the the unsolvable prob-
lems all together and focus only on the solvable problems.

3.4. LECTURE 4 101

(This is a blank page)

102 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 4

Autumn 1999 12 of 13

Complexity

Unsolvable

Nice (tractable)

Horrible (intractable)

•Horrible problems are solvable by
algorithms that take billions of years to
produce a solution.

• Nice problems are solvable by “proper”
algorithms.

•We want techniques and insights

Complexity←→ resources: time, space
l

complexity classes:
P(olynomial time), NP-complete,
Co-NP-complete, Exponential time,
PSPACE, . . .

We are closing the first part of the material on complexity and algorithm
theory that we are covering. We are now entering into the second half which is
going to be a major part of the class.

We are again on the top of the pyramid, looking at our work: What is it that
we have been doing? We have just eliminated this part, the unsolvable prob-
lems. We have thrown them out.

We are now looking at the solvable problems, and we are about to work on
the second borderline here, shown in red. We want to divide the horrible or
hopeless problems from the nice ones. Meaning: Divide the problems that are
properly solvable by algorithms from the ones that are solvable by algorithms
in principle, but those algorithms take billions of years to compute. So they are
kind of useless.

Again what we want is both techniques and insights. We want to be able to
recognize the hopeless problems and the nice problems – tell them from each
other when we see them in practice. We also want the techniques which will
allow us to prove that a certain problem is hopeless or that a certain problem is
nice. So both of these are issues dealt with in complexity theory.

Complexity intuitively has to do with the question how complex a certain
problem is, and the complexity is measured in terms of some resources that are
used in computation – typically time, but also space. So roughly we are asking:
How much time does an algorithm need to solve a certain problem? Or how
much space does it take?

And depending on how much space or time a certain problem requires from

3.4. LECTURE 4 103

the best possible algorithm (usually in the worst possible case for the algorithm,
i.e. when it has the most annoying input), the problems will be classified into
complexity classes. Our goal will be now to subdivide the universe of all solvable
problems into classes where problems of similar complexity live.

When we can place a problem on this map, we know two things about the
problem. One: How difficult the problem is, how complex it is, how much time
or space its solution will require. And two: We know something about the nature
of that problem. We know its basic physiognomy. And we know what sort of
algorithmic approaches would be appropriate for solving that problem.

So studying the complexity of problems will in fact give us a lot. It will give
us a foundation for understanding problems, both their nature and the ways of
solving them.

104 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 4

Autumn 1999 13 of 13

Goal

= complete or "hardest"
problems in a class

Co
NP

NP

P

PSPACE

EXP TIME

...

Map of classes

This is what our map of solvable problems will ultimately look like. It will
consist of classes which contain one another in a certain way, or partially con-
tain one another. Beginning withP – the problems solvable in polynomial time
– we have a larger class calledNP and another one called Co-NP , then we have
polynomial space, exponential time, and so on.

Typically in these classes we will be interested in finding problems which
represent the class in a certain way, problems which are in a certain sense hard-
est for that class. Those problems we call the complete problems. So we will
be studying NP-complete problems, P-complete problems, Co-NP-complete
problems, PSPACE-complete problems and so on.

When we say that a problem is complete for the class exponential-time, we
intuitively mean that the problem is as hard as any other problem in this class.
So that if you can solve that problem efficiently, then you can solve all the prob-
lems in that class efficiently. In that sense those problems are the hardest prob-
lems in the class. And being the hardest they represent the class in a certain
way, because you want to know what sort of hard problems are there in a class.
Well, those are the complete problems. So one of our goals will be coming up
with complete problems for the class.

And beginning next time we will start studying the complexity theory for-
mally. We are going to formulate certain measures, certain ideas, certain con-
cepts which will allow us to come up with these classes in a formal way. We will
also learn formal proof techniques that will allow us ultimately to place the in-
teresting problems that exist in this world – the interesting languages – onto the

3.4. LECTURE 4 105

map of classes. Then we will ultimately understand how difficult they are in a
very precise sense.

For a while we will be studying the complexity classes and the techniques
for proving NP-completeness and so on, and then you will be able to use your
G&J textbook because that is the part which G&J cover.

After that we will be studying systematically the techniques which will allow
us in fact to deal with these horrible problems in differerent ways. So we are
not going to give up as we did in the case of unsolvability. We are going to see
all sorts of techniques which allow us to deal with the hard problems. Because
they exist, they are important to solve in practice.

Our basic scheme will be this: By showing that a certain problem is nice we
have produced a good solution for the problem. Our work is done. By show-
ing that a certain problem is horrible, we know that we should use the same
techniques that we used for the nice problems. We are not going to try to pro-
duce a kind of a worst-case, efficient solution. But we are going to use other
techniques – and we are going to study those techniques systematically – that
will still allow us resolve these horrible problems. When we look at the horrible
problems in more detail, will see that depending on which of these classes they
belong to, different techniques will apply for turning these horrible problems
into something which is not hopeless, something which is quite tame and nice.

So roughly speaking that will be our agenda for the rest of the semester:
Classifying problems first of all and then studying the algorithmic techniques
which apply in different situations – gaining insights and developing techniques.

106 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

3.5 Lecture 5

IN210 − lecture 5

Autumn 1999 1 of 12

Complexity

Impossible

Nice (tractable)

Horrible (intractable)

Intractable , best algorithms are infeasible

Tractable , solved by feasible algorithms

Problems Complexity classes
Horrible ; NP-complete,NP-hard,

PSPACE-complete,
EXP-complete, . . .

Nice ; P (Polynomial time)

Goal of complexity theory
Organize problems into complexity classes.

• Put problems of a similiar complexity into
the same class.

• Complexity reveals what approaches to
solution should be taken.

Complexity theory will give us an organized
view of both problems and algorithms.

G&J:
2.0-2.5

We are looking at all problems in the world and dividing them into classes.
We have just finished with one large class – the largess of all in size – which is
the class of all problems that cannot be solved by algorithms. Now we move
those out of the way, label them as hopeless or impossible, and we deal with the
others.

We are at the highest level of abstraction dealing with the big picture. And
our big picture is to begin with that we divide those remaining, solvable prob-
lems into two large categories: Nice ones that can be properly speaking solved
with nice algorithms, and the horrible ones which don’t seem to have good al-
gorithms.

The horrible problems can be solved by algorithms, but those algorithms
take an unbelievable amount of time to compute the answer – zillions of years.
Nobody has that kind of time to wait. However those problems can be treated
by other methods, and a significant part of our time will be devoted to actually
studying the methods by which those problems can be treated. So that is why I
call them horrible instead of hopeless.

We use abstraction and formalization in order to arrive from these intuitive,
vague notions of horrible and nice to well-defined things – mathematical, the-
oretical concepts – which we can use to build up theories and arguments and
prove things. We will finally arrive at the formal concept of complexity classes.
We will see that this notion of ’horrible’ gives rise to concepts such as NP-

3.5. LECTURE 5 107

complete,NP-hard, PSPACE-complete, Exponential time-complete, and so on.
These are classes of problems. And then ’nice’ will give rise toP and others such
asNC. As is usual in complexity theory we will also replace this somewhat emo-
tional notion ’horrible’ with ’intractable’ and the notion ’nice’ by ’tractable’.

Why do we organize problems into complexity classes? There are two large
benefits: One is that we put problems of a similar complexity together, into the
same drawer. And then when we open the drawer and take out a problem which
has a certain label – the label of that complexity class – we know a lot about that
problem. We know how difficult that problem is to solve, and we know some-
thing about the nature or the physiognomy of that problem. Because those
drawers they contain similar problems – not only of similar complexity, not only
of similar difficulty – but also in a certain sense: similar.

And by virtue of that similarity, when we know the problem’s complexity
class we also know what sort of algorithmic approaches will be appropriate for
the problem, because they are the algorithmic approaches appropriate for that
complexity class.

In sum, by organizing the problems into complexity classes we learn both
about the problems and about the solutions. We classify the problems or the
formal languages. We also organize the solutions or the algorithms or the Tur-
ing machines or the algorithmic approaches. So we have both: By organizing
the problems into complexity classes we have organized both problems and al-
gorithms, and our whole world is nicely organized.

So one major result of this class will be organizing problems and languages
into a map of classes and understanding what sort of creatures live in each area
of that map and what sort of algorithmic approaches are appropriate for them.

108 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 5

Autumn 1999 2 of 12

Time complexity and the classP
We say that Turing machineM recognizes
language L in time t(n) if given any x ∈

∑∗
as input M halts after at most t(|x|) steps
scanning ’Y’ or ’N’ on its tape, scanning ’Y’ if
and only if x ∈L.

(|x| is the input length – the number of TM
tape squares containing the characters of x)

Note: We are measuring worst-case behavior
of M , i.e. the number of steps used for the
most “difficult” input.

We say that language L has time complexity
t(n) and writeL ∈ TIME

(
t(n)

)
if there is a

Turing machine M which recognizes L in
timeO (t(n)).

Polynomial timeP=
⋃
k

TIME (nk)

Note: P (as well as every other complexity
class) is a class (a set) of formal languages.

Now we descend a little bit in our level of abstraction and we look at the the-
ory. We want to construct a theory which will allow us to achieve our goal. You
will see that this complexity theory is actually very similar to what we have al-
ready seen. So if you look completely abstractly – just at the shape of the theory,
at its broad features – you will see that we are basically repeating the same story.
The definitions will be slightly different, adjusted now to our goal of studying
complexity, not undecidability. We will have to include the notion of resources
and model the consumption of the resources by the algorithms, and that will
give us basically the complexity theory. But the basic ideas will remain more or
less the same. So this will be almost like a review of what we have seen before in
undecidability.

We say that a Turing machine M recognizes language L in time t(n) if given
any string x from Sigma-star as input M halts after at most t of the length of x
steps, saying ’Yes’ or ’No’ – saying ’Yes’ if and only if x is in L. So this definition
is completely straightforward.

The length of x is the length of the input, the number of characters in the in-
put. So now we know how to measure time on a Turing machine. An important
observation is that we are measuring worst-case performance, in the sense that
we are measuring the time used by the Turing machine on the most annoying,
worst possible input of length x.

Time is given as a function, and this function is associated with a language.
So we say that the language L has time complexity t(n) – and write that "L is in
TIME t(n)" – if there is a Turing machineM which recognizes L in timeO (t(n)).

3.5. LECTURE 5 109

So big-O is a major instrument of abstraction in complexity theory. I expect
that you are all familiar with big-O from some other classes that you have taken,
possibly IN115. Big-O says that we don’t care about constants and such things
in complexity theory. We only care about the shape of the curve, its slope. Big-O
also means that we don’t care about the time used for one particular input, but
for the growth of time used as a function of the length of the input – in other
words how fast the time usage grows when the input size grows.

This TIME thing is really a set of languages. Any function will give us a set, a
complexity class – which is the class of all languages that can be recognized in
that time.

We can now define a large class called ’Polynomial time’ as the union of all
complexity classes whose time function is a polynomial. So P is simply a class
of formal languages, or a set of formal languages, and this is how it is defined:
P is the set of all languages which can be recognized in some polynomial time.
More formally we say that P is the union of the TIME classes for all nk.

110 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 5

Autumn 1999 3 of 12

“Nice” or “tractable”;P

Real time on
;

Turing machine time
a PC/Mac/Cray/ (number of steps)
Hypercube/ . . .

Computation Complexity Thesis
All reasonable computer models are
polynomial-time equivalent (i.e. they can
simulate each other in polynomial time).

Consequence: P is robust (i.e. machine
independent).
Worst-case

;

Real-world
complexity difficulty

Feasible
;

Polynomial-time
solution algorithm

• t(n);O (t(n))
Argument: “for large-enough n . . . ”

• n100 ≤ nlogn. Yes, but only for n > 2100.
Argument: Functions like n100 or nlog n don’t
tend to arrise in practice.

n2 � 2n already for small
or medium-sized inputs:

2n

n2

Now we quickly go back to the high level and ask the obvious question: Why
is it that P models the intuitive notions ’nice’ or ’tractable’? Why are the so-
lutions that are polynomial-time solutions good solutions? This is completely
essential because after this argument is done, we will be able to basically solve
a problem by a polynomial-time algorithm and then smile and say: "OK, this is
it. We have accomplished a great feat. We have a good solution."

But the question to begin with is: Why is a polynomial-time solution a good
one and non-polynomial time not good?

We have defined the complexity by using the number of steps used by the
Turing machine. We measured the time used by the Turing machine in the worst
case, for the most difficult input. And then we have put together a bunch of
these TIME sets of languages into a big lump, calledP, and we call this P ’nice’.
So we have done three major steps of abstraction. Let’s see why we are allowed
to do that.

So step one: "Turing machine time – the number steps in a Turing machine
– is supposed to represent the real time that we actually spend on a Mac or on
a PC or on a Cray computer, which is this amazing pipe-lined fast machine, or
on a Hypercube which is a parallel computer." We have all kinds of computers!
Each kind completely different even in the way it functions.

How can it be that such a silly little thing like the number of steps on a Tur-
ing machine can represent the actual time on these machines? That is a serious
question. This question is addressed by something which is called the Compu-
tational Complexity Thesis, which says that all "reasonable computer models

3.5. LECTURE 5 111

are polynomial-time equivalent". And this polynomial-time equivalent means
that they can simulate each other in polynomial time. Now, this is something
you want to think about, what this means. Another way of expressing the same
fact is to say that P is robust, that is: machine independent.

We need to understand this notion of polynomial time a little bit, and we
will understand it better and better when we work with it, but the basic mes-
sage here is that when we measure polynomial time on a Turing machine – and
you imagined that one step on the Turing machine takes one unit of time, what-
ever that unit of time is – then that means that there is a polynomial-time algo-
rithm for the same problem on anyone of these computers. And vice-versa: If
there is a polynomial-time PC algorithm for a certain problem, then there is a
polynomial-time algorithm for the Turing machine.

The fact that the real time can be measured in a certain sense by the number
of steps in a Turing machine, comes from our notion of what we mean by time,
and how accurately we measure things. We don’t care about constants, so we
don’t care about muliplicative factors. We only care about the basic shape of the
curves, the basic dependence, how fast something grows. And that is basically
what the issue of polynomiality or exponentiality of the curves is about.

Polynomiality gives us manageable growth of complexity with the input size,
Exponentiality gives us very fast growth, not manageable. So this is what we
roughly want to distinguish: One kind of dependence between size of input and
computation time: polynomial, nice. Versus another one: exponential, not so
nice.

And it turns out that precisely this that we are trying to capture, is indepen-
dent of the machine model. And this is preserved when we move from the num-
ber of steps on the Turing machine to real-time which we measure by a clock.
This is something for you to think about.

Step number two: "The worst-case complexity of a problem models in a
good way the difficulty observed by computer engineers who are solving the
problem in real life on "real input"." In this second part of the class we will stick
to worst-case complexity, but as will become evident later, a strong case can be
made for using some kind of average-case complexity instead, where we mea-
sure the time used on an "average input". The theoretical worst inputs might
never arise in real life. This is a rather subtle point. Worst-case complexity has
historically been the most important way to measure real-life complexity, pos-
sibly because the underlying theory is easier to work with.

Our last abstraction step was: "A polynomial-time algorithm is a feasible
solution." Now, why is polynomial time feasible? The argument here is that for
large inputs the shape of the curve becomes the decisive factor, whether that
shape is polynomial or exponential. We basically don’t care about small prob-
lem instances because they are manageable one way or the other. But if the
instances are large, then it really matters how efficient our algorithm is. And at
that point the argument says: Whether the algorithm is polynomial or exponen-
tial makes a huge difference.

You might say: "Look, n100 is a polynomial and nlog(n) is what we call an ex-
ponential function, but this exponential function will be larger than this poly-
nomial only when n is bigger than 2100, which is like the number of molecules
in the universe or something like that – an unbelievably huge number. So this
really doesn’t make sense."

The counter argument that takes care of this problem is that functions like
n100 and nlog(n) never or very rarely arise in practice. What we have in practice
is these kind of creatures: n2 or 2n. And then it is easy to see already for small
values of n, that n2 is actually much, much smaller than 2n. So the polynomials
that occur in practice they are nice ones, and exponential functions that occur

112 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

in practice they are terrible ones. So that this distinction between polynomiality
and exponentiality is actually in practice a sharp one, a meaningful one.

In undecidability theory Church-Turing Thesis said that a Turing machine
can do whatever any algorithm, program or machine can do. The Computa-
tional Complexity Thesis is a stronger claim. It says that a Turing machine can
compute in polynomial time whatever any algorithm, program or machine can
compute in polynomial time.

The Computational Complexity Thesis cannot be proven because we are
talking about informal things. But a thesis can be substantiated never the less,
and that is what modeling is quite a bit about. It is about relating the formal
world to the informal world. So how do we substantiate the fact that all reason-
able computer models are polynomial-time related? Or that they can simulate
each other in polynomial time? We do it by demonstrating sufficiently many
cases, and gaining insights so that we see that it is really so.

And that is something that you will have to do on your own. There is a fair
amount of insight in your textbooks. I will just help you out by saying that given
two computers – say a Turing machine and a PC – then you can show that a
PC can simulate a Turing machine in polynomial time, and you can show that
a Turing machine can simulate a PC in polynomial time. Where time is being
measured by number of steps, or even real time.

By showing that 1 PC-instruction can be done in polynomial time on a Tur-
ing machine and since a polynomial of a polynomial is a polynomial, that means
that polynomially many PC-instructions can be done in polynomial time on a
Turing machine. So then you would go through some basic machine instruc-
tions like add, multiply, subtract – whatever a PC can do as instructions – and
you would show Turing machine programs that do exactly the same in polyno-
mial time.

It takes a little bit of work to actually do that, but it has been done. Peo-
ple have verified left and right for all kinds of computers that they are actually
polynomial-time related. And this is how people came to believe in this thesis.
Now, we are not going to go through all that details here in class. I do encourage
you to think about this because this is completely central.

So by and large we believe in the Computational Complexity Thesis, but as
we will see in the very last lecture, it has recently been proven that a new kind of
computer, called the Quantum computer, are capable of disproving the thesis
in the sense that there exist problems which can be solved in polynomial time
on a Quantum computer, but which provably need super-polynomial time on
a Turing machine. This Quantum computer is so new that it hasn’t really been
built yet, but many scientists believe that it will. We will talk more about Quan-
tum computers in the last lecture.

3.5. LECTURE 5 113

(This is a blank page)

114 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 5

Autumn 1999 4 of 12

Polynomial-time simulations &
reductions
We say that Turing machine M computes
function f(x) in time t(n) if, when given x as
input, M halts after t(|x|) = t(n) steps with
f(x) as output on its tape.

Function f(x) is computable in time t(n) if
there is a TM that computes f(x) in time
O (t(n)).

For constructing the complexity theory we
need a suitable notion of an efficient
’reduction’:

ML1

M MR 2L

We say that L1 is polynomial-time reducible
to L2 and writeL1 ∝ L2 if there is a
polynomial-time computable reduction from
L1 to L2.

Now that we know where we are going, we want to build up some machinery
which will allow us to divide between those problems that are polynomial and
those that are not. The most basic notion that we will need is the notion of a
reduction. Because that notion will allow us to compare problems to each other,
to organize them together and say: If we can solve this problem efficiently, then
we can solve this other problem efficiently also, because here is a reduction.

We will say that Turing machine M computes function f(x) in time t(n) if
given x as input, M produces f(x) as output in t(|x|) steps or less. And we
will say that function f(x) is computable in time t(n) if there is a Turing ma-
chine that computes f(x) in time O (t(n)). Finally we say that language L1

is polynomial-time reducible to language L2, and write L1 ∝L2, if there is a
polynomial-time computable reduction fromL1 to L2.

3.5. LECTURE 5 115

(This is a blank page)

116 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 5

Autumn 1999 5 of 12

For arguments of the type

L1 is hard/complex ⇒ L2 is hard/complex

we need the following lemma:

Lemma 1 A composition of polynomial-time
computable functions is polynomial-time
computable.

Proof:

f1 f2

f1(x) f1(x)2f ()
M M

x

t1 t2
t

• |f1(x)| ≤ t1(|x|) because a Turing machine
can only write one symbol in each step.

• “polynomial polynomial = polynomial” or(
nk
)l

= nk∗l

• t2
(
|f1(x)|

)
is a polynomial.

• TIME (t) = t1(|x|) + t2
(
|f1(x)|

)
is a

polynomial because the sum of two
polynomials is a polynomial.

These are all very straightforward, natural definitions – you don’t have to
worry about them. What you have to worry about as I am going through these
things is not the way the spelling goes and so on, but the way the theory is ac-
tually constructed. So you want to follow the big picture as I am going through
the details. That is very important.

So this is just the most natural way of defining the notion of reduction. And
that notion of reduction will give us something which is completely crucial,
which is a way of saying: "If this problem is easy, then so is this other prob-
lem also." If we happen to know that L1 is difficult and if we have an efficient
reduction MR from L1 to L2, then we know that L2 also most be difficult. Why?
Because of the following kind of argument: If L2 turns out to be easy, then L1

also is easy – which is a contradiction. This is the scheme of things we have seen
before in undecidability. Now we are just tuning or modifying the same scheme
of things to deal with complexity.

So we need to be able say: If L2 is easy so is L1, given that MR is an efficient
reduction, a polynomial-time reduction. And the lemma on this foil will allow
us to say exactly that. Lemma 1 is a key element in our theory which will give
us just the right notion of reduction that we need to construct the complexity
theory.

The lemma says: "A composition of polynomial-time computable functions
is polynomial-time computable." I am not really proving the lemma here, I am
just telling you why this is so.

What is a composition of polynomial-time computable functions? You first

3.5. LECTURE 5 117

apply one function – one transformation – and then you apply another. You can
use the following image: First you send the input to one algorithm which pro-
duces an output. That output is given as input to the other algorithm, which
produces the overall output. When you put those two pieces into one box, then
you have another algorithm, which is the composition of those two. I have
drawn this image on the foil.

So Mf1 , the machine that computes the function f1, will be the first part in
the box. Mf1 is going to produce output f1(x), given x as input. The first thing
we want to observe is that the length of the output, |f1(x)|, cannot possibly be
larger than t1(|x|), where t1 is the number of stepsMf1 takes in computing f1(x).
The reason being that a Turing machine can output at most one character at the
time. So the length of the output cannot possibly be longer than the time the
Turing machine takes, its number of steps. This is the first piece in the proof of
the lemma.

When the machine’s time is bounded by a polynomial, then we know that
its output is also bounded by a polynomial, in other words that size of out-
put is polynomial in the size of the input. Now we are going to apply another
polynomial-time algorithm to this polynomial-sized output, and we want to be
able to assert that the overall output is polynomial in the length of the first input
x. We are given f1(x) as input to Mf2 , and Mf2 will use time t2(|f1(x)|) to com-
pute the output. So we want to be able to say that t2(|f1(x)|) is a polynomial.

Notice that |f1(x)| and t2(n) are both polynomials. That is why we are able
to say that t2(|f1(x)|) is a polynomial because from high-school mathematics
we know that the polynomial of a polynomial is a polynomial! We have the
equation nk

l
= nk ∗ l.

So t2(|f1(x)|) is a polynomial, and then we wrap it all up together by saying
that the overall time forML, which is t1(|x|)+t2(|f1(x)|), is a polynomial because
the sum of two polynomials is obviously still a polynomial.

Remember that a reduction means a mapping of ’Yes’-instances to ’Yes’-
instances and ’No’-instances to ’No’-instances. Now we know that if we can
reduce one problem to another problem in polynomial time, then we have in
a way put those two problems together. We are able to say that if the second
problem – the one that the first problem is reduced to – is easy, then the first
problem is also easy. Because if we can solve the second problem in polynomial
time, then we can also solve the first problem in polynomial time. Also, if we
can somehow prove that the first problem is hard, then we automatically know
that the second problem is also hard.

118 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 5

Autumn 1999 6 of 12

We want to make a cut!

hard
(computationally)

easy

all solvable
problems

Strategy
It is the same as before (in uncomputability):

• Prove that a problem L is easy by showing
an efficient (polynomial-time) algorithm
for L.

• Prove that a problem L is hard by showing
an efficient (polynomial-time) reduction
(L1 ∝ L) from a known hard problem L1 to
L.

Difficulty
Finding the first truly/provably “hard”
problem.

Way out
Completeness & Hardness

That gives us almost all we need for constructing the complexity theory. We
step back for a moment and look again from the highest level: We want to
divide the solvable problems into computationally hard and computationally
easy problems. (I am deliberately using several kinds of terminology because
these appear in practice – they are really used.) And the strategy should be what
we had before:

Proving that something is easy is easy – conceptually speaking. You show a
good algorithm. So in this case, by showing a polynomial-time algorithm for a
problem, we prove that the problem is "easy".

Showing that a problem is hard, is harder. We need two things: We need a
hard problem L1 to begin with, and an efficient (polynomial-time) reduction
from L1 to our unknown problem L. These two things, by virtue of the lemma
that we have seen, will amount to prove that L is also hard. This is so because
if L on the contrary is easy, then L1 would also be easy, but we know that L1 is
hard.

The difficulty here is in finding the first hard problem that will allow us to
begin all this theory. Remember we used diagonalization earlier to get a hold of
a hard, unsolvable problem, and then everything else was reductions. In com-
plexity theory we are able to prove that certain problems are hard by using di-
agonalization of a different kind. Unfortunately those certain problems that we
can prove hard, they are not the most interesting ones. For many practical prob-
lems we haven’t been able to prove that they are hard, even though they seem
hard. That is the basic difficulty, and the way out of that difficulty is to introduce

3.5. LECTURE 5 119

the notions of completeness and hardness.
So this is a kind of a cop-out. We will not really be able to prove that these

problems are absolutely not solvable in polynomial time. But we will be able to
do – for practical purposes – just about as well.

120 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 5

Autumn 1999 7 of 12

NP-completeness

How to prove that
a problem is hard?

Completeness
We say that language L is hard for class C
with respect to polynomial-time reductions†,
or C-hard, if every language in C is
polynomial-time reducible to L.

We say that language L is complete for class
C with respect to polynomial-time
reductions†, or C-complete, if L ∈C and L is
C-hard.

†Other kinds of reductions may be used

Note:

• If L is C-complete/C-hard and L is easy
(L ∈ P) then every language in C is easy.

• L is C-complete means that L is “hardest
in” C or that L “characterizes” C.

At this point we leave the nice problems and turn to the not so nice, in-
tractable ones. And the big problem in constructing a theory about those, is
that for a number of practical interesting, important intractable problems, we
have not been able to prove that they really are complex – that they really cannot
be solved in polynomial time. Many of the best theoreticians in the world have
been working on it for many years without managing to come up with a valid
proof. Most people believe that those problems really are hard, because no-
body has come up with a polynomial-time algorithm for any of these intractable
problems. But at this level of our proficiency, we are not able to prove it.

So for the time being we give that ambition up, and instead we introduce
two slightly less, but practically just as powerful notions, called completeness
and hardness. So completeness and hardness will basically be our theoretical
notions that correspond to the notion of intractability. It will be a way to model
intractability. I am now first going through the technical things here – defining
what completeness and hardness are and explaining what they mean intuitively
– and then we will see how to prove completeness or hardness.

We will say that a languageL is hard for a class C with respect to polynomial-
time reductions – or C-hard for short – if every language in C is polynomial-time
reducible to L. And then we say that L is complete for class C with respect to
polynomial-time reductions, or C-complete, if L is in C and L is C-hard. Please
note that other kind of reductions maybe used for certain classes, i.e. for class
Exponential time, exponential-time reductions are allowed, since exp. of an
exp. is an exp.

3.5. LECTURE 5 121

I have just defined what being hard for a certain class C means formally, now
here comes an essential insight which will tell us why this notion of hardness is
exactly the kind of notion we need. The point is that ifL is complete or hard for
the class C of problems, and L turns out to be easy in the sense that L is com-
putable in polynomial time, then it follows immediately that every language in
class C is easy. This most be so because every language in C can then be solved
in polynomial time by first reducing it in polynomial time to language L, and
then solving the corresponding instance of problem L in polynomial time.

Now suppose that class C has all kinds of problems which people have stud-
ied for a very long time, without being able to solve them efficiently, meaning in
polynomial time. By showing that L is hard for that class, we show that if L can
be solved efficiently, then so can all those problems in C that people have been
trying to solve for a long time.

So this is why proving completeness or hardness is a very strong piece of
evidence that L indeed is hard, that it cannot be solved in polynomial time. It
is not conclusive evidence however, but for practical purposes it is very strong
evidence. And that is the best we can do at this point.

So, intuitively, by proving that L is complete for a certain class, we have
proven that L is in a sense hardest in the class, hardest meaning: If L can be
solved efficiently, then so can all the other languages in the class.

122 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 5

Autumn 1999 8 of 12

NP (non-deterministic polynomial
time)
A non-deterministic Turing machine (NTM)
is defined as deterministic TM with the
following modifications:

• NTM has a transition relation4 instead
of transition function δ

4 :
{(

(s, 0), (q1, b, R)
)
,
(
(s, 0), (q2, 1, L)

)
, . . .

}
• NTM says ‘Yes’ (accepts) by halting

Note: A NTM has many possible
computations for a given input. That is why it
is non-deterministic.

time

initial
config.

accept

t (n)

•Mathematician doing a proof;NTM

• The original TM was a NTM

This notion of hardness or completeness works with all sorts of classes, and
we will start by looking at the classNP, which will be our main class in this
course. NP is also in fact the most interesting class in complexity theory, not
because it such an interesting theoretical object as such, but because it is a
drawer where most of the practically interesting and important problems live.

So NP-complete will be a large and practically important class of prob-
lems, or languages, which we are now beginning to study. NP means non-
deterministic polynomial time, or polynomial time on a non-deterministic Tur-
ing machine. And the first thing we need is to introduce the non-deterministic
Turing machine.

I am not going to go through all the details. I will just point to the differ-
ences between a non-deterministic and a deterministic Turing machine, be-
cause the two machines are very similar. Formally the basic difference is that
a non-deterministic Turing machine – NTM for short – is non-deterministic,
meaning that it will have a transition relation instead of a transition function.

Now, what is a function? A function is a kind of thing which given an input
gives you a very precise, single output. That is a function. And a relation, it
is like brothers and sisters – you can have several brothers. So in this case the
transition relation will include several possible steps from a given situation. For
example, in our standard situation where the machine is in state s and scanning
a ’0’, this delta transition relation says that we can apply the rule we had before,
d(s, 0) = (q1, b,R), or we can apply another rule: d(s, 0) = (q2, 1, L). So we can
choose to move from this situation into q2, replace the zero by one and move

3.5. LECTURE 5 123

left.
So the rules of this machine they are kind of wishy-washy, and you can of

course wonder what kind of a computer is this? I mean, there is not a com-
puter in this world which has this property that from a given state, from a given
situation, the machine itself can decide what to do. So this is strange.

I will come back to this in a second. Let me first finish with the differences.
Since a NTM obviously can have several different computations on a certain
input, then it wouldn’t really make much sense for the machine to say explica-
tively ’Yes’ or ’No’. Because some of these can be ’Yes’-computations, some of
these can be ’No’-computations, and then this would be a very confusing kind
of machine. So instead it is enough that the machine just says ’Yes’ by halting.
If the machine halts in state h, it says effectively ’Yes’. So this machine will be
accepting. It can reject by just computing forever.

It is a very important observation that a NTM has many possible computa-
tions for a given input. That is why it is non-deterministic. Why is this a rea-
sonable notion of computation? To answer that question we must go back to
Turing’s basic situation – when he was defining his machine – and recall that
he was really modeling a mathematician solving a problem, proving a theorem.
He wasn’t modeling an actual computer, because in his time computers did not
exist.

When a mathematician is doing a proof, then in any situation several possi-
bilities always applies, several rules can be applied to his line to modify the line
and get another line. So a mathematician is fundamentally a non-deterministic
machine. And all that matters there is whether the mathematician can begin
from the left-hand side of the theorem, of an equation, and by transforming
it using the rules arrive at something which looks like the right-hand side, in
which case he says ’Bingo’! And that is accepting – the end of the story.

Or a mathematician can spend his entire life modifying this left-hand side,
and modifying and modifying, and never really finish – never obtain the right-
hand side. In which case the non-deterministic Turing machine, which is the
mathematician, has not managed to accept. It simply computes forever. There
is no proof – or he could not find a proof – that the left-hand side is the same as
the right-hand side.

So the point here – which justifies that NTM says ’Yes’ by halting, by accept-
ing – is that the acceptance is like coming up with the proof. If there is a proof,
then the fact is correct. A mathematician may or may not be able to find the
proof, but if there is such a thing as a proof, then we know that everything is in
order.

So this is why a non-deterministic Turing machine is in fact a very reason-
able kind of concept, but not as a piece of hardware, just as a concept.

We think of the computation of a NTM as being essentially a tree where the
vertices are configurations. Because starting from an initial configuration there
could be several possible configurations which result in one step, and then from
each of those several possible configurations, and so on. So think of a compu-
tation of a NTM as a tree of configurations.

And then we introduce the notion of time as being basically the height of
the tree. The time used by a NTM is defined as the length of the shortest path
from the root to an accepting configuration – in other words the length of the
shortest accepting computation.

124 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 5

Autumn 1999 9 of 12

We say that a non-deterministic Turing
machine M accepts languageL if there exists
halting computations ofM on input x if and
only if x ∈ L.

Note: This implies that NTMM never stops if
x /∈ L (all paths in the tree of computations
have infinite lengths).

We say that a NTM M accepts languageL in
(non-deterministic) time t(n) if M accepts L
and for every x ∈ L there is at least one
accepting computation of M on x that has
t(|x|) or fewer steps.

We say that L ∈ NTIME
(
t(n)

)
if L is

accepted by some non-deterministic Turing
machine M in timeO (t(n)).

NP =
⋃
k

NTIME (nk)

Note: All problems inNP are decision
problems since a NTM can answer only ’Yes’
(there exists a halting computation) or ’No’
(all computations “runs” forever).

We say that a NTM M accepts language L in non-deterministic time t(n) if
for every string x in L, there exist an accepting computation of M on input x
that has t(|x|) or fewer steps. This just formalizes this notion of time in a non-
deterministic Turing machine.

In the world of the proofs we would say that something has a proof that has
t(|x|) steps. A step is like using a rule, using a transformation, or a step could be
a line in the proof. So this is how this notion of time really makes sense.

And then the rest is as before. We introduce a complexity class NTIME, non-
deterministic time, and we say that a language is in NTIME of t(n) if the lan-
guage is accepted by some non-deterministic Turing machine in timeO (t(n)).
And then we define NP – non-deterministic polynomial time – in essentially
the same way as we defined the deterministic polynomial time.

It is worth nothing that NP consist entirely of decision problems since a
NTM are only able to answer ’Yes’ (halt) or ’No’ (compute forever).

3.5. LECTURE 5 125

IN210 − lecture 5

Autumn 1999 10 of 12

The meaning of “L isNP-complete”

Complexity
Many people have tried to solve
NP-complete problems efficiently without
succeeding, so most people believeNP6=P ,
but nobody has proven yet that
NPCproblems need exponential time to be
solved.

L is computationally hard (L ∈NP):

L ∈ P ⇒ NP = P

Physiognomy
Checking if x ∈ L is easy, given a certificate.

We know what the class NP is formally, and we know what completeness
and hardness are formally. As a result we now know in a very precise sense what
it means for a language to beNP-complete orNP-hard.

Again we go to the top of our pyramid and look at these formal notions.
We want to understand why they actually model exactly what we want them
to model. Why is it meaningful to prove that a language is NP-complete or
NP-hard?

And there are two reasons: The first one is that there are many problems
which have been shown to belong to the class NP, which are computationally
difficult. For many, many years people have been trying to solve them, with-
out being able to solve them efficiently. The best solutions we know to those
NP-hard problems runs in exponential time. We will see a number of those
problems.

So proving for another problemL that it isNP-complete orNP-hard would
mean that if it turns out that L can be solved in polynomial time, then all prob-
lems inNP can be solved in polynomial time. NP-completeness is very strong
evidence that a language is hard.

We have however more than that. Proving that a problem is NP-hard tells
us something very important about the physiognomy of that problem, about
its nature. We will see that each instance x of an NP-hard language L has a
short certificate, and there will be a deterministic machine which can use that
certificate to check or verify in polynomial time that x is a member of L. We will
now talk more about that.

126 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 5

Autumn 1999 11 of 12

Example: HAMILTONICITY

1v

5v

v2

v3

v4

• A deterministic algorithm “must” do
exhaustive search:
v1 → v4 → v3 → v2 → backtrack
↘ v2 →

n! possibilities (exponentially many!)

• A non-deterministic algorithm can guess
the solution/certificate and verify it in
polynomial time.

v1

v5

v4

v5

v1

v

time

3

2

2
1

1

1

1

1

1

2

v
bactracking

v4v3

2

v2

to 1v

v3
v

Certificate: (1,1,1,1,1)

Note: A certificate is like a ticket or an ID.

Here is one very common example of aNP-complete problem, which is the
HAMILTONICITY problem. The input instance is a graph and as usual in these
problems we are asked to test whether this graph has a certain property. And
the property is whether the graph is what is called ’Hamiltonian’, or whether
the graph has a Hamiltonian cycle. A Hamiltonian cycle is a path in the graph
– a sequence of vertices – such that every pair of vertices in that sequence is an
edge in the graph. And this sequence of vertices has to be such that it visits each
vertex in the graph exactly once. If you are talking about the Hamiltonian cycle,
then we want to go back to the original vertex where we started from, but if you
are talking about the Hamiltonian path, then we just want all the vertices to be
on the path.

Which variant of HAMILTONICITY we are talking about is not really impor-
tant, because the two are closely related. If one is hard, the other one is hard. If
one is easy, the other one is easy. Think about that. Why is it so? Can you prove
that if HAMILTONIAN PATH is solvable in polynomial time, so is HAMILTONIAN

CYCLE? Try to make that proof.
So given an instance of HAMILTONICITY, as on the foil, what would a de-

terministic algorithm do to test whether the input is Hamiltonian or not? A
deterministic algorithm basically would do an exhaustive search in one way or
another. It would test all possibilities. And the only way algorithm design comes
into play here is that we do this in a kind of a clever way so that we don’t waste
too much time on possibilities that are obviously hopeless.

A typical deterministic algorithm would try a path. It would begin from, say,

3.5. LECTURE 5 127

v1 and then extend the path by moving to one neighbor of v1, for example v4.
From v4 it would move to, say, v3. And then proceed to v2. But after coming to
v2 the algorithm is stuck, meaning that the path cannot be extended anymore.
It is not Hamiltonian yet because v5 is not there. Then the algorithm has to
backtrack. It has to undo what it has done, and try other possibilities.

So this gives us a kind of an algorithmic approach which relies on trial and
error, but ultimately this approach is about trying all kinds of possibilities. How
many possibilities are there? If you are talking about possible Hamiltonian paths,
then by and large there are n! possibilities. We can think of n factorial as being
roughly nn. So it is even more than 2n. It is a phenomenal large number for even
a moderate small n. We could of course reduce the number of possibilities by
using some clever approaches, but it would still be exponentially many left to
try.

So there are exponential many possibilities, and therefore these determin-
istic exhaustive search algorithms are by their very nature exponential time. So
this illustrates a little bit what an exponential-time algorithm is, and how expo-
nential time naturally arises in this context.

It turns out that when we use the non-deterministic Turing machine, sud-
denly this exponential time turns into polynomial time. This is because a non-
deterministic algorithm can in effect guess the solution. This guessing is not
really guessing, it is just stating a fact that there exists a short proof of the fact
that this graph is hamiltonian.

What is the short proof that this graph is Hamiltonian? It is the Hamilto-
nian path itself! If I tell you: "Look at the red arrows in the graph. There is a
Hamiltonian cycle in this graph." Given this piece of information, the path, any
deterministic machine can easily verify efficiently – in polynomial time – that
this indeed is the path. And by doing so the machine verify that the graph is
indeed Hamiltonian, that it has indeed the property.

And that is the nature, or the physiognomy, of the problems in NP . They all
have this property that given guessing, given non-determinism, verification of
a property can be done fast. How does this relate to the non-deterministic tree
of computation?

Imagine that we have an algorithm which is scanning v1, and the algorithm
basically says: Take one of the neighbors and try to extend the path in that way,
and then move on from the neighbor, taking its neighbor, and so on. So this is
a non-deterministic algorithm. It doesn’t tell you which neighbor exactly. But
in this example there are 3 possibilities from v1, and each of these possibilities
give you a different configuration. And from each of them certain other config-
urations – intuitively speaking – are accessible.

So this tree of configurations gives us all possible searches in this graph. And
if there is a positive answer, meaning a short accepting computation, then the
answer is in this tree. So if the Turing machine is clever enough to take this path
– v1 → v2 → v3 → v4 → v5 → v1 – then it has found the solution.

These other possibilities here – moving to vertex 4 and then to vertex 3 and
so on – these are the backtracking possibilities where the machine has basically
gone a certain way, gotten stock and then backtracked all the way back, and
then tried another possibility, and so and so on. These take longer time.

The big point about a NTM is that it can magically guess this short solution,
and then check in polynomial time that it is really a solution. We will see how
shortly, but first a comment about our definition of the NTM.

You will notice that in your G&J textbook the NTM is a little bit different. The
machine really just has a kind of a magical guessing module which allows the
machine to first compute a string, and then use a deterministic algorithm on
the combination of that magical guessed string and the input.

128 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

What we have defined in this lecture is the actual non-deterministic Turing
machine, the standard one. The one in your books is non-standard and it is not
very good. It is really only suitable for provingNP-completeness. It is a kind of
a simplification done for people who are just interested in technical proofs of
NP-completeness.

We will stick to the definition given today, but you can read your G&J text-
book and find out that the definition you have there is for the purpose of prov-
ingNP-completeness roughly equivalent to our. You might want to think about
why that is so.

So, since a NTM can in fact always begin its computation by producing a
random string on its tape – ’01011101’ or whatever – and then proceed as a de-
terministic machine, that gives the non-deterministic Turing machine the abil-
ity to guess a string!

If the NTM can guess a sequence of vertices which is the right one if and only
if the graph is Hamiltonian, then overall we have an efficient non-deterministic
algorithm, in theory. More intuitively we think of this as the members of the
HAMILTONICITY language being the kind of folk who have, each of them, an
identity card or a ticket in their pocket. It is like having a tram ticket in my
pocket. When I come to the train, I show it to the guard. The guard looks at it,
sees my picture and says ’Yes, OK, you can go in’.

Each member of the HAMILTONICITY language has a short certificate – short
in the sense that it is polynomial in its one size – such that given that certificate a
deterministic algorithm can check or verify in polynomial time the fact that the
graph is hamiltonian. By using the short certificate a deterministic algorithm
can efficiently verify whether the instance is a member of the HAMILTONICITY

language. The existence of this certificate is the essential physiognomy of lan-
guages inNP . They all have this short certificate.

3.5. LECTURE 5 129

(This is a blank page)

130 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 5

Autumn 1999 12 of 12

ProvingNP-completeness
1. L ∈ NP

Prove that L has a “short certificate of
membership”.

Ex.: HAMILTONICITY certificate =
Hamiltonian path itself.

2. L ∈ NP-hard
Show that a knownNP-complete language
(problem) is polynomial-time reducible to
L, the language we want to showNP-hard.

First NP-complete
language

L

Cook’s Theorem (Cook, Levin
1971/73)
SATISFIABILITY isNP-complete.

Now we are moving on to the next big theme which is provingNP-complete-
ness. Remember thatNP-completeness consists of two facts. The first fact be-
ing that L is in NP. Instead of constructing a messy NTM which accepts L in
non-deterministic polynomial time as it is defined by the definition, we take
a much easier route: We prove that L has a short certificate of membership, a
kind of a ID-card. For example in the case of HAMILTONICITY the certificate is
the Hamiltonian path itself, or the Hamiltonian cycle.

The second element of proving completeness is proving that L is hard for
NP. This is even more difficult. We would have to prove that all possible lan-
guages inNP are polynomial-time reducible to L. There are infinitely many of
them, so how can we do that? As we have done before in undecidability theory,
we do that by proving one languageNP-hard – the first one. And then once we
have one language, it is enough to show that this oneNP-complete language is
polynomial-reducible to our L. This is enough because if every language inNP
is polynomial-time reducible to our first NP-complete language, and this first
language is polynomial-time reducible to our new language L, then by virtue
of the fact that the composition of two polynomial-time reductions is polyno-
mial time, that means that every language inNP is polynomial-time reducible
to our language L.

So what is needed now is the firstNP-complete language. And the firstNP-
complete language is given by an essential piece of theory: Cook’s Theorem,
which was proven independently by Cook and Levin in 1971/73. The theorem
says that SATISFIABILITY is NP-complete. So SATISFIABILITY will be our first

3.5. LECTURE 5 131

NP-complete problem, and an essential foundation stone for us to build the
theory.

132 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

3.6 Lecture 6

IN210 − lecture 6

Autumn 1999 1 of 15

NP-completeness
have no
feasible
solutions

problems
solvable

have
feasible
solutions

;

complete
NP-

NP

P

L ∈ NPC ⇔
L ∈ NPand
L ∈ NP-hard

Today: ProvingNP-completeness
• L ∈ NP: show that there is a “short”†

certificate of membership in L (“id card”).

• L ∈ NP-hard: show that there is an
“efficient”† reduction from a known
NP-hard problem Lnp to L.

† polynomial (length, time . . .)

npL

L 3

L 2

L 1

L

G&J:
2.6, 3.0-3.1.2

This lecture will be aboutNP-completeness. We have thrown away the un-
solvable problems and we are now dealing with the solvable ones. We are about
to divide them into two classes: those that have feasible solutions and those
that don’t seem to have feasible solutions.

What is feasible? Feasible means something that is practical, that works in
practice. We have seen that some problems, in fact a lot of problems, have al-
gorithms which take practically forever to compute even for small or medium-
sized inputs. They are useless for reasonable large instances. So we want to
distinguish between problems that have proper, nice, efficient algorithms and
those that don’t.

So this practical concern, with a little bit of abstraction and formalization,
has given us some theoretical notions that we are now studying. Those no-
tions are complexity classes, and in particular class P and classNP-complete.
Class P models or captures those problems that have feasible solutions. NP-
complete will be a large, important class of problems that seem not to have
feasible solutions. Those are the NP-complete problems. The importance of
the class NP-complete lies in the fact that many of the practical important in-
tractable problems live there.

Today we will see how to proveNP-completeness. What does anNP-comp-
lete problem or language look like? Notice that I am mixing the words ’prob-
lems’ and ’languages’. When I say ’problem’ I am in the informal world. When

3.6. LECTURE 6 133

I say ’language’ then we are completely in the formal world on the bottom of
the pyramid. But ’problem’ and ’language’ are really in a sense synonyms. They
serve the same purpose. ’Language’ is just a formalization of ’problem’.

We say that a language L is in the class NP-complete, or that L is NP-
complete, if L is in the class NP and L is NP-hard. NP-hard means for our
purpose that every problem in NP is polynomial-time reducible to L. Intu-
itively that means that L is at least as hard as any problem inNP . Because if we
happen to solve L in polynomial time, then every other problem in NP can be
solved in polynomial time also.

How do we prove that L is NP-complete? The first part – proving that L is
in NP – amounts to showing that there is a "short" (polynomial in the length
of the input) certificate of membership in L, a kind of an ID-card. What isNP?
It contains all languages that can be solved by a non-deterministic Turing ma-
chine in polynomial time.

We have seen that a non-deterministic Turing machine can effectively guess.
It can begin by writing a sequence of characters on its tape non-deterministically
or randomly, and then use them in a deterministic computation to test some-
thing. So in effect a NTM can guess. And if the NTM can guess some piece of
information that amounts to a proof that a string x is member of language L,
and this proof can be verified in deterministic polynomial time, then we say
that L is in classNP .

You can use the following image: If there is a kind of a ticket which an in-
stance of a language L can keep in its pocket and show on the entrance, and
then the guard on the entrance can test in polynomial time whether the ticket
is a valid ticket or not, then we say that L is inNP . It has a short certificate.
NP-hardness is normally shown by showing an "efficient" reduction from

a known NP-hard problem to L. So think of a known NP-hard problem Lnp.
By definition every language in NP is polynomial-time reducible to Lnp. If we
can make a polynomial-time reduction from Lnp to L, then L is also NP-hard
because every problem in NP is polynomial-time reducible to L by the virtue
of the lemma which we have proven last time, which says that a composition of
polynomial-time reductions is a polynomial-time reduction. The figure on the
foil illustrates this argument.

134 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 6

Autumn 1999 2 of 15

Skills to learn
• Transforming problems into each other.

Insight to gain
• Seeing unity in the midst of diversity: A

variety of graph-theoretical, numerical, set
& other problems are just variants of one
another.

But before we can use reductions we need the
firstNP-hard problem.

L1
L0

nL

L2

NP

Strategy
As before:

• ’Cook up’ a complete Turing machine
problem

• Turn it into / reduce it to a natural/known
real-world problem (by using the familiar
techniques).

Our goal for this lecture and the next one will be to show for a number of
problems that they areNP-complete. Why are we doing that? First of all, we are
going to learn certain important technical skills. The most important skill that
we are going to learn, is how to transform different common decision problems
into each other. So we will be looking at how to transform problems into each
other.

And by doing so we will learn a little bit about the nature of those problems
and gain some insights. We will build intuition. The most important insight
that we are going to acquire, hopefully, is an ability to see unity in the midst of
diversity. We will see that in fact a variety of problems – some involving num-
bers, some involving graphs, some involving sets – are actually variants of one
and the same meta-problem or situation. And when we see that, we under-
stand that there are not so many different things in this world. Actually a lot of
things that seem very different they are kind of the same or similar. And then
we will understand that all of those problems can be dealt with in a similar way,
algorithmically speaking. They can be understood in similar terms.

So we are organizing the world of problems. That is the important insight to
gain from this exercise of reducing problems to one another.

Before we can use reductions to proveNP-completeness, we need the seed.
We need the first NP-complete problem, the first NP-hard problem. And we
need to be able to prove that every problem in NP is reducible to our prob-
lem. That is our first task and that is the hard part. The rest is much easier and
actually very similar to what we have been doing before on unsolvability.

3.6. LECTURE 6 135

In order to find our first hard problem, we will be using roughly speaking
the same kind of strategy as before, namely: We will first cook up a complete
problem, something that involves Turing machines, that is not necessarily very
natural – kind of an artificial problem. This artificial problem will have the nice
property that it is easy to prove that it is complete, and then we will reduce
that unnatural problem to one or more known real-world problems by using
the familiar techniques. You will recognize that the techniques that we will be
using, are in fact just variants of the techniques that we have seen when we were
proving uncomputability. So what we will see now will almost be a review in a
way.

136 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 6

Autumn 1999 3 of 15

BOUNDED HALTING problem

LBH =
{

(M,x, 1k) |NTM M accepts string x
in k steps or less

}
Note: 1k means k written in unary, i.e. as a
sequence of k 1’s.

Theorem 1 LBH isNP-complete.

Proof:

• LBH ∈ NP

1 4

31

1

21

accept

time
(steps)

k=4

2

2 3

(initial config.)C 0

Certificate: (4, 2, 1, 2). The certificate, which
consists of k numbers, is “short enough”
(polynomial) compared to the length of
the input because k is given in unary in the
input!

Our first cooked-up, unnatural problem is the BOUNDED HALTING problem.
I am now defining this problem as a language. This language consists of triples:
a Non-deterministic Turing Machine code M , an input x and a number k writ-
ten in unary, meaning just a sequence of k 1’s. It will be obvious in a moment
why this k is written in unary. And this triple is in the language LBH if NTM M

happens to accept the string x in k step or less – in other words if one of the pos-
sible computations of NTMM on input string x reaches a halting configuration
in k or less steps.

Notice that this is just the most natural thing. This is in fact the Halting
problem extended a little bit so that it has a little bit of complexity flavor. We are
not only asking whether M halts on x, but whether M actually halts on x in k

steps or less. And notice also that M happens to be a non-deterministic Turing
machine. The rest is the same.

We are now going to prove that this BOUNDED HALTING problem is NP-
complete. And the proof of course is done in two steps as always. Step 1:
BOUNDED HALTING is inNP. It is sufficient to show that there is a membership
certificate which a NTM can guess and then check deterministically in polyno-
mial time that the instance is a positive instance, if it is. So every positive in-
stance, every member of the set, should in principle have a ticket which proves
that he is a member.

So what is this certificate? What does it look like in this case? It is basically
just a sequence of numbers that helps us get rid of non-determinism. Non-
determinism is just a bunch of non-deterministic choices. In every step of com-

3.6. LECTURE 6 137

putation a NTM chooses one of several possible transformations.
In the computation tree on the foil there is an accepting configuration which

is marked red. How can a poor deterministic algorithm know that there is a
place like this? Well, given the non-deterministic choices that the NTM does
during the accepting computation, a deterministic algorithm can easily verify
that there is an accepting configuration after k steps, by following the path to
the accepting configuration. And because k is written in unary, this verification
can be done in time polynomial in the length of the input triple.

The non-deterministic choices can be recorded by enumerating the possi-
ble transformations from each configuration. In our example there are 4 con-
figurations leading from the initial configuration C0. The first number in the
certificate "(4, 2, 1, 2)" says: "Take the 4th one!" So the deterministic Turing ma-
chine says: "OK, I follow the 4th one. Here I am. What now?" The ticket says:
"Take now the 2nd one, go down, then take the only one, which is 1. And then
take the 2nd one again, and there you are." So the sequence of numbers in the
certificate identifies uniquely the path to the accepting configuration.

So to turn non-determinism into determinism, all you need is the specifica-
tion of the non-deterministic choice in every step – that is the certificate.

So given an instance of BOUNDED HALTING and given a certificate, what is
the deterministic algorithm that checks whether x is accepted byM in 1k steps?
Well, just use the certificate and the universal TM to simulateM on input x for k
steps, and see if in the end this lead to acceptance. This simulation is very easy,
and it can be done in polynomial time with respect to the length of the input
triple because the number k – the length of the path, the number of steps – is
written in unary!

138 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 6

Autumn 1999 4 of 15

• LBH ∈ NP-hard

LM

M R M BH
NO

YESYES

NO

x (M,x,1PM)(|x|)

— For every L ∈ NP there exists by
definition a pair (M,PM) such that NTM
M accepts every string x that is in L (and
only those strings) in PM(|x|) steps or
less.

— Given an instance x of L the reduction
module MR computes (M,x, 1PM(|x|)) and
feeds it to MBH . This can be done in
time polynomial to the length of x.

— If MBH says ’YES’, ML answers ’YES’. If
MBH says ’NO’, ML answers ’NO’.

Part two of the proof: We have proven that LBH is in NP . Now we want to
prove that LBH is NP-hard, namely that every problem in NP is polynomial-
time reducible to LBH . We want to show that there is a reduction from every
problem inNP . It sounds like a difficult task, but it is actually trivial.

And here is why it is trivial: We know by definition that every language in
NP has a NTM M and a polynomial PM , such that M accepts every string x
that is in L and only those strings, inPM (|x|) steps or less. This follows from the
definition of the classNP .

So given an instance x of L the reduction module MR compute the triple
(M,x, 1PM (|x|)). M is a constant, namely a NTM code, and x we just copy. The
only thing to compute really, is this polynomial PM (|x|). It is quite easy to show
that a TM or an algorithm can compute a polynomial in polynomial time. We
will not prove it here – it is a small technicality – but it is worth thinking about
how it can be done.

PM (|x|) can be computed in polynomial time, and then MR outputs PM (|x|)
1’s, which is trivial work. So this whole transformation is done in time which is
polynomial in the length of x.

So given x, by computing this triple we have reduced this instance of L to
an instance of BOUNDED HALTING. And it follows from the definition of LBH
that this instance of BOUNDED HALTING is a positive instance if and only if x
is a positive instance of L. This reduction can always be done in polynomial
time by an algorithm, so in effect we have a polynomial-time reduction from an
arbitrary language L inNP to BOUNDED HALTING.

3.6. LECTURE 6 139

So this is very nice. We have our complete problem, which is rather sur-
prising. It is surprising that there is ’the hardest problem’ in this large class of
problems, NP . ’Hardest problem’ means that every problem is polynomial-
time reducible to it, so that if we can solve that hard problem efficiently – if
we can solve our BOUNDED HALTING problem efficiently – we can solve all the
problems in NP efficiently. That is good news. We also have this interesting
concept of completeness.

But the ugly part is that this BOUNDED HALTING – I mean, who cares? Who
really cares whether a Turing machine halts in k steps or less?

140 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 6

Autumn 1999 5 of 15

SATISFIABILITY (SAT)
The first real-world problem shown to be
NP-complete.

Instance: A set C = {C1, . . . , Cm} of clauses. A
clause consists of a number of literals over a
finite set U of boolean variables. (If u is a
variable in U , then u and ¬u are literals over
U .)

Question: A clause is satisfied if at least one
of its literals is TRUE. Is there a truth
assignment T, T : U → {TRUE, FALSE}, which
satisfies all the clauses?

Example
I = C ∪ U
C =

{
(x1 ∨ ¬x2), (¬x1 ∨ ¬x2), (x1 ∨ x2)

}
U = {x1, x2}

T = x1 7→ TRUE, x2 7→ FALSE is a satisfying
truth assignment. Hence the given instance I
is satisfiable, i.e. I ∈ SAT.

I ′ =

{
C ′ =

{
(x1 ∨ x2), (x1 ∨ ¬x2), (¬x1)

}
U ′ = {x1, x2}

is not satisfiable.

For the next step in building the NP-completeness theory, we want a nat-
ural, real-world, nice, interesting NP-complete problem. And the first such
problem that was provenNP-complete, was SATISFIABILITY.

An instance of SATISFIABILITY is a set of clauses – c1 to cm – over a finite setU
of variables. What are clauses? Well, clauses involve some variables or negated
variables – called literals – linked to together by logical OR-functions. We say
that a clause is satisfied or satisfiable if at least one of the literals in the clause is
satisfied or satisfiable – has ’TRUE’ as its truth value.

A question that is associated with an instance of SATISFIABILITY is whether
there is a truth assignment to all the variables which satisfies all the clauses. An
truth assignment is a mapping of the variables to the values ’TRUE’ or ’FALSE’.
Or in other words, assigning the values ’TRUE’ and ’FALSE’ to the variables.

I have made an example on the foil. I is an instance of SATISFIABILITY. It
consists of three clauses and the universe is the two variables x1 and x2. We
want to see whether there is a truth assignment which assigns the values ’TRUE’
and ’FALSE’ to x1 and x2 such that all of the clauses are satisfied.

I claim that we have a satisfying truth assignment if we say that x1 is ’TRUE’
and x2 is ’FALSE’. Let’s check: x1 is ’TRUE’ therefore the first clause (x1 ∨ ¬x2) is
satisfied. ¬x1 is ’FALSE’, but since x2 is ’FALSE’, then ¬x2 is ’TRUE’, so the second
clause (¬x1 ∨ ¬x2) is satisfied also. And then x1 is ’TRUE’, therefore (x1 ∨ x2)
is ’TRUE’. So all three clauses are ’TRUE’, and this is indeed a satisfying truth
assignment.

Given a satisfying truth assignment it is easy to verify in polynomial time

3.6. LECTURE 6 141

that an instance is a positive instance. Therefore, as it is often the case, the so-
lution itself is the certificate of membership needed for proving that a decision
problem is inNP. So we know that SATISFIABILITY is inNP .

I ′ is an instance that is not satisfiable. This is why: We have (x1 ∨ x2) so
we know that one of variables must be ’TRUE’. And then we have (x1 ∨ ¬x2),
and then we know that x1 actually must be ’TRUE’ for the first two clauses to be
satisfiable. But the third clause (¬x1) is only ’TRUE’, if x1 is ’FALSE’. So there is
no truth value to x1 that satisfies all three clauses. Therefore this instance is not
satisfiable. It is a negative instance.

142 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 6

Autumn 1999 6 of 15

Theorem 2 (Cook 1971) SATISFIABILITY is
NP-complete.

Proof – main ideas:

BOUNDED HALTING SATISFIABILITY

“There is a “There is a
computation”

7−→
truth assignment”

computation;(computation) matrix

Example: input (M, 010, 14)

bb1 0

b b b bb0

b b b b bb

b b b b b b

b b b b b b

1q

2

q3

q

Y
h

b

0

1
s
0bb bb

bb

bb

bb

bb

k

k

k

Computation matrix A is polynomial-sized
(in length of input) because a TM moves only
one square per time step and k is given in
unary.

Now we want to prove that SATISFIABILITY isNP-complete. We have already
seen that SAT is inNP . It remains to prove that SAT isNP-hard. We are going
to do that by reducing the BOUNDED HALTING problem to it.

You have a variant of this proof in your G&J textbook. Here I will just go
through the main ideas. I will stay pretty much on the high level and explain to
you what is really involved in this kind of proof.

On the high level you will see that there is nothing new, really. We are doing
what we were doing before, namely: We have a TM problem, and we are reduc-
ing it to a real-world problem. We do it essentially by using this old idea of a
computation matrix where we represent the configurations as rows, and then
we represent the rules of a TM M and the input xwith a bunch of templates.

Let us be a little more careful, just because this is the first reduction we have
seen. Let’s see how one actually goes about making these reductions. The first
thing one should do is to put the two problems in front of oneself on a table. We
put the problem that is being reduced on the left-hand side, and the problem
that that problem is being reduced to on the right-hand side. And then we look
at those two problems. What are they about?

An instance of BOUNDED HALTING is a positive instance if there is a compu-
tation of the NTM – and so on and so forth – that leads to acceptance after that
many steps. But the point is that there is a computation. That is the certificate.
That is what we need for membership. That is what an instance needs to be a
positive instance.

What about SATISFIABILITY? There an instance is a positive instance if there

3.6. LECTURE 6 143

is a truth assignment that satisfies all the bla, bla, bla, bla – right? So the point
is that this computation on the one side, corresponds to a truth assignment on
the other side. And we better find a kind of a mapping that maps nice compu-
tations into nice truth assignments, meaning ’Yes’-instances to ’Yes’-instances
and ’No’-instances to ’No’-instances. That is the obvious idea.

And the only thing we are going to do that is slightly technical is that we do
the mapping with the help of this big matrix. This is really the natural way to
think about a Turing machine in terms which are not so much Turing machine
like, which are more a kind of organized and nice.

So imagine for a moment that we are dealing with our old friend, the TM
that is going to verify whether the input string is ’010’ – the TM that we know
the best. This TM happens to be deterministic, but don’t worry about that –
deterministic machines are special cases of non-deterministic ones. This will
allow us to just go through the main ideas.

In our example the input x is ’010’ and k happens to be 4. So this is a positive
instance. Now notice the following: In undecidability theory the computation
matrix was a kind of an infinite matrix, but that is not what we can use in com-
plexity, because in complexity everything is limited with time. But fortunately,
since we know that the question is whether the machine accepts in k steps or
less, we don’t have to look beyond k steps. It is enough too look at k steps.

What can the machine do in k steps? If the head starts scanning the first
’0’ in the input (the arrow at bottom of matrix on the foil), then after k steps it
cannot go further then k squares away on the tape, because the machine moves
only one square at the time. And then we know also that we don’t need to look
at this matrix beyond k rows away from the first row, because that is how much
time we have.

So, we end up with a matrix that has 2k+ 1 columns and k+ 1 rows. And no-
tice that the size of this matrix is polynomial in k, and since k is given in unary,
the size is also polynomial in the length of the input instance of BOUNDED HALT-
ING. That is essential.

So this matrix, which we will use in our proof, is polynomially bounded. It
is a polynomial thing. And in our minds we are now being trained to interpret
this word polynomial as short and manageable and nice. So we know that we
have a nice matrix here because it is of polynomial size. We can now do all sorts
of computations, and if those computations are polynomial, then the overall
computation will be polynomial because we are dealing in a polynomial way
with polynomially many things – that gives us a polynomial kind of computa-
tion, intuitively speaking. So we have something nice to work with.

144 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 6

Autumn 1999 7 of 15

tape squares 7−→ boolean variables

Ex. Square A(2, 6) gives variablesB(2, 6, 0),

B(2, 6, b),B(2, 6,
q0
0), etc. – but only

polynomially many.

input symbols 7−→ single-variable clauses

Ex. A(1, 5) = s
0 gives clause

(
B(1, 5, s0)

)
∈ C.

Note that any satisfying truth assignment
must map B(1, 5,

s
0) to TRUE.

rules/templates 7−→ “if-then clauses”

Ex.
d

a b c
gives

((
B(i− 1, j, a) ∧B(i, j, b)

∧B(i+ 1, j, c)
)
⇒ B(i, j + 1, d)

)
∈ C.

Note: (u ∧ v ∧ w)⇒ z ≡ ¬u ∨ ¬v ∨ ¬w ∨ z

Since the tile can be anywhere in the matrix,
we must create clauses for all 2 ≤ i ≤ 2k and
1 ≤ j ≤ k, but only polynomially many.

Given an instance of BOUNDED HALTING, we have created this matrix – at
least in our mind. Now we want to take this process one step further. We want
to move from the world of matrix and templates where BOUNDED HALTING lives,
into the world of logic where SAT lives. SATISFIABILITY is a problem in logic.

How do we move from computation matrix and templates to logical things?
This is very important and completely crucial: We do it step by step. We trans-
late each entity in the world of matrix and templates to the world of logic. We
express each essential property of the computation matrix and the Turing ma-
chine rules/templates in the language of SAT, which is variables and clauses.
And we must do the translation in such a way that the BOUNDED HALTING in-
stance is a positive instance if and only if the translated SAT-instance is a pos-
itive instance, meaning: "There is a computation..." if and only if "There is a
truth assignment...". This is an essential insight.

First of all we translate the squares in the matrix. We do that by introducing a
number of logical variablesB(x, y, z) for every entryA(x, y) in the matrix. Entry
A(x, y) gives rise to logical variables B(x, y, 0), B(x, y, 1), B(x, y, b), B(x, y, s/0)
and so on – as many B-variables as there are characters which can be placed in
the entryA(x, y) in the matrix. So each of theB(x, y, z) variables will express the
fact that character z occupies the spot A(x, y) in the matrix. Notice that there
will only be polynomially manyB-variables all together because we have a poly-
nomial number of squares and a polynomial number of different characters to
put in each square.

Our goal is that exactly one of these B(x, y, z) variables will end up being

3.6. LECTURE 6 145

’TRUE’ in a satisfying truth assignment, namely the variable that corresponds to
the character which is actually written in spot A(x, y) during the computation.

The first row of the computation matrix is fixed for a given instance, because
it contains the input string. How do we translate the input string? We do it
by introducing 2k + 1 single-variable clauses, one clause for each square on

the input row. If A(1, 5) =
s
0 – as in our example – then we include the clause(

B(1, 5,
s
0)
)

into the set C of clauses. Because this is a single-variable clause,

every satisfying truth assignment must map the variableB(1, 5,
s
0) to ’TRUE’. And

as I said before, if B(1, 5,
s
0) is ’TRUE’ it will mean that the character

s
0 is written

in position (1, 5) in the computation matrix.
Now we want to represent the computation of the TM, and for us the com-

putation is the templates. The template
d

a b c
is saying that if there is a

row j in the computation matrix with an ’a’ in position i − 1, a ’b’ in position i

and a ’c’ in position i + 1, then there should better be a ’d’ in position i of the
next row j + 1.

We represent the same information in logic by using a "if-then clause". We
include the clause (B(i− 1, j, a) ∧B(i, j, b) ∧B(i+ 1, j, c) ⇒ B(i, j + 1, d)) in the
set C of clauses. Of course in an actual clause of SAT there are only allowed to
be OR-operators between the variables, but we can get rid of ’implication’ and
’and’ by using the following rule from logic: (u∧v∧W)⇒ z ≡ ¬u∨¬v∨negw∨z.

Each such if-then clause is saying: If these three characters are seen in the
row below, then this character should better be seen in the row up. And we do
this for every i from 2 to 2k, and for every j from 1 to k. So we will have quite
many clauses for each template, but there will be polynomially many only all
together, because a polynomial times a polynomial is still a polynomial.

146 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 6

Autumn 1999 8 of 15

non-determinism 7−→ “choice” variables

Ex.

F T...

G(2)

G(1)

F

F

T

T

k=4

G(t) tells us what non-deterministic choice
was taken by the machine at step t. We extend
the “if-then clauses” with k choice variables:(
G(t) ∧ “a” ∧ “b” ∧ “c”⇒ “d”

)
∨
(
¬G(t) ∧ · · ·

)
Note: We assume a canonical NTM which

• has exactly 2 choices for each
(state,scanned symbol)-pair.

• halts (if it does) after exactly k steps.

So we are able to translate squares, input and TM rules into logic. The last
important piece is non-determinism. We have been dealing with a determinis-
tic Turing machine in our example, but non-determinism is essential because
we know that the input machine to BOUNDED HALTING is non-deterministic
so this kind of idea doesn’t really work. But we know that we can turn non-
determinism into determinism by guessing which path the NTM will follow. So
we introduce the guess variables.

Imaging for a moment that our Turing machine always has exactly two non-
deterministic choices – not four, not one, but two. Imagine also that if it halts,
then it does so after exactly k steps. We say that the machine is canonical. The
assumption that the machine is canonical does not restrict generality in any
way because it is easy to turn an arbitrary machine into a canonical one by in-
venting some new states and some new things, and it can be done in polynomial
time. These are technicalities.

So for a canonical machine non-deterministic choices amount to choosing
one of the two binary values. We can say ’0’ or ’1’, or we can call them ’TRUE’
or ’FALSE’. So if we are interested in a computation which has length k, then we
introduce k G(t)-variables which tell us for every step t what non-deterministic
choice was taken by the machine in that step. If we have these guesses, then
we effectively have turned the machine into a deterministic machine, because
if we know which of the possible two rules was taken at every step, those rules
themselves they are deterministic things.

So given all the values ofG(t) where t ranges from 1 to k, everything is deter-

3.6. LECTURE 6 147

ministic. We extend the "if-then clauses" with choice variables:
(G(t)∧B(i− 1, j, a)∧B(i, j, b)∧B(i+ 1, j, c) ⇒ B(i, j+ 1, d)∨ (¬G(t)∧B(i−

1, j, a) ∧B(i, j, b) ∧B(i+ 1, j, c) ⇒ B(i, j + 1, e)
The meaning of this is that if choice variable G(t) has truth value ’TRUE’, then

we choose the first rule, otherwise we choose the second one.
For each rule template we create such clauses for all t’s from 1 to k and all i’s

from 2 to 2k and all j’s from 1 to k. It will be a lot of them, but only polynomially
many in the size of the BOUNDED HALTING input. We also have to deal with the
fact that there is not one, but several templates corresponding to the same rule,
but that is just a technicality. It can be done.

This completes the proof, which is really only a sketch. If we do all these
translations, then we will assure that instance of BOUNDED HALTING is a ’Yes’-
instance if and only if the translated SAT-instance is a ’Yes’-instance. And the
translation – or reduction – can be done in time polynomial in the size of the
input (M,x, 1k) to BOUNDED HALTING.

Since BOUNDED HALTING is NP-complete and polynomial-time reducible
to SAT, that means that SAT is also NP-hard. Because if SAT can be solved in
polynomial time, then so can BOUNDED HALTING and every other problem in
NP.

148 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 6

Autumn 1999 9 of 15

Further (basic) reductions
BOUNDED HALTING

PARTITION

VERTEX COVER (VC)

HAMILTONICITY CLIQUE

SATISFIABILITY (SAT)

3SAT

3-DIMENSIONAL
MATCHING (3DM)

Polynomial-time reductions (review)
L1 ∝ L2 means that

• R :
∑∗ →∑∗ such that

x ∈ L1 ⇒ fR(x) ∈ L2 and
x 6∈ L1 ⇒ fR(x) 6∈ L2

Σ* Σ*

L2L1

• R ∈ Pf , i.e. R(x) is polynomial computable

So by Cook or by crook we have now established as a fact that SAT is NP-
complete. We can use that fact to prove that all sorts of other problems are
NP-complete, and that is what we are going to do. And by doing so we are
going to learn about those problems and about the techniques used to prove
NP-completeness, and we will gain all sorts of insights. We will understanding
in the end that allNP-complete problems are really just variants of each other,
even though when you meet them in the street, you will never think that they
belong together; they are so different.

On this foil I am showing some basic, practicalNP-complete problems. The
arrows show what polynomial-time reductions we will use to prove them NP-
complete.

Remember that a polynomial-time reduction R from L1 to L2 means two
things: One, that all strings x in L1 are mapped to strings in L2, in such a way
that ’Yes’-instances inL1 are mapped to ’Yes’-instances inL2 and ’No’-instances
in L1 are mapped to ’No’-instances in L2. And two, that the reduction can be
done (computed) in polynomial time in the size of the input x.

3.6. LECTURE 6 149

(This is a blank page)

150 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 6

Autumn 1999 10 of 15

SATISFIABILITY∝ 3-SATISFIABILITY

SAT 3SAT
Clauses with any Clauses with

number of literals
7−→

exactly 3 literals

• Cj is the j’th SAT-clause, and Cj
′

is the
corresponding 3SAT-clauses.

• yj are new, fresh variables, only used in Cj
′

.

Cj Cj
′

(x1 ∨ x2 ∨ x3) 7−→ (x1 ∨ x2 ∨ x3)

(x1 ∨ x2) 7−→ (x1 ∨ x2 ∨ yj), (x1 ∨ x2 ∨ ¬yj)

(x1) 7−→ (x1 ∨ y1
j ∨ y

2
j), (x1 ∨ ¬y1

j ∨ y
2
j),

(x1 ∨ y1
j ∨ ¬y

2
j), (x1 ∨ ¬y1

j ∨ ¬y
2
j)

(x1 ∨ · · · ∨ x8) 7−→ (x1 ∨ x2 ∨ y1
j), (¬y

1
j ∨ x3 ∨ y2

j),

(¬y2
j ∨ x4 ∨ y3

j), (¬y
3
j ∨ x5 ∨ y4

j),

(¬y4
j ∨ x6 ∨ y5

j), (¬y
5
j ∨ x7 ∨ x8)

Question: Why is this a proper reduction?

The next problem we will prove NP-complete is a kind of a restricted ver-
sion of SAT, called 3SAT. We want to prove that 3SAT is inNPCbecause it turns
out that 3SAT is easier to use as theNPCproblem in other proofs.

3SAT has exactly three literals in each clause. This is just a restricted version
of SAT, so of course 3SAT is in NP . The second part of the proof is reducing
SATto 3SAT – showing that given an ’Yes’-instance (’No’-instance) of SATwe
can create an ’Yes’-instance (’No’-instance) of 3SAT in polynomial time.

We will do this reduction by introducing some new variables. And as always
when I am doing these reductions, I am just showing you what to do, waving my
arms a little. But you want to verify that what I am doing can actually be done
by an algorithm. That is the essential part.

Here is what the algorithm is doing: It will be turning the SATclauses into
3SAT clauses, one by one. This is an example of a technique which in your G&J
textbook is called local replacement.

If the original SATclause happens to have three literals already, there is noth-
ing to do. You just copy it. If the SATclause have two literals, then we introduce
a fresh y variable, and this variable is indexed j, where j is the "name" of the
SATclause. In this way we secure that yj exists only in the 3SAT clauses that
correspond to the SATclause being translated. So we don’t have to worry about
the yj variable appearing anywhere else.

Given the SATclause (x1 ∨ x2) we make the two 3SAT clauses (x1 ∨ x2 ∨ yj)
and (x1 ∨ x2 ∨ ¬yj). It turns out to be irrelevant what truth value we choose to
assign to the variable yj . Because no truth assignment to variable yj can make
both of these clauses be ’TRUE’. They are both ’TRUE’ if and only if at least one
of x1 or x2 are ’TRUE’. Which is exactly the meaning of the SATclause (x1 ∨ x2).

So we have translated (x1 ∨ x2) into two 3SAT clauses which say exactly the

3.6. LECTURE 6 151

same: One of x1 or x2 must be set to ’TRUE’ for the two clauses inC
′

j to be ’TRUE’.
Remember that we use OR within the clause, and AND among the clauses.

If we have only one literal in the clause, then we play the same game. Now we
need two additional variables, y1

j and y2
j , and all their combinations. So we end

up with four clauses as shown on the foil. But since we have all the combina-
tions of these y-variables, then they really make no difference. Because no truth
assignment to y1

j and y2
j can make all four of these clauses ’TRUE’. In exactly one

of the four clauses both literals with y-variables will be ’FALSE’, and therefore
the truth value of that particular clause will depend on x1 alone – which was the
meaning of the original SATclause (x1).

If x1 is ’TRUE’, then of course all four clauses in C
′

j are ’TRUE’. If x1 is ’FALSE’,
then at least one of the four clauses must be ’FALSE’, whatever the values of y1

j

and y2
j are, since we have all combinations of y1

j and y2
j and their negations in

combination with x1 which is now ’FALSE’.
If the clause Cj happens to have more than three literals, then we intro-

duce the yj-variables in a slightly different way: Suppose that Cj has 8 liter-
als, x1, . . . , x8. In 3SAT we will then have 6 clauses that corresponds to Cj .
The first clause will be (x1, x2, y

1
j), the second is (¬y1

j , x3, y
2
j) and the third is

(¬y2
j , x4, y3

j). You can see the pattern now, right? The last three clauses are
(¬y3

j , x5, y4
j), (¬y4

j , x6, y5
j) and (¬y5

j , x7, x8).
These yj’s they sort of connect the x-variables into a chain. What is the idea?

Cj is saying that at least one of the x1 to x8 must be ’TRUE’ in order for Cj to be
’TRUE’ or satisfied. I claim that these 6 clauses in C

′

j they say exactly the same:
at least one of x1 to x8 must be ’TRUE’ in order for all 6 clauses to be satisfied.

This is a little subtle, but also extremely important, because it illustrates
what we mean by a reduction. Remember that a reduction must map ’Yes’ to
’Yes’ and ’No’ to ’No’. So we must prove that if Cj is satisfiable then all 6 clauses
inC

′

j are satisfiable. But we must also prove that ifCj is not satisfiable, then it is

impossible to satisfy all 6 clauses in C
′

j .
Let’s look at ’Yes’ to ’Yes’ first: Cj is satisfied if at least one of x1 to x8 is sat-

isfied. If x1 or x2 is satisfied, then we can satisfy all clauses in C
′

j by setting all
the yj’s variables to ’FALSE’. If x3 is ’TRUE’, then we set y1

j to ’TRUE’ and all other
yj’s to ’FALSE’. If x4 is ’TRUE’, then we set y1

j and y2
j to ’TRUE’ and all other yj’s to

’FALSE’. So the pattern is clear: If xi is ’TRUE’, then we can satisfy all 6 clauses by
setting y1

j up to yij − 2 to ’TRUE’ and the other yj’s to ’FALSE’. This means that if
x7 or x8 are ’TRUE’, then we set all yj ’s to ’TRUE’. You should use some minutes
at home to convince yourself that this argument is indeed a valid one.

So we have shown that if any of the x’s are ’TRUE’ – meaning that Cj is satis-
fiable – then there is a truth assignment to the yj ’s so that C

′

j is also satisfied.
Now we have to do the opposite. We have to prove that if all x’s are ’FALSE’

– which means that Cj is not satisfiable – then there is no way to satisfy all 6
clauses in C

′

j . This is how we prove that:
Since x1 and x2 are both ’FALSE’, then for the first clause in C

′

j to be ’TRUE’,
y1
j must be ’TRUE’. Since y1

j is ’TRUE’, then ¬y1
j in the second clause is ’FALSE’.

But x3 is also ’FALSE’, so for the second clause to be satisfied, we need to set y2
j

to ’TRUE’. The same pattern repeats itself for the third, fourth and fifth clause:
Because x4, x5 and x6 are all ’FALSE’, y3

j , y4
j and y5

j need to be ’TRUE’. But then we
have a problem with the last clause: ¬y5

j is ’FALSE’ because y5
j is ’TRUE’, but x7

and x8 are also both ’FALSE’, so the last clause cannot be satisfied. All together
this amounts to a proof that if Cj is not satisfiable, then neither is C

′

j .
This concludes the reduction from SATto 3SAT. You should convince your-

self that this is a proper reduction, meaning that it can be computed in polyno-
mial time. All together this amounts to a proof that 3SAT is NP-complete.

152 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 6

Autumn 1999 11 of 15

3-DIMENSIONAL MATCHING (3DM)
Instance: A set M of triples (a, b, c) such that
a ∈ A, b ∈ B, c ∈ C. All 3 sets have the same
size q (|A| = |B| = |C| = q).

Question: Is there a matching inM , i.e. a
subset M ′ ⊆M such that every element ofA,
B and C is part of exactly 1 triple in M ′?

Example

z1x1

x2

x3

z2

z3

y2

y3

y1

M =
{

(x1, y1, z1), (x1, y2, z2),

(x2, y2, z2), (x3, y3, z3), (x3, y2, z1)
}

We will use sets with 3 elements to visualize
triples:

y1

x1 z1

So we have that 3SAT isNP-complete. We are moving on to the next prob-
lem which is the 3-DIMENSIONAL MATCHING problem. This will take us from
the world of logic into something which is a set-theoretical problem or a match-
ing problem or a hypergraph problem. We can also call it a kind of a very prac-
tical problem these days, because it is a variant of the stable-marriage problem
or the matching problem, which is the first problem we have seen.

This time we are trying to marry three things as opposed to two. You can
imagine that we are dealing with modern couples and modern families, where
not only people are involved but automobiles also. You can marry two people
– all right they love each other, but if they happen to like different kind of cars,
then they should not be married together.

There are boys, girls and cars – three things – and compatibility constraints
among them. So the instance is a set of triples, each element of a triple belong-
ing to different sets. We have triples of the form (a, b, c) such that ’a’ belongs to
setA, ’b’ belongs to setB and ’c’ belongs to setC. To make the things simpler we
assume that these three sets have the same size q. The question we are asking is:
Can we marry everybody? Is there a matching in set M such that everybody is
married and that nobody is married two times? You know, obviously two fami-
lies should not own the same automobile, and no woman or man should belong
to two families, and so on.

So this is a natural generalization of the 2-DIMENSIONAL MATCHING prob-
lem which we have seen in the first class. The interesting thing here is that while
2-DIMENSIONAL MATCHING has been solved by a polynomial-time algorithm,

3.6. LECTURE 6 153

3DM is NP-complete – meaning that it has not been solved by polynomial-
time algorithms and it is very unlikely that it will be.

I am showing here on this foil an example of 3DM just to make the things a
little more transparent. We have these three sets here – the x’s, the y’s and the z’s
– and q is equal to 3, meaning that every set has 3 elements. We have a 5 triples
connecting the x’s, y’s and z’s together. Three of them I have colored red. Those
three are the stable matching. They are the solution, the marriage. So this is a
positive instance.

It turns out to be very easy to show that 3DM is in NP . The certificate is
the stable matching itself, the three red triples. So if a NTM can guess the these
three choices, then how much time is required for verifying that they are actu-
ally the stable marriage, the solution? Almost no time at all – you just verify that
the three triples are inM , the set of triples, and that each xi, each yi and each zi
have all been repeated exactly once in the three triples.

You can program this up in no time and you can see that the algorithm is
easy and efficient – no exhaustive search, no difficult things, all is polynomial.
You need a little bit of practice though to understand really what is polynomial
and what is not. This practice you will get from your group exercises.

154 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 6

Autumn 1999 12 of 15

Reductions are like translations from
one language to another. The same
properties must be expressed.

3SAT∝ 3DM

3SAT 3DM
variables x1, · · · , xn 7−→ variables xj3, a

j
3, b

2
j, c

1
k

literals x1,¬x1 7−→ variables xj1,¬x
j
1

clauses 7−→ triples (xj1, b
1
j, b

2
j)

Cj = (x1 ∨ ¬x2 ∨ ¬x3) (¬xj3, b
1
j, b

2
j)

“There exists a sat. ”There is a
truth assignment”

7−→
matching”

“There is a truth assignment T ”

• ∃T : {x1, · · · , xn} → {TRUE, FALSE}

• T (xi) = TRUE ⇔ T (¬xi) = FALSE

The second property is easily translated to
the 3DM-world:

xi

ai

¬xi

T (Xi) = TRUE 7−→ x1is not “married”

We now move on to show a reduction from 3SAT to 3DM. This is going to
be a little bit involved, because this is an example of the most difficult kind of
reduction, which is asking for creating certain components, which represents
certain properties of language we are reducing from. Your G&J textbook calls
this kind of technique component design.

If we are reading a textbook where the reduction is already done, then we
just read and say: "OK, this looks nice and they seem to know what they are
doing." But we will assume that we are dealing with a fresh problem, because
we are also trying to learn here in this class how actually one would apply these
techniques to a completely new problem. We are trying to build up some in-
tuition, to create some intuitive understanding of how one goes about proving
NP-completeness. The technical details of the proofs can be found in your G&J
textbook.

So, first of all we need a NP-complete problem to reduce to 3DM. 3SAT
is a natural choice because it is also a ’3’ problem. They kind of seem similar.
So a little bit of intuition helps to see what problem should be reduced to our
new problem. Another reason for choosing 3SAT is that it’s basically the only
NP-complete problem we know yet.

We are reducing SATto 3DM. We are translating from one language to an-
other. In the language of 3SAT an instance is encoded in terms of variables,
literals and clauses. In the language of 3DM we have variables and triples. So
we see right away a certain similarity which allows us to translate things into
one another:

3.6. LECTURE 6 155

In 3SAT we have variables, in 3DM we have also variables. But we don’t have
literals in 3DM. That could be a problem. What about the clauses? They seem
similar to triples somehow – you have 3 things in clauses and you have 3 things
in triples. The elements of the clauses are literals, so it is natural then to create
variables in 3DM that are also literals. So we will represent 3SAT variables and
literals by 3DM variables, while clauses will become triples.

There are also several properties that need to translate from the world of
3SAT to the world of 3DM. The main property, the crucial fact which we need
to translate is: "There exists a satisfying truth assignment." This is completely
central, because it is this property that distinguishes the negative instances of
3SAT from the positive instances of 3SAT. The corresponding property in 3DM
is: "There exists a matching."

We must translate this property in such a way that if the 3SAT instance has
a satisfying truth assignment, then the reduced 3DM-instance has a (perfect)
matching. Because we want to map ’Yes’-instances to ’Yes’-instances and ’No’-
instances to ’No’-instances. We must also ensure that the reduction, the trans-
lation, can be done in polynomial time.

First of all we need a truth assignment – we need a choice of ’TRUE’ and
’FALSE’ to the logical variables. We want to translate this notion of truth assign-
ment to logical variables, into the language of 3DM where we don’t have logical
variables or truth assignments, but only choices of triples.

So we are doing something which is called component design. We are creat-
ing a kind of a monster, a bunch of 3DM-triples which are going to express the
same fact as a truth assignment would express in 3SAT.

"There is a truth assignment T" means two thing: One, every logical variable
is assigned the value ’TRUE’ or ’FALSE’. Two, if xi is ’TRUE’ then ¬xi is ’FALSE’
and vice versa. The second fact is translated to the 3DM world by introducing
a new variable ai which is only used in two triples – one triple where xi is a
member and one triple where ¬xi is a member. Since every 3DM variable must
be married in a positive instance, then one of the two triples containing ai must
be chosen. If the triple containing xi is chosen, that means that xi is already
used – it is married. This will correspond to SATvariable xi being assigned the
value ’FALSE’. If on the other hand the triple containing ¬xi is chosen, then xi is
free for use later in the reduction. This will correspond to SATvariable xi being
’TRUE’.

156 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 6

Autumn 1999 13 of 15

A literal xi can be used in many clauses. In
3DM we must have as many copies of xi as
there are clauses:

¬x4
i

x4
i

¬x3
i

x3
i

¬x2
i

x2
i

¬x1
i

x1
i

• Either all the black triples must be chosen
(“married”) or all the red ones!

• If T (xi) = TRUE then we choose all the red
triples, and the black copies of xi are free to
be used later in the reduction. And vice
versa.

•We make one such truth setting
component for each variable xi in 3SAT.

A 3SAT literal can be used in many clauses, but a 3DM variable can only be
chosen (married) once. So we need as many copies of xi and ¬xi as there are
clauses in the 3SAT-instance. Of course, not all clauses will contain the literal
xi, but we will do some cleaning up in the end that will take care of unused
copies.

We need to assure that either all the xi copies are married or all the ¬xi
copies, because a variable is either ’TRUE’ or ’FALSE’. Therefore we make a huge
component of all the xi and ¬xi copies as shown on the foil (we assume there
are 4 clauses). The 8 anonymous "inner" variables are fresh variables not used
anywhere else, and because all 8 want to be married exactly once, then it is easy
to see that either all black triples must be chosen or all the red ones.

If the truth assignment has made xi ’TRUE’, then we choose all the red triples,
so that all the black copies of xi are free to be used later in the reduction. But if
on the other xi is ’FALSE’, then we choose all the black triples, so that the ¬xi are
available – free to be married later.

We must make one such truth-setting component for each variable xi in the
3SAT-instance, but there will be only polynomially many and each of them will
be polynomially large, so everything is fine. These truth-setting gadgets take
care of the variables and of their truth assignments.

3.6. LECTURE 6 157

IN210 − lecture 6

Autumn 1999 14 of 15

“T is satisfying”

We translate each clause (example:
Cj = (x1 ∨ ¬x2 ∨ ¬x3)) into 3 triples:

xj1

b2
j

¬xj2 ¬xj3

b1
j

• b1
j and b2

j can be married if and only if at
least one of the literals in Cj is not married
in the truth setting component.

• If we have a satisifiable 3SAT-instance ,
then all b1

j and b2
j-variables (1 ≤ j ≤ m) can

be married.

• If we have a negative 3SAT-instance , then
some b1

j and b2
j-variables will not be

married.

Now we need to express the fact that the truth assignment is a satisfying
truth assignment. This means that every clause contains at least one literal
which is ’TRUE’. How do we represent the clauses? By triples, of course. Given a
clause Cj = (x1 ∨ ¬x2 ∨ ¬x3) we construct 3 triples as shown on the foil, using
two fresh bj variables – ’fresh’ again meaning that they are only used in these
tree triples. It is easy to see that b1j and b2j can be married if and only if at least
one of the literals in Cj is "single", meaning that it didn’t get married in the
truth-setting part. This will correspond to the fact that at least one of the literals
in clause Cj has been assigned truth value ’TRUE’.

So we have expressed the fact that one of the literals in a clause must be
’TRUE’, and if we construct 3 triples as on the foil for every clause in the 3SAT-
instance, then we know that in a stable marriage every clause must be satisfied.

This is the heart of the reduction: The 3SAT-instance is satisfiable if and
only if all b1j and b2j variables can be married. Let’s see why this is a valid claim:
Suppose that we have a 3SAT-instance with n variables and M clauses. If the
3SAT-instance is satisfiable then we choose triples in the truth-setting compo-
nent in such a way that every literal that has been assigned the value ’TRUE’ by
the satisfying truth assignment, is available at this point. Since a satisfying truth
assignment means that at least one literal in each clauseCj is ’TRUE’, that literal
is available for marriage with b1j and b2j . So all b1j and b2j can be married.

On the other hand, if the 3SAT-instance is not satisfiable, then no matter
how we choose triples in the truth-setting component, at least one b1j and b2j
can not be married.

158 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 6

Autumn 1999 15 of 15

Cleaning up (“Garbage collection”)

There are many xji who are neither married in
the truth settting components nor in the
“clause-satisfying” part. We introduce a
number of fresh c-variables who can marry
“everybody”:

· · ·

c1
k c2

k

¬x1
1

x1
1 ¬xmn

xmn

• There are m× n unmarried x-variables
after the truth setting part.

• If all m clauses are satisfiable then there
will remain (m× n)−m = m(n− 1)
unmarried x-variables.

• So we let 1 ≤ k ≤ m(n− 1).

So now we are basically finished. We have translated the essential properties
of a positive 3SAT-instance into the language of 3DM and into properties that
a positive instance of 3DM has to satisfy.

It remains to do a little cleaning up or "garbage collection". Even if we have
a satisfying truth assignment, there will be lots of xji variables that neither got
married in the truth-setting component nor in the clause-satisfying part. We
introduce a number of fresh c-variables to deal with those, as shown on the foil.

How many c-variables do we need? Let’s do a little bit of counting: Given M
clauses and n variables, we will make m copies of each of the n xj literals and
m copies of each of the n ¬xj literals. The satisfying truth assignment marries
half of them, but there will still be m × n unmarried ones. If all clauses are
satisfiable, then m of them will be used to marry the b-variables. That leaves
(m× n)−m = m(n− 1) unmarried x-variables.

So if we have a satisfying 3SAT-instance, then we needm(n−1) c1k-variables
and m(n− 1) c2k-variables to ensure that there is a perfect matching in the cor-
responding 3DM-instance. We don’t need to care about the case of having a
negative 3SAT-instance, because then we cannot marry all the bj’s anyway – as
explained earlier – so there will be no matching.

This completes the reduction. To formally prove that what we have now
sketched is the proper reduction that we need, would amount to proving two
things: One is that this is a reduction, namely that it maps positive instances to
positive instances, and negative instances to negative instances. And the other
part is that this can be done by an algorithm in time polynomial in the size of

3.6. LECTURE 6 159

the 3SAT-instance. More details are given in the G&J textbook.

160 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

3.7 Lecture 7

IN210 − lecture 7

Autumn 1999 1 of 15

Review

NP

P

complete
NP-

’hardest’ problems inNP
all efficiently reducible
to one another

Polynomial-time reductions
L1 ∝ L2 means that

• R :
∑∗ →∑∗ such that

x ∈ L1 ⇒ fR(x) ∈ L2 and
x 6∈ L1 ⇒ fR(x) 6∈ L2

Σ* Σ*

L2L1

• R ∈ Pf , i.e. R(x) is polynomial computable

G&J:
3.1.3-3.1.5, 3.2

So, what are we doing? We are studyingNP-completeness, and we are doing
actually many things at the same time here, but one of the things is: We want
to look at the class of problems, and by understanding and studying one class
of problems we develop the whole methodology. We develop a whole pile of
insights which will help us to deal with all kinds of other classes and problems.

The point is intuitively that we want to bunch together the problems that
are kind of similar, that look like a nice family, and somehow we want to be able
to prove that those problems really belong together.

So NP-complete problems will be one such family of problems. And their
basic similarity is that they all seem difficult, hard nuts to crack. Many people
tried, nobody succeeded to crack anyone of them in the sense of solving them
efficiently. So they are all hard in a way, and in a sense they are hardest in the
big class NP. They are all efficiently reducible to one another, meaning that if
one can solve any one of those problems efficiently, then all of them are auto-
matically solved efficiently. So they sort of cling together, these problems.

And the key of the technique that we will be using is the notion of the poly-
nomial-time reduction, which will allow us reduce one problem to another – in
fact to reduce all problems in classNP to each problem in classNP-complete.
Now we are studying how to create those reductions.

Proving that a certain language L1 is polynomial-time reducible to language
L2 amounts to proving two facts. On the foil we show a function which maps the

3.7. LECTURE 7 161

Sigma-star set to itself, namely all strings to all strings. A reduction is a function
which given a string will create another string. Intuitively the first string is an
instance of the first problem, and the second is an instance of the second prob-
lem. This function has the property that it maps positive instances to positive
instances and negative instances to negative instances. So it is a kind of a trans-
lation.

So if the right answer to the question asked in language 1 is ’Yes’, then the
right answer of the instance produced by the reduction R should better be ’Yes’
also. And vice versa: If the right answer to the question in L1 is ’No’, then the
right answer to the L2-instance created by R should also be ’No’. That is what
we mean by a reduction.

In addition to that a polynomial-time reduction must be efficiently com-
putable. It is a function computable in polynomial time in the length of input
to L1. This is important because if the reduction is computable in polynomial
time, then if we can answer the question asked in language L2 efficiently, then
by virtue of the fact that the composition of two efficient functions is efficient,
we know that the question in L1 also can be answered efficiently. And, given
that the answer to this questionL2 is really the same as the answer to this ques-
tion L1 by the first property of the reductions, then we know that if the second
language can be solved efficiently, so can the first one.

So this kind of reduction gives us exactly what we want in order to be able to
say that if problem 2 is easy so is problem 1. But it also tell us that if problem 1
is difficult then problem 2 is also difficult, because if we on the contrary could
solve problem 2 efficiently, then by using the efficient reduction we could also
solve the difficult problem 1 efficiently. So problem 2 must be at least as difficult
as problem 1.

That is what we are trying to prove. We are trying to prove for new prob-
lems that they are difficult. We already have some difficult problems, which are
this artificial BOUNDED HALTING problem and the real-world problems SATIS-
FIABILITY and its reduced version 3SAT and 3-DIMENSIONAL MATCHING.

162 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 7

Autumn 1999 2 of 15

ProvingL isNP-complete
• L ∈ NP : show a short “ticket” (succinct

certificate)

• L ∈ NP-hard: show a poly-time
reduction from a knownNP-hard
problem.

For (decision versions of) search problems
L ∈ NP is usually easy because the solution
is the certificate.

Further (basic) reductions
BOUNDED HALTING

CLIQUE

SATISFIABILITY (SAT)

3-DIMENSIONAL
MATCHING (3DM)

PARTITION

3SAT

VERTEX COVER (VC)

HAMILTONICITY

ProvingNP-completeness consists of proving two facts. One, that your lan-
guage is in NP . Usually this is easy, because it amounts to just showing that
there is a "short" ticket. And if we are talking about decision versions of search
problems, which is usually what we are doing, then the ticket is most often the
solution. So if we are talking about HAMILTONICITY, the ticket is the Hamilto-
nian path, if we are talking about SAT, the ticket is a satisfying truth assignment,
and so on.

The fact that L is in NP-hard, which is the second fact we have to prove for
NP-completeness, amounts to showing a reduction from a known NP-hard
problem, which effectively means that your problem is at least as hard as your
originalNP-hard problem, by virtue of the property of these reductions.

So this is the technique, and what we want to do now is we want to apply
this technique to various problems and understand both the problems and the
technique. Today we will show three more problems NP-complete, namely
PARTITION, VERTEX COVER and HAMILTONICITY.

3.7. LECTURE 7 163

(This is a blank page)

164 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 7

Autumn 1999 3 of 15

PARTITION
Instance: A finite set A and sizes s(a) ∈ Z+ for
each a ∈ A.

Question: Can we partition the set into two
sets that have equal size, i.e. is there a subset
A′ ⊆ A such that∑

a∈A′

s(a) =
∑

a∈A\A′

s(a)

3DM∝ PARTITION
We first reduce 3DM to SUBSET SUM where
we are given A, as in PARTITION, but also a
number B, and where we are asked if it is
possible to choose a subset of A with sizes
that add up to B.

3DM SUBSET SUM

sets and
triples (subsets) 7−→ numbers

“There is
7−→

“There is
a matching M ′” a subset with

total size B”

The two real-world NP-complete problems that we have seen so far – SAT-
ISFIABILITY and 3-DIMENSIONAL MATCHING – they are rather similar. They are
both talking about variables and things. Now we move from variables to num-
bers. We are going to see aNP-complete problem which at the outset does not
look at all similar to the problems that we have seen so far.

Our new problem is called PARTITION and it is a number problem. We are
given a finite set A, and for each element of A we are given a size. So ’size’ is a
positive integer. And then the question about this bunch of positive integers is:
Is there a subset A′ of A such that the sum of sizes of all elements in A′ is the
same as the sum of sizes of the remaining elements? In other words: Can we
partition the set into to sets that have equal size?

Since the last problem we have been looking at was the stable marriage
problem, we can talk here about the stable divorce problem. You are given a
bunch of objects in the household and you are divorcing. You don’t want to live
with your wife or roommate any more. And you want to divide everything so
that everybody is happy, meaning that both persons get the same value in the
end. Can you do that or not, that is the question.

Ideally you would like to have a computer program that does the this be-
cause divorces are very frequent these days and people go through it many
times. You don’t want to spend the rest of your life dividing things. You just
want to run the program and be done with the whole thing and then begin a
new life.

We are going to see how to reduce the natural stable marriage to stable di-

3.7. LECTURE 7 165

vorce – 3DM to PARTITION. And this is surprising because these two languages
seem completely different – in 3DM you have triples of variables and in PARTI-
TION you have numbers.

We will first reduce 3DM to a variant of PARTITION called SUBSET SUM. In
SUBSET SUM we are given a set of numbers A – as in PARTITION – but also a
number B, and we are asking: Is it possible to choose a subset of A with sizes
that add up to B?

We know that a reduction is like translating from one language to another –
the same properties must be expressed and also the basic building stones which
an instance is made of. In the world of 3DM an instance consists of three sets
W , Y and Z of equal size and a set M of triples of elements drawn from those
three sets. Somehow we need to translate these objects into numbers. The basic
property of a positive 3DM-instance is: "There is a matching M ′". This has to
be translated into the corresponding SUBSET SUM-property: "There is a subset
with total size B."

166 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 7

Autumn 1999 4 of 15

Difficulty: We need to translate from subsets
with 3 elements (triples) to numbers.

Solution: Use the characteristic
function of a set!

Example
Given set U = {x1, x2, . . . , xn} and subset
S = {x1, x3, x4}. The characteristic function of
S is a binary number with n digits and bit 1, 3
and 4 set to 1: 101100 · · · 0︸ ︷︷ ︸

n

.

There is a matchingM ′ ←→
There is a subsetM ′∑
M ′

sizes = B

It is natural to set B =

n︷ ︸︸ ︷
111 · · · 11, since each

element in the universe is used in exactly one
of the triples in the matching.

Technicality: Carry bits!

01b + 10b = 11b , but also 01b + 01b + 01b = 11b.

So in a 3DM-instance you have a set M of triples. How can we turn triples,
which are subsets consisting of exactly 3 elements, into numbers? That is the
basic question. And there is a very natural way of doing it, which has to do with
a very basic concept called the characteristic function of a set.

So suppose as an example that we are dealing with the finite set consist-
ing of the elements x1, x2 up to xn. So U = {x1, x2, . . . , xn} are the universe
from which we are going to draw subsets (triples). Let’s look at the subset S =
{x1, x3, x4}. How do we represent S as a number?

The natural way to represent sets like S as numbers is to represent the uni-
verse as a bunch of binary digits. In our example the universe is mapped into
1, 1, . . . , 1, 1 – n of these. Then each subset can be represented by a correspond-
ing binary number of size n, where a ’1’ in position i means that xi is a member
of the subset. So subset S would become 101100 . . . 0 (n digits).

So with n binary digits we can represent every possible subset of U as a
unique binary number. This is called the characteristic function of a set. This
little trick, which is really the most natural way of representing sets by numbers,
is all that we need for the reduction in addition to some salt and pepper.

We must also translate the basic 3DM-property "There exists a matching
M ′". Given that we can represent each element (triple) in M by a unique n-
digits binary number, then the natural corresponding SUBSET SUM property is
"There is a subsetM ′ of M such that the sizes (numbers) in M ′ add up to B."

What should the number B look like? The natural value for B is 11 . . . 11 (n
of them) since each element in the universe must be used in exactly one of the

3.7. LECTURE 7 167

triples inM ′.
Now we have the basic picture of the reduction. The only difficulty which

complicates the solution is the carry bits that can arise when we do addition:
For example 01 + 10 = 11 when added binary, but because of the carry bit,
01+ 01+ 01 is also 11. In some way or another we must ensure that the i-th digit
in the sum is a ’1’ if only if one of the numbers added had a ’1’ in place i, and
not as result of two ’1’ at place i+ 1 being "carried over" to place i.

168 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 7

Autumn 1999 5 of 15

3DM-instance:
M ⊆W ×X × Y
W = {w1, w2, · · · , wq}
Y = {y1, y2, · · · , yq}
Z = {z1, z2, · · · , zq}
M = {m1,m2, · · · ,mk}

• For each triple mi ∈M we construct a
binary number:

...... 0 1 0 0...01 0 0 0 100

w2 wq x1 x2 xq y1 y2 yqw1

(log2 k) + 1

• This PARTITION/SUBSET SUM number
corresponds to the triple (w1, x2, y1).

• By adding log2 k zeros between every
“characteristic digit”, we eliminate
potensial summation problems due to
overflow / carry bits.

•We makeB as follows:

10001000100010001000 1000100010001000
w2 wq x1 x2w1 yqy2y1xq

Now we start working on the details. We are creating numbers that corre-
spond to triples. Each triple in a 3DM-instance consists of three elements, one
from each of the sets W , X and Y . Since each set has q elements the binary
number that "characterizes" a triple (w1, x2, y1) needs to have at least 3q bits –
one bit for each element. But using only 3q bits is not enough because of the
carry bit problem.

The solution is to add a number ’0’-bits between each bit in the character-
istic number. Then we get a binary number as shown on the foil. I have indi-
cated what "bit-zone" corresponds to which 3DM-element. We construct such
a number for each triple in the 3DM-instance.

It turns out that it is enough to add log2 k zeros between each "characteristic
digit" to eliminate the carry bit problem, where k is the number of triples in the
3DM-instance. Why is log2 k zeros enough? Because then we will have log2 k+1
bits available for each characteristic digit. There will only be k numbers in the
SUBSET SUM instance and even if, say, element x2 is used in all k triples, 1 + 1 +
1 . . . added k times is only a log2 k + 1 digit binary number. So there will never
be a overflow to the characteristic digit representing x1.

We also needs to add log2 k zeros between each ’1’ inB – the sum we ask for.
That is shown on the foil.

This is the end of the reduction to SUBSET SUM. If the 3DM-instance is a
positive instance, then there is a set of triples – a matching – such that each
element in X, Y and Z is used exactly once. But that means that if we sum up
all the numbers corresponding to triples in the matching, the sum would equal

3.7. LECTURE 7 169

B, because every characteristic digit is added one and only one time.
On the other hand, if the 3DM-instance is a negative instance, then there is

no matching such that each element is in exactly one triple. There is at least one
element which are not used in any triple. But then there is also no way to make
a subset sum which equals B, because there will be at least one characteristic
digit missing, namely the digit corresponding to the element which is not in the
matching.

So the reduction is a proper reduction. We also need to prove that the re-
duction is polynomial-time computable. I won’t do the argument here, but just
mention that the crucial point is the length of the characteristic numbers, which
has to be polynomial in the length of the 3DM input. You should convince your-
self that length is indeed polynomial.

170 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 7

Autumn 1999 6 of 15

SUBSET SUM∝ PARTITION

•We introduce two new elements b1 and b2.

•We choose s(b1) and s(b2) so big that every
partition into to equal halves must have
s(b1) in one half and s(b2) in the other.

w

B

S(b1)

∑
S(a)−B

S(b2)

•We let s(b1) +B = s(b2) + (
∑
s(a)−B).

•We can pick a subset of A which adds up to
B if and only if we can split A ∪ {b1, b2} into
two equal halves.

The final little technicality is that we have now reduced 3DM to the SUBSET

SUM problem, not to PARTITION. It turns out to be very easy to reduce SUBSET

SUM to PARTITION by adding two huge elements b1 and b2 to the set. We choose
s(b1) and s(b2) so big that every partition into to equal halves must av s(b1) in
one half and s(b2) in the other, because s(b1) + s(b2) would be larger than all the
other elements added together.

We choose s(b1) and s(b2) so that s(b1) plusB is exactly equal to s(b2) plus the
total sum of the original numbers minusB – see the figure on the foil. If there is
a subset which adds up toB, then s(b1)+B will be equal to s(b2)+(

∑
s(a)−B),

so we have a positive PARTITION instance. But if there is no subset with sum
equal B, then we cannot make two equal partitions, because we would need a
subset sum which equals B to do that.

So it turns out that the problem of deciding whether a bunch of numbers
are such that a subset adds up toB, can be reduced to the question whether it is
possible to partition those numbers plus s(b1) and s(b2) into two equal halves.

3.7. LECTURE 7 171

(This is a blank page)

172 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 7

Autumn 1999 7 of 15

VERTEX COVER (VC)
Instance: A graph G with a set of vertices V
and a set of edges E, and an integer K ≤ |V |.

Question: Is there a vertex cover of G of size
≤ K?

“Can we place guards on at most K of the
intersections (vertices) such that all the
streets (edges) are surveyed?”

G

As you might have understood I am not really proving NP-completeness
here. I am just giving you insights and telling you about high-level ideas so that
you can understand the kind of thinking that goes in provingNP-completeness,
or understanding NP-completeness proofs. But if you are asked to do a proof,
then the proof should be honest-to-God proof with all the elements of a proof.
So you would need to prove A, B, C and D. This you will see more of in the groups
and in your G&J textbook. The G&J textbook contains formalNP-completeness
proofs for the problems we have dealt with on a high level here in class. Hope-
fully the lecture together with everything else will be a whole, allowing you to
proveNP-completeness and understand the proofs.

On the highest level we are seeing different kind of problems and how they
can be turned into one another, and the basic ideas and issues that are involved.
So we have seen how set problems and the problem of choosing subsets from
a set, can be turned into number problems. We have seen also how logic prob-
lems, involving truth- and falsehood, can be turned into a kind of a marriage
problem or choosing subsets.

Now we are going to see how a logic problem can be turned into a graph
problem. VERTEX COVER is a graph problem and to introduce it, imagine that
we are given a graph and that that graph actually is a part of a map of a city
where roads are edges and intersections are vertices of the graph. We are asked
to place guards on the intersections so that they can survey (look after) all the
streets.

And the question asked in VERTEX COVER is: "Is it enough to use K guards?

3.7. LECTURE 7 173

Can we survey all the streets with K guards or less?" You know, the police de-
partment is interested in this question because they want to survey all the streets,
but they don’t want to pay too many people.

In the little toy instance on the foil, the question is: Given this graphs – this
little city – are two policemen enough or not? And the answer is ’Yes’, so this
is a positive instance. With K equal 2 and this graph, there is a way to place
K equals 2 guards that can survey all the streets. That position of the guards
we call the VERTEX COVER, because we are covering all the edges by choosing
these two red vertices here. So in a graph-theoretic language we would ask the
question: Is it possible to choose a subset of the vertices such that the subset has
K elements or less and every edge has an endpoint in at least one the elements
of the subset?

174 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 7

Autumn 1999 8 of 15

3SAT∝ VC

3SAT VERTEX COVER

literals 7−→ vertices
clauses 7−→ subgraphs
“There exists a sat. ”There is a VC
truth assignment”

7−→
of size K”

literals 7−→ vertices

ui ¬ui

• A guard must be placed in either ui or ¬ui
for the street between ui and ¬ui to be
surveyed.

• If we only allow |V | guards to be used for
all |V | streets of this kind, then we cannot
place guards at both ends.

• Placing a guard on ui corresponds to the
3SAT-literal ui being TRUE.

• Placing a guard on ¬ui corresponds to the
3SAT-literal ¬ui being TRUE (and the
ui-variable being assigned to FALSE).

As usual the prove that VERTEX COVER is in NP is trivial, because given K

vertices corresponding to the placement of the K guards, we can in no time
check that all edges are covered.

The difficult part of the NP-completeness proof is the reduction from a
known NP-complete problem. We will show a reduction from 3SAT to VER-
TEX COVER, and again we will look at it as a translation from one language to
another. The absolute main idea is to translate the property "There is a satisfy-
ing truth assignment" to "There is a vertex cover of size K". But to do that we
need to translate the two building stones of a SAT-instance, namely the vari-
ables/literals and the clauses.

We know that a truth assignment assigns each boolean variable the value
’TRUE’ or ’FALSE’. How do we express the same fact in the language of VERTEX

COVER? It this turns out to be very easy. We represent each variable by an edge,
such that the two vertices corresponding to the edge, they are marked u1 and
¬u1. By virtue of the fact that this is an edge we know that a guard must be
placed either here at u1 or at ¬u1, or maybe on both ends, in order for this par-
ticular edge to be covered (surveyed).

We make one such component for each variable in the 3SAT-instance. If we
then limit the numbers of guards to |V | for all |V | streets of this kind, then we
cannot place guards at both ends. We are effectively saying: "OK guy, you can
choose which intersection to be at – ui or ¬ui – but you cannot be at both".

In this way we ensure that either u1 or ¬ui, but not both, most have the truth
value ’TRUE’. Placing a guard on ui corresponds to the 3SAT-literal ui being

3.7. LECTURE 7 175

’TRUE’. Placing a guard on ¬ui corresponds to the 3SAT-literal ¬ui being ’TRUE’.
So this little trick takes care of the literals and the truth assignment to the

logical variables.

176 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 7

Autumn 1999 9 of 15

clause 7−→ subgraph

For clause Cj = (x1 ∨ ¬x2 ∨ ¬x3) we make the
following subgraph:

¬x2

x1

x1 ¬x2

¬x3

¬x3

•We need guards on two of three nodes in
the triangle to cover all three (blue) edges.

• If we are allowed to place only two guards
per triangle, then we cannot cover all three
outgoing edges.

• All 6 edges can be covered if and only if at
least one edge (red) is covered from the
outside vertex.

• By connecting the subgraph to the
“truth-setting” components, this translates
to one of the literals being TRUE (guarded)!

The second issue is translating the clauses. We translate each clause of 3SAT
into a triangle subgraph where each vertex corresponds to a literal in the clause.
For clause Cj = (x1 ∨ ¬x2 ∨ ¬x3) we make the subgraph shown on the foil.

We need guards on two of the three nodes in the triangle to cover all tree
edges. But if we were allowed to place only two guards per triangle, then we
cannot cover all three outgoing edges, no matter how we place the two guards.
There will be at least one edge which has to be covered from its outer end-
point. By connecting the triangle subgraph to the truth-setting components,
this translates to the requirement that at least one of literals in the clause being
’TRUE’, meaning guarded by a policman.

So if one of outgoing edges is covered from its outer endpoint, meaning that
the corresponding literal is ’TRUE’, then we can place the two guards such that
they cover the other five edges. But if none of the outgoing edges is covered
from its outer endpoint, meaning that all literals in the clause are ’FALSE’, then
there is no way to cover all six edges with two policemen.

This means that we map positive 3SAT-instances to positive VC-instances,
and negative 3SAT-instances to negative VC-instances.

3.7. LECTURE 7 177

IN210 − lecture 7

Autumn 1999 10 of 15

Example
3SAT-instance:
U = {x1, x2, x3, x4} (n = 4)
C =

{
{x1,¬x2,¬x3}, {¬x1, x2,¬x4}

}
(m = 2)

¬x4¬x2 x4x2¬x1 ¬x3x3

x2x1 ¬x1¬x2

x1

¬x3 ¬x4

• Total number of guards K = n+ 2m = 8.

• Should check that the reduction can be
computed in time polynomial in the length
of the 3SAT-instance . . .

I will be putting it all together by showing you an example. Given four 3SAT-
variables x1, x2, x3, x4 and the two clauses {x1,¬x2,¬x3} and {¬x1, x2,¬x4} we
construct the following VC-instance. We need four guards in order to cover the
truth-setting edges, and two times two guards for covering the clause-triangles.
This means that K – maximum number of guards allowed – should be 8. In
general K is n + 2m where n is the number of boolean variables and M the
number of clauses.

We get a satisfying truth assignment by setting, for example, x1 and x3 to
’TRUE’ and x2 and x4 to ’FALSE’. It is then easy, as shown on the foil, to cover
each triangle gadget by using two guards. So we have a positive VC-instance
also.

As usual, we should convince ourselves that the reduction is polynomial-
time computable. Here this amounts to showing that given a 3SAT-instance
consisting of a bunch of variables and clauses encoded in some alphabet, the
reduction algorithm can compute the description of the VC graph – a vertex
set and a edge set – in time polynomial in the length of that 3SAT-instance.
The crucial point would be to prove that the number of vertices and edges is
polynomial in the number of 3SAT variables and clauses.

178 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 7

Autumn 1999 11 of 15

HAMILTONICITY
Instance: Graph G = (V,E).

Question: Is there a Hamiltonian cycle/path
in G?

Is there a “tour” along the edges such that all
vertices are visited exactly once? (a
Hamiltonian cycle requires that we can go
back from the last node to the first node)

1v

5v

v2

v3

v4

Our last and final reduction is from VERTEX COVER, involving a graph and a
number, to HAMILTONICITY, involving only a graph. HAMILTONICITY is kind of
the proverbialNP-complete problem, or the beginning of it. Usually when peo-
ple sayNP-completeness they immediately think of a problem which is called
TRAVELING SALES PERSON’S problem (TSP), and HAMILTONICITY is just really a
very reduced version of that problem.

TSP is the most studiedNP-hard problem and we are going to see it later on.
HAMILTONICITY will allow us to move into that arena and deal with problems
such as that.

Given a graph as input, the question related to HAMILTONICITY is whether
the graph is Hamiltonian, or whether it has a Hamiltonian path or a Hamilto-
nian Cycle. As we have said before those two are equivalent problems. A Hamil-
tonian path is a "tour" along the edges such that all vertices are visited exactly
once. We see that in the example graph on the foil there is a Hamiltonian path:
We can go from v1 to v2 to v3 to v4 to v5 – all the vertices are visited once – and
then we can go back to v1 again if we want a Hamiltonian cycle.

3.7. LECTURE 7 179

IN210 − lecture 7

Autumn 1999 12 of 15

VC∝HAMILTONICITY

VC HAMILTONICITY

edges 7−→ edge gadgets
vertices 7−→ how gadgets are connected
K guards 7−→ K selector nodes

edges 7−→ edge gadgets

v2

v1

7−→
v1 v2

A Hamiltonian path can visit the vertices in
the edge gadget in one of three ways:

v1 v2 v1 v2 v1 v2

We want this to correspond to guards being
placed on v1 or v2 or both v1 and v2,
respectively.

We have already shown that HAMILTONICITY is in classNP , so what remains
in the NP-completeness proof is the reduction. By now you should be famil-
iar with the strategy of proving NP-completeness, namely translating the ob-
jects and properties such that the polynomial-time computable reduction maps
’Yes’-instances to ’Yes’-instances and ’No’-instances to ’No’-instances. A VER-
TEX COVER (VC) instance consists of edges, vertices and a number K, repre-
senting guards. We will translate edges into edge gadgets (components). The
vertices will correspond to how we connect the gadgets. The numberK will be
translated into K so-called selector nodes.

I will show you how each object is translated. We start with the edges: Given
an edge between nodes v1 and v2, we make a edge gadget consisting of 12 nodes
and 14 edges, as shown on the foil. The gadget is connected to the outer world
by four edges, one from each corner node. The clever idea is that a Hamiltonian
path can visit the edges in the edge gadget in exactly one of three ways:

One possibility is to enter the gadget at the upper-left node, visiting all the
nodes, and then leave the gadget from the lower-left node. This will correspond
to a guard being placed on vertex v1.

Possibility two is symmetrical, but instead of enter at the left side, we enter
at the upper-right node and leave at the lower-right node. This will correspond
to a guard being placed on vertex v2.

There is also a third possibility where we visit the gadget two times, the first
time visiting the nodes on the left (or right) side and the next time visiting the
other side. This will correspond to having guards both at v1 and v2.

180 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 7

Autumn 1999 13 of 15

vertices 7−→ how gadgets are connected

For each vertex v2, we connect together in
serial all edge gadgets corresponding to
edges from v2:

v2

v3

v4

v1

7−→

v1 v2

v2 v3

• Any Hamiltonian path entering at the
v2-side (red arrow) can visit (if necessary)
all vertices in the serially-connected
gadgets and will eventually exit at bottom
on the v2-side.

• This corresponds to the VC-property that a
guard on v2 covers all outgoing edges from
v2.

The gadgets have the comfortable property that if a Hamiltonian path enters
on one side, then it exists also on the same side. This allows us for each vertex
v2 to connect in serial all gadgets corresponding to edges from v2. An example
is shown on the foil. Any Hamiltonian path entering at the v2 side of the first
gadget in the linked list can visit (if necessary) all vertices in all gadgets in the
list, and it will eventually exit at the bottom node on the v2 side of the last gadget
in the list. This will correspond to the VC-property that a guard placed on vertex
v2 covers all outgoing edges from v2.

3.7. LECTURE 7 181

IN210 − lecture 7

Autumn 1999 14 of 15

K guards 7−→K selector nodes

We finish the construction by introducing K
selector nodes ai which are connected with all
“loose” edges:

v3

v4

v1

v2

v3

v3v1

v3v2

v2v1

v4

a2

a1

All that remains is to introduce K selector nodes ai which are connected
with all "loose" edges. Each selector node will correspond to a guard. A small
example graph is shown on the foil.

Each selector node will say: "You can pass through me, of course, but only
once. And in fact you have to pass through me once." So passing through a1

would mean using one of these two available guards. Passing through a2 would
mean using the second guard.

These guards they are connected with all possible vertices in all possible
ways (a1 and a2 is connected with both ends of all vertex gadget lists) so that
they can go anywhere they like. They can go to any vertex gadget they like, but
they cannot go to more than one. And that one vertex gadget will represent the
intersection, or vertex, where the guard is standing.

182 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 7

Autumn 1999 15 of 15

There is a VC
⇔

There is a
which uses K guards Hamiltonian cycle

v3

v3v1

v3v2

v2v1

v4

a2

a1

v4

v3

v2

v1

The reduction that I have described will hopefully ensure that "there is a VC
which uses K guards" in the VERTEX COVER instance if and only if "there is a
Hamiltonian cycle" in the translated Hamiltonian Cycle instance. In a formal
proof this has to be justified, but here we will just show how it works in our little
example graph:

We can cover all nodes in the graph by placing guards on vertex v1 and v3. So
the VC-instance is a positive instance, and we would like to find a Hamiltonian
cycle in the translated graph:

We start in selector node a1 and visit (pink line) the a1 gadget list. We only
visit the left-hand side nodes in the gadget representing the edge between v1

and v3 because that edge is going to be covered at both endpoints, so a2 will
eventually visit the right-hand side nodes.

After visiting the (v1, v2) edge gadget we cannot go back to a1 so we have to
go to node a2. We have now visited all edges guarded by the policeman at v1.
From a2 we start visiting (red line) the gadget list corresponding to vertex v3 as
shown on the foil. In the end we return to a1 – completing the Hamiltonian
Cycle.

It is quite easy to see that if we cannot cover all edges of the VC-instance
withK guards, then there will be at least one edge gadget we cannot reach with-
out visiting the same node twice. That gadget will correspond to the uncovered
edge.

As usual, in a formal proof we would have to show that the reduction can be
computed in polynomial time in the length of the VC-instance.

3.7. LECTURE 7 183

So this is the end. I hope that these little hints will help you understand
theNP-completeness proofs in the G&J textbook. By all means read them, be-
cause what I presented here were not proofs, they were just high-level ideas that
would help you understand the whole thing.

In the next lecture we will actually build a lot of things on top of this NP-
completeness theory. We will talk about other classes, other kinds of problems.
We will get a map of complexity classes and hopefully understand what sort of
complexity classes and what sort of problems are there out there. And then in
the end – that is going to be like the remainder of the class, quite a few lectures
– we are going to see that this whole point of view has its limitations.

We will be able to in a certain sense solve all these difficult problems by using
techniques which are suitable for these difficult problems. These techniques
are available because this whole approach to complexity has certain limitations.
We are going to see those. For the time being, we are orthodox, we are nice, and
we are basing all of complexity theory on this what we have now, which is the
worst-case best-solution paradigm. We will see everything in more detail later.

184 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

3.8 Lecture 8

IN210 − lecture 8

Autumn 1999 1 of 14

Strategy: Understand two classes in-depth.

NPC

formal

P

languages

Next:

• Extend the “map of classes”.

• Show how to use it for organizing our views
on

— problems

— solutions

— other issues

G&J:
5.0-5.1

We have seen last time how to reduce problems inNPC to one another. And
by doing so we have gotten acquainted with those problems, learned to recog-
nize their physiognomy so that when you meet aNP-complete problem in the
street you recognize him right away and say: "Oh, this must be one of thoseNP-
complete guys." That is good because a lot of practically important, intractable
problems live in that class, so it is important to be able to recognize them.

Also by learning how to proveNP-completeness – by learning all these tech-
niques and things – we learn the basic tools of the trade, and then we are able
to apply them in all walks of life. So we are both gaining insights about the NP-
complete and P problems, and learning the basic techniques.

We have those two classes now: P and NPC. And P for us represents for
the time being well-solved problems,NPCthe difficult guys – problems that are
difficult to deal with. What we are going to do next is: We will extend this map
of classes by adding other classes to it, so that we have a proper map, not just
two countries. And then we are going to show how to use that map for some
basic work which we want to do. We want to organize our view on 1) problems
– classifying problems according to complexity, 2) solutions – how to choose
algorithms for problems that live in different classes, 3) other issues – and we
will see that those other issues are also very interesting. We can really study all
kinds of things based on the map of complexity classes. So let us first create this
map, and then we show how to use it.

3.8. LECTURE 8 185

IN210 − lecture 8

Autumn 1999 2 of 14

Other classes

Def. 1 (Co-NP) A language L is in class
Co-NP if its complement Lc is inNP .

Note: The complement of a formal language
L is

• formally all the strings (over the given
alphabet) that are not in the set L.

• informally the reverse property, i.e. all the
instances that don’t have the property
corresponding to language L.

Co NP

P

NP

Example: NON-MATCHING and
NON-HAMILTONICITY are in Co-NP .

Our next class is Co-NP . You can think of Co-NP as being a kind of a twin
brother or sister ofNP . The definition is that Co-NP consists of languages that
are complements ofNP-languages. A formal language is a set of strings, so the
complement is the complement of that set, namely all the strings that are not
in that set – all the strings being all the strings over the given alphabet.

That is the formal definition. The informal definition and the more mean-
ingful one is that a language corresponds to a property, say HAMILTONICITY.
And you can think of the complement of that language as being all the instances
that don’t have the property, instead they have the NON-HAMILTONICITY prop-
erty. The difference between the two views is that in a set-theoretic comple-
ment, in addition to Non-Hamiltonian instances you would have all sorts of
tings, like strings that are not graphs at all. But those are not interesting. So you
basically ignore them, and an algorithm can easily check whether something is
a properly defined representation of a graph, or just kind of a nonsense string.

So eliminating the nonsense strings is easy for an algorithm. It follows that
for all practical purposes the appropriate way to think of the complement of a
language is in terms of the complement being the reverse property. As an exam-
ple, we know that HAMILTONICITY and MATCHING is inNP . It follows that NON-
HAM and NON-MATCHING is in Co-NP , where non-matching is all bipartite
graphs that don’t have a matching and NON-HAM is all graphs without a Hamil-
tonian path (cycle). Those are Co-NP languages. We think of NON-HAM as all
graphs which don’t have a Hamiltonian path (cycle), but as explained above,
formally NON-HAM also include all strings which don’t encode graphs.

186 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 8

Autumn 1999 3 of 14

Lemma 1 A language L is Co-NP-complete if
its complement Lc isNP-complete.

Proof:

A reduction R from L′c to Lc is also a
reduction from L′ to L.

L′c

Lc
R

Co-NP NP

L′
R

L

Σ* Σ*

Lc

L

L′c

L′

R

R

Example:

• NON-HAMILTONICITY

• NON-SATISFIABILITY

• NON-CLIQUE

• NON- . . .

are Co-NP-complete problems. They don’t
seem to have “ID’s” (efficient membership
proofs).

We haveNP-complete languages andNP-complete problems. What about
Co-NP-complete problems? There is a little lemma which says that a language
L is Co-NP-complete if its complement Lc is NP-complete. So languages in
Co-NPC are simply complements ofNP-complete languages.

How do we prove this lemma? The lemma turns out to be trivial. The proof is
just an observation that a reductionR that reduces a language L′c toLc, actually
also reduces L′ to L. The reason being that the reduction R maps ’Yes’-strings
to ’Yes’-strings and ’No’-strings to ’No’-strings. The ’Yes’-strings in L′c and Lc

are ’No’-strings in L′ and L, while ’No’-strings in L′c and Lc are ’Yes’-strings in
L′ and L. That is the only difference, so R does the job in both cases.

This means that NON-HAMILTONICITY, NON-SATISIFIABILITY, NON-CLIQUE,
NON-3D-MATCHING – all kinds of non-problems – live in the class Co-NPC.
They are sort of negatively defined problems. But what is their physiognomy?
What is interesting about them? The interesting property is that Co-NPC prob-
lems don’t seem to have ID’s. They don’t have a ticket. They don’t have efficient
proofs of membership.

This is an essential difference between NON-HAMILTONICITY and HAMIL-
TONICITY. If I want to prove to you that I am a Hamiltonian graph, I show you a
Hamiltonian path and you can easily check: "OK, go from here to here to here
to here to here, and then you go back." So his is checked efficiently. But if I
want to prove to you that I am non-Hamiltonian, what do I say? "I don’t have
a Hamiltonian cycle." But how can you verify this? It seems you basically have
to test all possibilities. There doesn’t seem to be an easy way to verify NON-

3.8. LECTURE 8 187

HAMILTONICITY.
So in that sense, although NP-complete problems and Co-NP-complete

problems both require exponential time to be solved exactly, typically these Co-
NP-complete problems will be harder to deal with than NP-complete prob-
lems. They will require somewhat different techniques, and some of the tech-
niques that apply to NP-complete problems they will not apply here. We will
see more about that later when we will be studying alternative techniques and
approaches to solving problems.

188 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 8

Autumn 1999 4 of 14

Def. 2 (Polynomial Space, PSPACE)

PSPACE =
⋃
k

SPACE (nk)

(Note: Space complexity is measured as number of tape
squares used on (the work tape of) a TM.)

Lemma 2 NTIME
(
f(n)

)
⊆ SPACE

(
f(n)

)
Proof: A TM moves its head one square at a
time.

Corollarly 1NP , Co-NP ⊆ PSPACE

Examples of PSPACE-complete problems:

• QUANTIFIED BOOLEAN FORMULAS

(∃x1)(∀x2)(∃x3) · · · (Qxn)B

• Generalized games (n× n boards)

Def. 3 (Exponential time, EXP)

EXP =
⋃
k

TIME
(

2n
k
)

Lemma 3 SPACE
(
f(n)

)
⊆ TIME

(
kf(n)

)
for

some constant k.

Proof (idea): The maximum number of
distinct configuration with f(n) tape squares
used is |Q| · f(n) · |Γ|f(n).

Corollarly 2 PSPACE⊆ EXP

Our next class is going to be Polynomial Space (PSPACE). Without going into
details space classes are defined completely analogously to time classes. Space
means the number of squares used on the Turing machine tape. And usually to
study the space usage properly, the Turing machine is redefined a little bit, so
that it has a work tape – a special one – in addition to the input/output tape.
The input tape is read only, the output tape is write only, while the work tape is
used for its internal computations.

If you see things like Logarithmic Space, which is an important class that is
studied in complexity theory, you should not be surprised, thinking: How can a
machine possibly use logarithmic space when it has to see all those n squares
on the input tape in order to read its input? The explanation is: A machine can
use logarithmic space on its work tape, and that is really what is measured.

The space complexity class PSPACE is defined analogously to PTIME. It con-
sists of all the languages which can be recognized on a Turing machine using a
polynomial number of squares on the work tape.

Naturally we want to place this new class PSPACE on the map. We have a
lemma which say that NTIME(f(n)) is contained in SPACE(f(n)). The proof is
just a simple observation that a Turing machine cannot possibly use more space
than time, because it just moves its read/write head one square at the time. So
in n time steps the TM can have used at most n squares on the tape. The conse-
quence of this little lemma is thatNP and Co-NP are contained in PSPACE.

Then we can ask what sort of problems are in PSPACE, and in particular:
What are the PSPACE-complete problems, if they exist? Obviously all solvable

3.8. LECTURE 8 189

problems that we have seen so far – including MATCHING, HAMILTONICITY, short-
est path in a graph, all the nice problems and less nice problems – they are in
PSPACE. But they are not characteristic for PSPACE. They are all too easy! When
we study a new class then we want to see the complete problems, because they
are the ones that characterize the class – they are the typical hard problems in
the class.

So what are the typical hard problems in PSPACE? What are the PSPACE-
complete problems? If SATis the original, proverbial kind ofNP-complete prob-
lem, and if NON-SAT is the original Co-NP-complete problem, then QUANTI-
FIED BOOLEAN FORMULAS (QBF) would be the basic PSPACE-complete prob-
lem. QBF is this kind of thing: You have n boolean variables – x1 to xn – and a
quantified boolean expression consists of a whole bunch of quantified boolean
variables followed by a boolean expession without quantification.

Do you know this language of quantifiers? You will see this in all sorts of
classes later on. You will not be able to live in this place very long without learn-
ing some logic. But to say it very briefly:

Boolean variables are like all other variables in this world, they are some
kind of unknowns. They take values from the set {0, 1} or {’TRUE’,’FALSE’}. So
if you usually think of variables as being some kind of numbers, then boolean
variables are the same thing except they can be only zero or one. And then there
are quantifiers, two of them: This existential quantifier says “there exists a x1”,
and this universal quantifier says “for all x2”.

And these two quantifiers they are what mathematicians used quite a bit for
stating their theorems. This is how they got into logic, because logic is just a
formalization of mathematical reasoning. The reasoning that goes in here is:
There exists a value for x1, such that any way you choose the value for x2, there
still exists a value x3 such that, and so on. And the boolean formula B is a kind
of a condition. It is a requirement. It says: This is how those values have to be.

And if this is too abstract, then a more concrete and more real-world version
of the same thing is generalized games. What are games? Think of anything like
checkers or chess or go. In those games you use a board to play on, but any
game like chess which is played on 8 by 8 squares or go which is played usually
on 19 by 19, they are really finite.

We would like to answer questions like "How difficult is it to play chess by
computer?" But in order to apply the concepts and techniques we have learned
so that we can study the complexity of the games, you have to generalize games
in the sense that you don’t have an 8 by 8 fixed, finite board, but you have an
infinite board. You have an n by n board. Everything else is basically the same.

That is how you generalize the games. You have to do it in order to apply this
kind of reasoning to them, because anything that is finite in complexity theory
is just constant time – it’s easy. But as soon as you generalize, then you can
ask the basic question. And what is the basic question in a game? You look at
the game, there is something on the board, and you ask: "Does white have a
winning strategy?"

What does that mean? It means that white would like to do a move in such
a way that no matter what the black guy does – for every move that the black
guy does – there exists a good move for the white such that no matter what the
black guy does subsequently, there is still a good move for the white, and so on.
And then B will say what a good move is: It is that all the rules are obeyed and
the end result is a victory.

So you can think of this whole boolean formula in terms of a game, as encod-
ing what we mean by a winning strategy. A lot of generalized game-like prob-
lems will be PSPACE-complete.

We will see this a little bit later also, but this existential quantification and

190 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

universal quantification, they should remind us of two things – namely of the
classesNP and Co-NP . NP-properties are typically: "There exists something"
– there exists a certificate, there exists an ID, there exists a Hamiltonian cycle in
the graph, there exists a satisifiable truth assignment to the variables, and so on.
Co-NP properties say: "There exists no" – there is no Hamiltonian cycle, there
is no satisifiable truth assignment. We can say this in a more positive way: For
all truth assignments T, T does not satisfy the formula. Or, for all permutations
of the vertices in the graph, the permutation is not a Hamiltonian cycle. So the
universal quantifier is in a way linked to Co-NP .

This alternating existential and universal quantifiers actually gives rise to an
interesting part of complexity theory – there are all sorts of ideas related to that –
but ultimately if you take the alternation n steps, then you get something which
is PSPACE-complete (if the game is not too easy, for example if white can win by
force in x moves from the opening position then there are no reason to search
n moves ahead).

Our next class is going to be Exponential time (EXP). I am giving you really
just a few basic classes. This map is very, very big. There are, I believe, of the
order of 100 classes that people have studied, but not all classes are equally
interesting or equally important.

Exponential time will be the hardest solvable class we will be looking at. It is
defined as the union over k of classes TIME (2n

k
). Again the definition is anal-

ogous to Polynomial time and Polynomial space, except that here we have the
exponential function instead of the polynomial.

To place this EXP class on the map and to place other classes in relation
to it, we have a little lemma which says that the SPACE (f(n)) is contained in
TIME (kf (n)) for some constant k. And the proof is again very easy: It is just an
observation that the maximum number of distinct configurations that one can
create by using f(n) squares on the tape, is |Q| (the number of states) times f(n)
(the number of squares used) times |Γ| (the size of the tape character set) to the
power f(n).

Recall that a configuration of a Turing machine is defined as a state, the po-
sition of the read/write head and the contents of the tape. There are |Q|possible
states, f(n) possible positions of the read/write head on the tape if we are using
f(n) squares, and each square can have one of the |Γ| characters. f(n) squares
together can contain |Γ|f(n) possible strings.

What is the meaning of this statement that the number of distinct configura-
tions is limited by this expression? Well, in this much time a machine that uses
no more than f(n) squares, must repeat a configuration. Now, the fact that a
Turing machine repeats a configuration means that it is in exactly the same sit-
uation in which it was before – the same content of the tape, the same state and
the same position of the read/write head. This further means that the machine
is in an infinite loop, if it is a deterministic machine. A deterministic machine
that repeats its configuration will repeat that configuration after the same num-
ber of steps again – because it is deterministic. So it will never halt.

If the machine is non-deterministic, then you can throw away all computa-
tion that has happened between two repetitions of the configuration, and come
up with a shorter computation that does the same. So SPACE (f(n)) ∈ TIME
(Kf (n)) means that if a problem can be solved by a deterministic TM (or a NTM
because SPACE=NSPACE) using a maximum of O (f(n)) space, then there ex-
ist a TM (but not necessarily the same machine in the case of a NTM, because
we might have to throw away part of the computation to get one that is short

enough) that solves the same problem using no more thanO
(

2n
k
)

step of time.

The consequence of this is that PSPACE is contained in EXP.

3.8. LECTURE 8 191

(This is a blank page)

192 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 8

Autumn 1999 5 of 14

Map of classes

NP
Co

...
..

P

NP

PSPACE

Undecidable

Not acceptable

= complete or "hardest"

EXP TIME

problems in a class

a cut!

Are inclusions proper (()?
• P (NP?

• P (PSPACE?

With these few new classes and the old ones we can construct a map of
classes, and we can spend some time looking at this map, just understanding
how the things fit together. And then after that we can use the map as we use
maps: to place different objects there, to study different countries. When you
meet a new guy, a new problem, then the first thing you ask is: "Where are you
coming from, you have this strange accent."

So the first thing you want to do when you meet a problem in your life is to
place it on this map of classes. And as soon as you do that, you know some-
thing about the problem. You know its character and you know how to deal
with him. You know what sort of algorithmic approaches are appropriate for
one kind of problems, and what are appropriate for other kinds of problems.
You know what sort of difficulties to expect from the problem. In other words,
you know its physiognomy.

Here on this foil is our basic map. We have class P, and actually P has also
complete problems. I must say that all these issues are studied properly in class
IN394 which is taught usually in spring, and there we prove actually all kinds
of things and do this work more rigorously. Here I am trying just to give you
enough insight and then enough theoretical kind of background to feel com-
fortable on that side, but mainly we deal with the basic insights. And then if you
become interested in actually doing this work properly, then you take the IN394
class.

So problems that are complete for P is one of the things that we won’t be
studying in this class, but they exist. And then we have NP and Co-NP with

3.8. LECTURE 8 193

their complete problems. And P is contained in both NP and Co-NP . We
also have an interesting little area in the intersection betweenNP and Co-NP
which is not known to be in P, and which has a kind of a story of its own. We
will look at that area later.

And then we have PSPACE as a superset, with PSPACE-complete problems.
We have Exponential time with EXP-complete problems, and then all sorts of
classes of solvable problems unbelievably difficult on top of this.

The big red borderline between P and the rest is the properly solved prob-
lems versus the not so well solved problems. We also have another practically
important borderline which separates the problems that can in principle be
solved by algorithms from those that cannot. So this big red upper borderline
partitions the map of all problems into two halves – the solvable ones and the
unsolvable ones. Among the unsolvable problems we have problems that are
acceptable but not decidable, and then problems that are not even acceptable,
and so on. So there is also a kind of hierarchy in the upper half of the map.

So this is our map and then there are some important facts about the map.
We know that P is included in NP and that P is included in Co-NP . We also
know thatNP and Co-NP are included in PSPACE and that PSPACE is included
in EXP by virtue of the two small lemmas we have seen. The interesting question
is: Are those inclusions proper?

Since nobody has proven yet that we cannot solve anNP-complete problem
in polynomial time – even though we suspect that it is so – then P may in fact
be equal to NP , not just included in NP . "P=NP?" is one of the big, big open
questions in computer science.

In fact P may even be equal to PSPACE. We don’t know for sure. We don’t
know in the sense that we cannot prove that there are problems that are in
PSPACE but not inP. That is what the question whether the inclusion is proper,
means: Is there really a problem in the bigger class which provably isn’t a mem-
ber of the smaller class?

194 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 8

Autumn 1999 6 of 14

Do complexity classes really exist?
Theorem 1 (Time Hierachy Theorem) If
f(n) ≥ n is a proper complexity function then

TIME
(
f(n)

)
(TIME

(
(f(2n+ 1))3

)
.

Basic message: Given more time we can
(provably) solve more problems.

Corollarly 3 P (EXP

In other words: L ∈ EXP-complete⇒ L 6∈ P .

Because we haven’t been able to answer those questions, then it is natural to
ask whether these complexity classes really exist at all. In other words: Could it
be that all of these things that we are calling the classes, that they are really just
one class? Could it be that these classes just reflect our lack of knowledge?

It turns out that we are able to prove that the complexity classes really exist.
This fact is expressed in theory as the Time and Space Hierarchy Theorems. I am
here just quoting the Time Hierarchy Theorem. The proof is easy – it is actually
an easy diagonalization – but it is not so interesting, and we do it in the IN394
class. Here I am only showing you the theorem and interpreting what it means,
so that you know how this theory is really constructed – that is important.

The theorem says something technical which is not very interesting but I
will say what it is: If f(n) happens to be bigger than n and a proper complexity
function . . . Proper complexity function means that you can count in time f(n).
You can imagine f(n) as being a kind of a number that is defined in such a way
that no machine can compute that number. This little technical half-sentence
in the beginning of the theorem just excludes those odd cases.

So f(n) is basically just a reasonable kind of function – as we think of func-
tions. Its values are bigger than n, and it is not something that cannot even be
computed. The theorem says that as long as f(n) is a reasonable thing, then
TIME (f(n)) is contained properly in TIME

(
(f(2n + 1))3

)
.

What this is saying is that given more time, you can solve more problems.
That is the basic message. And then given even more time, you can solve even
more problems. So the message of the Time Hierarchy Theorem is that there is

3.8. LECTURE 8 195

a whole hierarchy of complexity classes, in fact an infinite one. They are real.
The corollary, also proven in the IN394 class and also rather easy, is that P

is properly contained in Exponential time. This is what we do know for sure. It
means that if we have an EXP-complete problem, then we know for sure that
the problem is not solvable in polynomial time. So we have actually problems
that are provably intractable. They are the EXP-complete problems.

Unfortunately, or maybe fortunately, those problems are not so practically
interesting as the NP-complete problems. So this is why we prefer to study
NP-completeness, although NP-completeness is from a theoretical point of
view not such an elegant thing as EXP-completeness, where we know for sure
that those problems that are EXP-complete, are not polynomial-time solvable.

196 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 8

Autumn 1999 7 of 14

Are complexity classes practically
relevant?
Assumptions, abstractions, modeling
simplifications are possible weak points of
thoery as a model:

• Problem; formal language

— search/optimization; decision

• Solution, algorithm; Turing machine

Alternative approaches to computation:

— Analog computation

— Biological computers

— Neural networks

— Quantum computers

— . . .

• Real time; # of TM steps (discrete, finite)

• Real intractability;worst case /
best solution

Alternative approaches to algorithm
design & analysis:

— Approximation

— Average-case analysis

— Randomized algorithms

— . . .

Another interesting, related question is: Are these classes relevant in prac-
tice? Is this complexity theory really practically relevant, or is it just something
that theoreticians like to deal with because they like to deal with abstract things,
but these abstract things have nothing to do with practical reality?

That is a serious question. And a more kind of practical view of this question
is: We would like to make a program that plays chess, but a theoretician comes
along and says: "Look, this chess playing, it is PSPACE-complete. Nobody has
come up with an efficient algorithm for this, so you can just forget it."

But then I am saying: "Wait a minute, your whole theory is based on Turing
machines, formal languages and things, but this is not what we really have in
reality. Suppose I come up with a new kind of computer. maybe a new kind of
computer can play chess very fast." And I might continue: "And your complex-
ity is based on completely solving a game, but I am just interested in finding a
reasonable good move. And After all, in 1997 the highly parallelized machine
Deep Blue beat the human chess world champion Garri Kasparov 2.5 − 3.5 in a
match, so chess cannot be that difficult."

We might feel we understand the complexity theory now, but it is equally
important to try to understand the basic assumptions on which this theory is
based. Those assumptions were the result of our basic operations ’abstraction’
and ’formalization’. So we want to understand how we actually formalized all
the practical things, and then be critical towards those formalizations so that
we can find new venues of approach, new possibilities.

We have formalized problems as formal languages. This means that we are

3.8. LECTURE 8 197

assuming that the practical complexity of a real-world search or optimization
problem is measured in a reasonable way by a decision version of the problem
– because deciding (solving) a formal language means answering ’Yes’ or ’No’. Is
this a reasonable assumption?

We have formalized solutions or algorithms as Turing machines. A TM is a
kind of an odd thing. It is very simple and basic, and it’s discrete – it’s finite. So
we can think of other possibilities like analog computers, computers that are
not digital at all, computers that are based on the law of quantum physics in-
stead of classical physics. People think about biological computers, neural net-
works, quantum computers, etc. maybe they can solveNP-complete problems
fast?

So the fact that a problem is proven difficult by our theory, does not mean
that it is in an absolute sense difficult. But it does mean by virtue of the basic
thesis that we have seen – the computational complexity thesis – that with the
existing digital computers, difficulty with a Turing machine means difficulty.
Intractability with this theory means practical intractability.

This is related to the next abstraction that we did, namely modeling real time
as the number of TM steps. That is also a very big kind of assumption, and as
we will see later, it turns out that it doesn’t apply to quantum computers based
on quantum physics. But these assumptions by and large work because there is
such a huge difference between exponential time and polynomial time.

It turns out that exponential-time algorithms are completely different kinds
of algorithms than polynomial-time algorithms. So what this distinction be-
tween polynomial time versus the rest captures, is really whether your problem
is solved by one kind of algorithms or whether you need to use another kind of
algorithms.

The fourth and for us most interesting abstraction is that we are modeling
what we intuitively mean by a real-world problem being difficult or intractable,
by using a very limited kind of approach: We are studying the worst possible
instances and we require the best possible solution.

We will come back to this issue later and talk about it in depth, but let me
just say now that there is something very odd about this assumption. One might
argue: "Look, there are all kinds of possible instances. If you haven squares on
the tape, there are basically exponentially (in n) many possible instances. Some
of those possible instances can be really difficult to deal with. maybe most of
them are not. But you focus on those worst guys."

And further: "And then you are looking for the best solution. For example
in the TSP you have lots of possible tours, lots of possible solution. But you
want the absolutely best one. Out of the exponentially many, you want the very
best. Why do you want the very best? Maybe a reasonable good solution is good
enough."

So this last assumption will give us a venue of dealing with NP-complete
or difficult problems by using alternative approaches to algorithm design and
analysis. We can design approximation algorithms which don’t necessarily pro-
duce the very best solution. We can do average-case analysis and use algorithms
which are good on average and may work very well in practice, but which in the
worst case are not so good. We can use randomized algorithms – algorithms
that can toss coins – and possibly all kinds of other things.

198 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 8

Autumn 1999 8 of 14

Placing problems on the map
• Problem↔ complexity

• Complexity = performance of best
possible algorithm

• Lower bound≤ complexity≤ upper bound

— Upper bound→ algorithm

— Lower bound→ reduction, etc.

The next basic issue now that we have the map is: How do we place prob-
lems on the map? Given a new problem, how do we find the appropriate place
for the problem on the map? We have seen the basic strategies for provingNP-
completeness and things like that. More generally, what the placement on the
map should reflect, is the complexity of the problem – how difficult the problem
is to solve.

Generally an estimate of the complexity will consist of two things: One thing
is the upper bound on the complexity and another thing is the lower bound –
upper bound and lower bound being the two bounds between which we try to
squeeze the actual complexity.

An upper bound on the actual complexity is usually an algorithm. So we
show an algorithm and we say: "Look, we can solve this problem in timeO

(
n3
)

.
Here is an algorithm. Here is a proof." A lower bound means that even the best
possible algorithm cannot solve the problem faster. So to prove a lower bound
means to show that even the best possible algorithm can not perform better
than this.

Coming up with upper bounds is the issue of algorithm design, while prov-
ing lower bounds is more what we mean by complexity studies. Lower bounds
is really the more interesting side, from a theoretical viewpoint. Showing an ef-
ficient algorithm is sometimes difficult, but in principle it is a straightforward
procedure. But how do you show that even the best possible algorithm can not
do any better than your given bound? To prove that we use reductions and all
kinds of other methods – we will see some of them in the IN394 class.

3.8. LECTURE 8 199

So this is how we place the problems on the map – by basically showing
lower bounds and upper bounds. In some way you have seen that already in
NP-completeness proofs because an upper bound is the little NTM that proves
that a problem is inNP by guessing a solution (ticket) and verifying it in polyno-
mial time. A lower bound is theNP-hardness proof: You are reducing a difficult
problem to your problem and thereby showing that your problem is at least as
difficult as the other difficult problem. So in principle these two steps are there.

200 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 8

Autumn 1999 9 of 14

Examples (insights)
Finding a path in a graph

s t

G

• any path: “greedy” algorithm
(linear time)

s

For all v′

neighbors of v:
Mark v′

• shortest path: iterative improvement,
Dijkstra (polynomial time)

b

4

1
6

a

s

Let v be node with smallest D(v).
For all v′ neighbors of v:
D(v′) = min[D(v) + d(v, v′), D(v′)]

• longest path: NP-complete (exhaustive
search, backtracking, exponential time)

HAMILTONICITY ∝ Longest path

Then of course you want to have insight. You want to know when you see a
problem, how difficult the problem is. This insight you gain basically by study-
ing lots of problems. That is a part of the work that we have to do here, and in
particular this is what you will do in your group exercises quite a bit – seeing
different problems, studying them and understanding them. We are just going
to see a few problems now, just to gain some kind of basic ideas of how difficult
different variants of a problem typically are.

Here we see a basic problem of finding a path in the graph, and some vari-
ants of that basic problem. So given a graph we pick to vertices s and t, and
then we ask different questions about the possible ways of getting from s to t.
Possibly the edges in this graph may have numbers associated with them, called
distances. So the graph becomes a kind of a map of a country or a city.

First you ask: Is there a way to get from place s to place t at all – from your
source to your destination (target)? And the question whether there is any path
in the graph from s to t, is also related to the question of the connectedness,
or connectivity, of the graph: Is the graph connected or not? Is there a way, for
every pair of vertices, to come from the first element to the second element in
the pair, using the edges of the graph?

Such questions, they are easy. They are answered by algorithms which are
in essence "greedy". In this class greedy means the kind of algorithm that does
not ever correct something that it has already done – there is no backtracking.
A greedy algorithm chooses always the local optimum as its next choice.

A greedy person just assembles things and never gives them away. A greedy
algorithm will just do its work and never undo or improve what it has done.
That is the intuition. So, for example, how do you solve this ’any path’ problem?
Well, you start from your node s, and then you mark all its neighbors. You mark

3.8. LECTURE 8 201

the first node, the second node and the third node. And then when you see a
marked guy you know that he is definitely reachable from your s.

Then you visit all the marked guys and mark their neighbors. If eventually
you mark all the nodes, then you say: "This graph is connected, I can go any-
where I like." Or if you are interested in reaching node t: If you eventually mark
node t, then you know that there is a path from s to t, otherwise there is not.

The point is that you never have to unmark a marked node. A marked node
simply means that it is reachable, and if something is reachable, then it is reach-
able. Nothing to correct. And this kind of approach usually leads to a linear-
time algorithm, O (n) – to something that is very efficient.

Now we look at another variant of the problem: We are interested not just in
coming from s to t, but actually in the shortest possible way from s to t. How
difficult is this? It turns out that we cannot use this kind of greedy approach
here, because sometimes the partial solutions need to be improved on. Look
at this little example here on the foil: Coming from s to a costs 4 units, say it’s
4 kilometers. From s to b is 6 kilometers. So in the first iteration you will mark
a as being on distance 4 from s and b as being on distance 6 from s. But there
is actually a shorter way to come to b, which is through a. Because from a to b
is only 1 kilometer, which gives a total of 5 kilometers. We need to be able to
correct or improve the tentative solution.

If D(v) is the overall distance from node s to node v, and small d’s are the
individual little road distances, then iterations of the following procedure can
be shown to produce the correct solution: "Let v be the unmarked node with
smallest D(v). Mark v, and for all neighbors v′ of v do the following: Set D(v′)
equal to the minimum of the old D(v′) andD(v)+d(v, v′)." So the algorithm first
selects the unmarked node v with the smallest distance from s. Then it marks v,
and for all neighbors v′ checks if we can get a new minimum distance from s to
v′ by going through v. If that is the case, then we update D(v′) because we have
found a shorter way from s to v′. This procedure continues until all nodes have
been marked (visited).

This iterative-improvement algorithm is known as Dijkstra’s algorithm and
you have seen it already in IN115. Dijkstra’s shortest path algorithm is not linear,
but it is polynomial – typically n2 log n for dense graphs (graphs with "many"
edges). Dikstra’s algorithm is efficient because although it uses iterations, it
never does any backtracking in the graph – once a node is marked, it is never
unmarked again. So intuitively the algorithm is polynomial because every node
and every edge is processed only once, and the number of edges and nodes is of
course polynomial in the length of the input – the nodes and the edges are the
input.

Then you might wonder about the longest simple path from s to t (simple
means visiting no vertex more than once) How difficult is it to decide whether
there is a simple path of length K or more? It turns out to be NP-complete
because HAMILTONICITY is ultimately that. Given an unweighted graph and two
nodes t and swith an edge between them, then you can ask: "What is the longest
simple path from s to t?" If the longest path happens to be all other vertices,
n − 1, then you know immediately that the graph is Hamiltonian. Otherwise
you can do the same test for all other edges, and then answer HAMILTONICITY.
If all answers are "No, there are no path of length n-1 or more", then you know
that the graph is not Hamiltonian. So HAMILTONICITY is reducible to longest
path by this simple reduction.

So these three problems seem very similar, but they are really very different.
’Any path’ is solvable by this simple greedy algorithm. ’Shortest path’ requires a
little bit more sophisticated algorithm, but it is still polynomial time. ’Longest
path’ isNP-complete and most likely needs exponential time.

202 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 8

Autumn 1999 10 of 14

Matching
1DM 2DM 3DM

a
b

1
2

a
b

1
2

greedy iterative exhaustive
(lin. time) improvement search
O (n) O

(
n3
)

alg. O
(
22n
)

alg.

Satisfiability
1SAT 2SAT 3SAT

(x1) ∧ · · · (x1 ∨ x2) ∧ · · · (x1 ∨ ¬x2 ∨ ¬x3)∧

Generalization: Matroid intersection
1 matroid 2 matroids 3 matroids

Now we are looking at a few more examples just to gain some basic insights
about the nature of these problems – how different seemingly similar prob-
lems can be in complexity. Our next example is 1DM, 2DM and 3DM. What
is 1-DIMENSIONAL MATCHING? Well, it is like marriage in some middle-eastern
countries where one man is compatible, possibly, with several women – he can
marry all of them!

So in that kind of matching a greedy approach works well. Look at the ex-
ample on the foil. ’a’ and ’b’ are girls while ’1’ and ’2’ are boys. Suppose you
marry ’a’ with 1. Then you don’t have to correct it, because ’b’ independently
can also be married with 1. Every girl on the left side has to be married because
an unmarried girl is a shame for the whole family. But the men they can marry
multiple girls. So if you have a daughter, then you just marry her with anyone of
the boys she likes – it doesn’t matter to whom. Because your next daughter can
marry the same guy, that is alright. So you can use the greedy approach. You
never have to correct or improve what you have done.

But in 2DM you can make mistakes. Say you marry ’a’ and 1. There is a kind
of good matching that marries everybody, but if you marry ’a’ and 1, then you
spoil everything. So what do you do? A good 2DM-algorithm will be searching
for ways to improve on the existing solution. Without going into much detail:
Such a way would consist in a path that alternates between the edges – the com-
binations that are taken in the current marriage, and those that are not. So for
example if ’a’ and 1 are married, then an improvement would be found if we
find a path that has a non-married couple and then a married couple and then

3.8. LECTURE 8 203

a non-married couple, and then possibly a married couple and a non-married
couple, and so on.

So in that path we would have, say, K non-married couples andK − 1 mar-
ried couples. And what we would do then is to swap: We would swap the mar-
ried guys and the non-married guys. So that this red edge would no longer be
red, but this edge and this edge that previously were not red, are become red.
So we improve the solution. So that simple idea actually gives rise to various
matching algorithms. And those algorithms they are not linear time, but they
are polynomial – something like time of orderO

(
n3
)

or something like that.
3DM as we have seen, seems to require exhaustive search. The complexity

of the algorithm would typically be of the order ofO (2n) orO (3n) because there
are of the order n! different matchings to be tried.

Interestingly the situation with SATis similar. If you have 1SAT, which you
typically don’t have because it is a very trivial problem, then just about any naive
approach works. 2SAT requires quite a bit of thought. It turns out to be solvable
in polynomial time, but not with a greedy algorithm. And again you can think
about how you would solve 2SAT with a polynomial-time algorithm. So there
are polynomial-time algorithms, but they are based on this kind of approach:
You do something and then you correct and improve until you find the real so-
lution. 3SAT as we have seen, isNP-complete.

Is there some kind of general rule? There seems to be a big difference be-
tween 1-, 2- and 3-sitations. And it turns out that there is a pattern. This insight
can be generalized as the so-called matroid intersection problem. Matroid in-
tuitively here being a condition, while intersection being kind of satisfaction.
In 1DM you are satisfying one condition because only girls needs to be mar-
ried – we don’t care about the boys. So in 1DM you have one matroid, and the
problem is easy.

If two conditions need to be satisfied simultaneously then you have a two
matroids intersection problem. To solve it in polynomial time you need some
kind of matching approach.

If you have three matroids, the problem is already horrible. Satisfying three
people at the same time, or three kinds of conditions, leads to intractability,
intuitively speaking.

There will be more about matroids next time (lecture 9) when we talk about
subset systems.

204 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 8

Autumn 1999 11 of 14

Placing real-world problems
on the map
• Decision problems . . . is there a . . .

• Search problems . . . find a . . .

• Optimization problems . . . find the
largest/smallest . . .

Def. 4 Problem L isNP-easy if there exists a
problem L′ ∈ NP such that L ∝ L′.

Note: We generalize the notion of polynomial
reduction (∝) in order to deal with
search/optimization problems:

•We allow a polynomial number of “calls” to
ML′ instead of just 1.

•We allow the output to be a general string
instead of just YES or NO.

(G&J calls this Turing reduction,∝T)

Note: If L ∈ NP-easy and P=NP
then L ∈ P , i.e. L is not any more
difficult/complex thanNP-complete
problems.

So studying lots of problems – understanding what sort of problems live in
different areas on map – is like complexity theory geography. It is like adventure
of travel. You travel to different places and really understand what the situation
there is, what sort of people live there, and so on. That turns out very useful
for understanding not only the complexity theory but also life, in the world of
computation, in general.

We move on to another related issue, which is how to place real-world prob-
lems on the map. So far we have only been talking about the decision problems,
formalized by formal languages. The real-worldliness of the decision problems
can easily be challenged. Are we really interested in just answering ’Yes’ or ’No’
in real life? Usually not. Usually you are interested in finding some kind of so-
lution, computing a function – all sorts of things.

So the question is now: How well can this theory that is based on Yes’s and
No’s, help us to deal with real-world problems where we have to produce all
sorts of answers?

We have seen decision problems where the question is: Is there a Hamilto-
nian path, and things like that. Now we move on to search problems where we
have to find a Hamiltonian path. And then eventually we will have optimization
problems where we not only want to find a TSP-tour of lengthK or less, but ac-
tually find the shortest TSP-tour in the graph. Sometimes we want to find the
smallest something, other times we are asking for the largest solution. Those
are optimization problems where we want to find the solution which optimizes
a certain criteria.

3.8. LECTURE 8 205

First we look at search problems. Are search problems more difficult than
the corresponding decision problems? That is now the question. If you have a
search problem, then the search problem is easily modeled by a decision prob-
lem. The question is: Does this modeling preserve complexity, or do we also by
simplifying the problem make the problem easier?

The basic message is that in most cases, by turning a search problem into a
decision problem, the problem is not made any easier. And this I am going to
show you now by formalizing the whole issue. We formalize the issue by defin-
ing the expression NP-easy. This of course relates toNP-completeness, but it
uses a more generalized version of the polynomial reduction.

We generalize the notion of polynomial reduction in order to deal with search
and optimization problem, where the solution is not only ’Yes’ or ’No’. We allow
a reduction R: L ∝L′ to do polynomially many "runs" on the M ′L machine, not
only one. M ′L is the Turing machine which decides L′. We also allow the output
of the reduction to be a general string instead of just ’Yes’ or ’No’.

The justification for allowing a more generalized notion of a polynomial re-
duction is that a polynomial number of calls to a polynomial subroutine is still
a polynomial algorithm. So ifL′ can be solved in polynomial time, so canL also.

The G&J textbook calls this generalized reduction for a Turing reduction and
write∝T , but we will most of the time stick to our usual notation. Which reduc-
tion we use will hopefully be clear from the context.

We say that a problem is NP-easy if there exists another problem in NP
such that our problem is polynomial-time (Turing) reducible to that problem.
So if NP turns out to be solvable in polynomial time, then our problem is also
solvable in polynomial time. ’NP-easy’ intuitively means ’not any more dif-
ficult than NP-complete problems’, because an NP-easy problem can be re-
duced to a problem in NP which in turn can be reduced to any NP-complete
problem.

206 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 8

Autumn 1999 12 of 14

Example (of basic technique)
Theorem 2 Search version of HAMILTONICITY

isNP-easy.

Proof: (Turing) reduction to decision version
of HAMILTONICITY:

Ham. cycle

N

Y
G G′ Hd

alg.RT

in G or
"Doesnt’ exist"

Algorithm for search-HAM

1. G′ ← G

d

e

a

b

c

2. Run Hd on G′. If HD(G′) = ’NO’ then output
“Ham. path doesn’t exist” else remove an
edge fromG′:

I am now going to prove to you that the search version of HAMILTONICITY

is NP-easy, by (Turing) reducing it to the decision version of HAMILTONICITY.
But I will in fact accomplish more than that. What I will be showing you is a
kind of a procedure, a pattern, which can be used for showing that the search
version of just about any problem inNP , is NP-easy. Things like search-SAT,
search-3DM and so on.

I will show you how to solve search-HAMILTONICITY by using the reduction
on the foil. What is the reduction? Suppose that we have an algorithm for the
decision version of HAMILTONICITY. The decision algorithm is going to say ’Yes’
or ’No’, depending on whether its input G′ is Hamiltonian. If it says ’Yes’, then
this line back to RT is activated, if it says ’No’, then this other line back to RT is
activated. After at most a polynomial number of calls on the decision algorithm,
RT will output a Hamiltonian cycle if there exists one, or answer "No, there is
no Hamiltonian cycle in G."

So in that way RT will reduce the search version of HAMILTONICITY to the
decision version of HAMILTONICITY. I will use the little graph G on the foil to
illustrate how exactly RT works.

First RT will send G as input to HD – the decision algorithm for solving
HAMILTONICITY. If HD says ’No’, then we know that the graph is not Hamil-
tonian and we are finished. If HD says ’Yes’, then we know that definitely there
is a Hamiltonian cycle in the graph. It is a matter of finding it.

3.8. LECTURE 8 207

IN210 − lecture 8

Autumn 1999 13 of 14

3. G′ ← G′ − {a, b}

d

e

a

b

c

4. Run Hd on G′. If HD(G′) = ’YES’ then
remove another edge from G′ (goto step 3),
else mark edge {a, b}, return {a, b} to G′

and remove an unmarked edge:

5. G′ ← G′ + {a, b} − {e, d}

d

e

a

b

c

6. . . . eventually the graph will only have n
marked edges left, namely the
Hamiltonian cycle.

If HD answered ’Yes’ given G as input, then RT will visit the edges of G one
by one and for each edge do the following: It will remove an edge, say (a, b),
from the graph and send the resulting G′ back to the decision algorithm. If HD

answers "Yes, G′ is still Hamiltonian", then we remove another edge an repeats
the procedure. In our example the decision algorithm will say "No, my graph is
no longer Hamiltonian". Then we know that the removed edge (a, b) is a part of
the Hamiltonian cycle. So we place (a, b) back into the graph and label it red,
meaning: "Don’t touch this edge anymore, this edge is a part of the solution."

Then we look at another unmarked edge, say (e, d), removes it from the
graph and send the resulting graph G′′ back to the decision algorithm. HD

says "Yes, this graph is still Hamiltonian". Then we know that we can in fact
remove (e, d) from the graph and forget about it, because it is not part of the
(last) Hamiltonian cycle that we are looking for.

So our graph becomes simplified. And we keep doing this for every edge,
and in the end we end up with only n red-marked edges. Those red edges are a
Hamiltonian cycle, so we output them.

This reduction is polynomial because we do polynomial work in each iter-
ation and we make at most one call to HD for each edge in the graph. If you
have a polynomial-time algorithm for decision-HAM, then the whole thing is
a polynomial-time algorithm for search-HAM. The point is that you have only
O (n) calls to HD, so whatever the complexity of decision-HAM is, your com-
plexity is n times that. We are adding a polynomial factor to the complexity, not
more. And polynomial factors we don’t worry about in this case.

208 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 8

Autumn 1999 14 of 14

Def. 5 Problem L isNP-equivalent if L is
bothNP-hard andNP-easy.

Examples: Search versions of HAM, CLIQUE,
SAT, . . . areNP-equivalent.

Optimization problems – are they
harder?
We say that language (problem) L is in class
DP if it can be defined by L = L1 ∩ L2 where
L1 is anNP language (property) and L2 is a
Co-NP language (property).

Example: Opt-TSP isDP-complete. When
we say

“t is the shortest tour inG and t has length=K”

we say two things:

• There is a tour of lengthK in G.
(NP-property)

• There is no tour of length K − 1 in G.
(Co-NP-property)

Question: Is Opt-TSP NP-equivalent?

We say that a problem isNP-equivalent if it is bothNP-hard andNP-easy.
So we know now that the search version of HAM and SATand 3DM and all of
these problems that we have seen, that they areNP-equivalent. We know how
to prove NP-hardness. Now we know to prove NP-easiness also. Those two
amounts to a proof ofNP-equivalence.

There is a subtle point here – we are now in fact stretching the definition
ofNP-hardness a little bit. Formally we have defined the reduction in anNP-
hardness proof as a mapping between two formal languages such that Yes’-inst-
ances go to ’Yes’-instances and ’No’-instances go to ’No’-instances. But search
problems are not a formal language – they are not solved by algorithms saying
’Yes’ or ’No’. Instead they say ’Here is a solution’ or ’No, there is no solution’. We
want to show NP-hardness for, say, search-HAM by reducing decision-HAM
to it. So we must allow the reduction to map ’Yes’-instances of decision-HAM
to ’Here is a path’-instances of search-HAM, and ’No’-instances to ’No, there is
no path’-instances. This is a technicality but it illustrates the potential conflict
between simplicity and formality in modeling.

We also have optimization problems where we are asking not only for some
Hamiltonian path or some satisfying truth assignment, but we are asking in a
way for the best possible of all solutions. We want to find a good way of mod-
eling this new situation where we are asking for the best solution. And I want
to show you that this asking for the best, actually has some flavors of not only
NP-ness, but also of Co-NP-ness. That is important to understand because
optimization is an important side of computation – very important.

3.8. LECTURE 8 209

Let us look at the Traveling Sales Person’s problem that should be familiar by
now. Opt-TSP asks for the shortest tour in a weighted graph – a tour meaning
visiting all the nodes (cities) exactly once. Now, suppose I am an algorithm and
I am giving you this kind of shortest tour, and I am saying: "Look, this tour here,
this is the shortest tour." Now you measure this tour and you see that it is K
kilometers long.

By saying that this tour is the shortest tour, I am really saying two things.
I am saying: "Look, there is a tour of length K in this graph". And this ’there
is’ should remind you of the class NP . At the same time I am saying: "There
is no tour which is of length K − 1 in this graph" – because K is just the best
one. And this ’there is no’ should remind you of the class Co-NP . So a solution
to the optimization variant of TSP involves solving essentially a NP-complete
problem and a Co-NP-complete problem.

Without going into details, I will just mention here that optimization prob-
lems are properly modeled by a class which is notNP or Co-NP, but something
that involves both. And the class is calledDP . The class DPinvolves languages
or properties that can be defined in terms of anNP language or property, and
a Co-NP language or property. Actually it is proven that the optimization ver-
sion of TSP is complete for the class DP. So it is an example of a DP-complete
problem.

I am going to mention a lot of things in this class, and then they will be prop-
erly dealt with in the class IN394. There is some advantage in keeping this class
kind of informative – kind of a place for people who are interested more in prac-
tical thing and for some people who are interested in theory. And then IN394 is
the kind of class that is for people who are really interested in theory. So there
things are properly proven. Here they are often just mentioned.

The next question for you is whether Opt-TSP isNP-equivalent or not. That
question we will answer in the next lecture.

210 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

3.9 Lecture 9

IN210 − lecture 9

Autumn 1999 1 of 13

NP
Co

...
..

P

NP

PSPACE

Undecidable

Not acceptable

EXP TIME

= complete
problems

non-solvable

intractable

well-solved
Task I
Create map of problems

• abstraction (;)

• techniques (diagonalisaztion/reduction)

• insights

• complete/characteristic problems

Task II
Organize/study problems

• place abstract/real-world problems on the
map

• ’walk’ the map (get to know the places &
’countries’)

G&J:
5.1

What is it that we are really doing here? That is always our first question.
Now we are going to answer this question by claiming all the way to the top of
the pyramid and just looking at the whole class.

We want this class to be a kind of a bridge between the complexity theory
and the real world of computation, machines, algorithms, programs and things.
Presently this bridge is kind of non-existent, it’s broken: The theoreticians live
on one side of the river, and the so-called applied people or practical people,
programmers and so on, they live on another side. And typically they don’t talk
much to each other, these people. There are many reasons for that. One of the
reasons is a kind of difference in mentality. Theoreticians are people who are
interested in nice proofs, abstract things, graphs, complexity classes, and so on
– they speak one language. Practical people they speak another language. They
talk about programs, about deadlines, about various things. And they think
that theoreticians live up in the air – that theoreticians have no connection with
earth and that what they do is largely irrelevant. If you swim to the other side of
the river and visit the other guys, the theoreticians will tell you that those pro-
grammers they know how to program, but they don’t really know how to think.
Because they sort of just make the program if they can. If they cannot, then they
wave their hands and say: "I don’t know why this doesn’t work."

So the point is to make kind of a bridge to join these two extremes and bring
this organized theoretical thinking into reality. And vice versa: Bring the real-

3.9. LECTURE 9 211

world insights into theory, and see that theory is really just a model of the real
world. And this model of the real world can be and should be used to organize
all the issues that exist in the real world, so that we end up being an academic
discipline, not just a kind of an ad-hoc adventure.

Now we will finally see the overview of the whole IN210 class. The first task
of our class was to create this map of classes shown on the foil. And that meant
first of all defining and using some abstraction techniques, which allowed us to
define abstract objects such as formal languages and Turing machines. Those
objects were abstractions or models of real-world objects such as problems and
solutions/algorithms.

Then we have learned some techniques which allowed us to organize those
abstract formal languages into complexity classes. And those techniques were
most notably diagonalization and reduction. We used diagonalization for prov-
ing the first difficult problem – difficult being non-solvable or intractable – and
then we used reductions for showing that some other problem is as difficult as
the first guy.

Once we had those techniques we were able to actually organize some ab-
stract problems into classes, and then look at those problems and gain insights
about what sort of problems live in what sort of classes. We got to know the
classes from the inside.

The most characteristic problems for a class were the complete problems,
which allowed us to understand the spirit of the class. They told us what sort of
really hard problems are living in a certain class.

We have seen the class P that models the well-solved problems. And then
we have seen the classes NP and Co-NP with NP-complete as the interest-
ing hard class. We have also seen Co-NP complete problems, PSPACE with its
complete problems and Exponential time with its complete problems. We have
learned about the Time Hierarchy Theorem which says that there are in fact
infinitely many complexity classes.

The big red line in the middle of the map cuts the map in two separate parts –
the solvable problems and the unsolvable problems – and that is what we stud-
ied first. We have seen that some problems are not even acceptable, while oth-
ers – like the Halting problem – are acceptable but not decidable. Some prob-
lems are more unsolvable than others, so to say.

That is roughly speaking our map. What remains to be done is another three
things: Task number two is to see how all sorts of problems can be organized
into these maps. And when I say ’all sorts of problems’ I mean both the real-
world problems and the mathematical problems which are really abstractions
of real-world problems. So that when you meet a problem in real life, you know
where it belongs. You can place the problem on the map and apply all these
machinery that we have developed, to your problem.

So the first thing is placing the abstract or real-world problems on the map.
How do we do that? And then another thing is to walk around the map and get
to know the places and countries a little bit. It is like complexity theory tourism.
We wander around and little by little we get to know the places. We become
acquainted with this world of computation and problems.

We will not really be doing these tasks in sequence. We are doing a little bit
of this, and a little bit of that all the time – which is more natural. So we will be
walking around the map, visiting different places, later on also.

212 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 9

Autumn 1999 2 of 13

Task III
Organize/study solutions

• ’classical’ (worst-case/best solution)
approaches

• ’alternative’ approaches to algorithm
design/analysis

— approximation

— average-case

— randomized/probabilistic

• ’alternative’ machines

— parallell computers

— quantum computers

— ???

Task IV
Organize/study other issues

• logic↔ computation

• expressive power of

— programming languages

— query languages

— logic

• cryptography

Today I will talk a little more about how to organize problems by placing
them on the map. And then we will move on to the third task which is to or-
ganize and study solutions or algorithms. We will first study the classical ap-
proaches to algorithm design – ’classical’ meaning worst-case & best solution.

The idea here roughly is that for each of these areas on the map there will be
some approaches to designing algorithms that are appropriate. So that when
we place a problem on the map, we will know not only about the difficulty of
the problem, but also what sort of approaches would be appropriate for solving
it.

What you have seen in all your classes so far, are these classical kind of ap-
proaches. Later on we will see some alternative approaches to algorithm design
and analysis, which will allow us to actually solve well all sorts of intractable
problems that are too difficult by the first approach and by the first criteria. So
we will be able to deal with these difficult problems in certain ways. Those ways
will be approximation, average-case complexity and algorithms, probabilistic
(randomized) algorithms and complexity.

Then we will be looking a little bit at alternative machines. Turing machines
represent well the existing "classical" computers by the computational com-
plexity thesis. But what about other possible computers like parallel computers
or biological computers or quantum computers – there are all kinds of ideas.
The natural question is: How do those ideas correspond to what we are doing
in this class?

The fourth and final task, which we unfortunately don’t have time to cover

3.9. LECTURE 9 213

in-dept in this class, will be to organize and study other issues. Now we have
studied problems and solutions. What other issues exist? There is a whole issue
of thinking or reasoning or logic – defining things by their properties. Let’s say:
"Give me all the people who work in this organization, who are older then 60
years and who have a salary less then 200.000 kroner per year", because we want
to raise their salaries. This is a domain where we are defining properties without
necessarily giving instructions on how to pick all the people or all the elements
that have that property.

That is the domain of logic, and then we will relate logic and computation.
This logic is used quite a bit in computer science also, for example in database
query languages or certain kind of programming languages like Prolog. So in
general we will be interested in knowing how difficult those questions are, de-
pending on the language in which they are expressed.

So we will be studying the expressive power of programming languages, the
expressive power of query languages, and the expressive power of logic. Let me
explain right away what this ’expressive power’, means:

If you are designing a general purpose programming language, then you
would like to say that your programming language is in a way good in the sense
that it can define all possible computations.

Imagine you have just designed Java. But there are all kinds of languages in
this world. Now you want to say that your language Java is able to express all the
computations that Pascal or C++ and so on are able to. Can you say that? You
certainly can, because it is enough to simulate the Turing machine – to show
that your language can express all the computations that the Turing machine
can.

That amounts to proving that your programming language is Turing com-
plete. There are however situations where you want to restrict the power of the
language, for example in the database query languages. In the database query
languages you would like to be able to say just: "Give me those elements in the
database that has a certain property." So you give the user the ability to define
properties. You use logic naturally for database queries.

But at the same time you would not like to allow the user to define queries
that are too difficult computationally. Because then the program that is answer-
ing those queries, might take forever. So there is interest in designing query
languages that define all polynomial-time computable queries, and only those.
More generally there is interest in defining what a query language – or a kind
of logic – can specify in terms of complexity and complexity classes. So that’s a
large area, and that large area is what we call the expressive power of program-
ming language and the expressive power of logic. We will speak about this in
the very last lecture.

And then the final subject will be the big and important area of cryptog-
raphy, where we are studying the basic issue of encrypting messages and sig-
natures and things, and sending them around the network. This is a very basic
problem area because today computers are used in all sorts of transactions, and
whether or not computers can properly speaking be used in things like banking
– where they naturally can be used and should be used – depends heavily on
whether we can trust those messages that come to the other side. You know
that anybody can cut a wire and put a piece of hardware in and just transfer the
money from yours account to his, and things like that.

So for this whole big world of networks and computers to be trustworthy we
need cryptography, and this is one place in this world where high complexity
actually helps us! Because the only way to do cryptography is really through
having cheating to be very difficult computationally. And we will see that com-
plexity theory is completely essential there also.

214 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 9

Autumn 1999 3 of 13

Example problem: TSP
TRAVELING SALES PERSON (TSP) is the most
studied optimization problem.

Oslo

Stavanger

Lillehammer

540

420

450

160

830

120

Bergen

Instance: Distance matrix

Oslo Bergen Stav. Lilleh.

Oslo 0 450 540 120
Bergen 450 0 160 450
Stavanger 540 160 0 830
Lillehammer 120 450 830 0

Question:

• (decision version) Given integer K, is there
a tour of length K or less?

• (search version) Given integer K, find a
tour of length K or less.

• (optimization version) Find the shortest
tour.

Now we are back at the second basic task. We are going to see a little bit
about how to organize and study problems, how to place them on the map. And
the pat problem that has been studied the most in theory, which is also a kind
of a transition problem between real-world problems and abstract problems, is
the TRAVELING SALES PERSON (TSP) problem.

Its instance is basically a map of cities and distances. On this foil we have a
map with four cities in Norway. And this map is represented in the computer by
a distance matrix where we have distances for all pairs of cities. So we know that
from Stavanger to Bergen it takes 160 kilometers, and from Oslo to Stavanger
540, and so on.

And then there is this basic question, which is the question of a tour through
the cities which visit each city exactly once. The traveling sales person is selling
something and going through all the cities at least once a week. And the travel-
ing sales person wants to save gasoline. So the question is the question of the
shortest tour.

You see that it is an important question because once the tour is chosen,
then possibly every week this tour is going to be taken, maybe every day. So over
the years the savings or costs are enormous. So it is actually very important to
find this shortest tour.

This problem is like a pattern. Many optimization problems are of this kind
– the problems of designing something in the best way, and so on and so force.
So it is actually essential to find the best solution – the shortest possible one.

There are three different variants of this problem. One is the decision ver-

3.9. LECTURE 9 215

sion, which given an integer K asks: Is there a tour of length K or less? Another
one is the search version: Given integer K, find a tour of length K or less. And
then we have an optimization version, which finds the shortest tour. This opti-
mization version is what we are typically interested in.

So optimization is more reality, while the decision version is more theory.
The decision version is what we model be using the formal languages. So going
down this list of questions, we are adding more and more reality to our picture.
The question is: How well does this decision version represent the reality (the
optimization version)?

216 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 9

Autumn 1999 4 of 13

Is TSPNP-equivalent?

TSP isNP-hard

Proof: HAMILTONICITY ∝TSP

a

b c

d
∝

a b c d

a 2 1 2 1
b 1 2 1 2
c 2 1 2 1
d 1 2 1 2

K = n(= 4)

TSP-DECISION isNP-complete

• TSP ∈ NP : ’guess’ tour

• TSP ∈ NP-hard

TSP-SEARCH isNP-easy

N

Y
alg.RT

TSPd
(T,K)

in T or
a tour

’No’

TSP-SEARCH algorithm

We have introduced some concepts last time that allow us to deal with more
and more realistic problems and questions using our theory. Those concepts
were NP-easy,NP-hard and NP-equivalent – those three terms. We have de-
fined them. So we have seen that a language or problem is NP-equivalent if it
is bothNP-hard andNP-easy.

IntuitivelyNP-hard means (at least) as hard as the hardest problems inNP .
NP-easy means as easy as problems inNP , meaning: If we can solve problems
in NP efficiently, then we can also solve NP-easy problems efficiently. So if I
reduce my problem to a problem inNP efficiently, then I have proven that my
problem isNP-easy.

We have seen a technique last time for showing that a problem isNP-equiva-
lent. This technique can be used for showing that the search version of HAMIL-
TONICITY is NP-equivalent – this is what we did in the class. The same tech-
nique can also be used to show that search versions of CLIQUE, SATISFIABILITY

and many other problems, areNP-equivalent.
The next question now is optimization. Is optimization harder? It does

sound to be harder, and in a certain sense it is harder than decision. The reason
why optimization is actually harder is that it often involves not only NP prop-
erties, but also Co-NP properties. And we have seen that Co-NP properties are
in a sense more difficult to deal with thanNP properties.

The optimization version of TSP is asking for a shortest tour t in a graph
or network. And the statement that t is the shortest tour, is really saying two
things: One, there is a tour of length K where K is the length of the tour t in

3.9. LECTURE 9 217

your instance. And then another statement is: There is no shorter tour – there is
no tour of lengthK− 1. We know that the first statement is an answer to anNP
kind of question, and the second is an answer to a Co-NP kind of a question.
And we have both.

When I say just ’TSP’, then I usually mean the optimization version of TSP.
The question now is: Is the TSP problemNP-equivalent? We will see that "Yes,
TSP is NP-equivalent". The basic insight that will come out of that fact and
from the procedure for proving that TSP isNP-equivalent, will be that although
our theory is based on formal languages or decision problems and the Turing
machines, the map capture what is essential about complexity. So that when
we represent even optimization problems by the corresponding decision prob-
lems, we don’t lose much. We don’t lose the complexity. The difficulty is still
there in the corresponding decision problem.

To prove that TSP-decision is NP-hard, we use the easy reduction from
HAMILTONICITY. On the foil is an instance of HAMILTONICITY and the corre-
sponding TSP-instance. We have edges and vertices in the original instance. In
the TSP instance we have cities which are the vertices, and we have distances
which are 1’s and 2’s. The distance is ’1’ if the corresponding pair in the HAMIL-
TONICITY graph is an edge, and ’2’ otherwise. And then we have K which is n
, the number of vertices – 4 in our case. The question: "Is there a tour of the
cities of length K or less in this instance?" corresponds to the HAMILTONICITY

question: "Can we pick a way of visiting all the nodes in the graph such that we
are always walking along the edges, visiting each node only once?" This corre-
spondence is clear because if and only if we can make a Hamiltonian cycle by
following edges only – corresponding to roads of distance 1 – then are we able
to make a tour that has total distanceK, or n.

To finish theNP-completeness proof of TSP we need to show that TSP is in
NP. That part is easy. A non-deterministic machine can guess a tour of length
K, and then easily verify – by adding all the numbers – that that tour is indeed
a tour of length K.

So TSP-decision problem isNP-complete. To prove that TSP-search isNP-
easy, we construct a TSP-search algorithm by using a TSP-decision algorithm.
It gives us a reduction as shown on the foil. That reduction we have already
seen. It is the same as the HAMILTONICITY reduction from last lecture. Basically
we visit edges one by one, remove the edge and then ask the basic question:
Does the graph still have a tour of length K? If the answer is ’No’, then we know
that the edge must be included in the tour. If the answer is ’Yes’, then it can be
removed.

So this reduction is the proof that TSP-search isNP-easy.

218 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 9

Autumn 1999 5 of 13

TSP-OPT isNP-easy

Proof:

• use binary search and TSP-DECISION

algorithm to find the optimal K:

— K ′ = 1, K ′′ =
∑

i=1,...,n∧j=i,...,n dist(i, j)

—
YES NO

K ′ K ′′
K

— Repeat:
If TSP-dec(T, K

′′+K ′

2) = YES

then K ′′ ← K else K ′ ← K

• use TSP-SEARCH algorithm to find the tour
of length K

⇒ TSP isNP-equivalent

Insight: Although based on formal languages
(decision problems) and TMs, the ’map’
captures/represents what is essential.

Now to optimization. We will show that TSP-optimization problem is also
NP-easy. And the critical part here is finding the K, because if we can find the
length of the optimal tour – the shortest possible length, the shortest K – then
we can use the search procedure to actually find the tour. So if we can find the
K, just the number, then we can use this search procedure that we have just
seen, to actually find the corresponding tour.

But how do we find theK? The problem is that the number of possible K’s is
exponential in the size of the instance because all distances are given in binary,
not in unary. The instance is a bunch of distances. So we have

(
n
2

)2] numbers,
distances, in the matrix. And if we add up all those distances, then we get a
number which I am here callingK ′′. And thisK ′′ is the biggest possible distance
that we can imagine occurring – it is definitely bigger than the longest tour.

So this K ′′ is an upper bound on the longest tour. But since we represent
our numbers in binary notation, then this K ′′ is exponential in the size of those
numbers, and in the size of the instance. So we are to begin with dealing with
a number which is too big for us. So we cannot just do exhaustive search from
K ′′ to 1 – we cannot just call TSP-decision for each possibleK from K ′′ to 1 to
find K, the length of the smallest tour.

The solution to the exponentiality of this number problem, is the standard
one – the standard one being the binary search. So to findK we use the decision
procedure for TSP and the binary search.

All binary searches go like this: If we have the range from K ′ to K ′′ to begin
with, we look into the middle point and ask the question, whatever the question

3.9. LECTURE 9 219

is. In this case the question is: Is there a TSP tour with this K and the original
instance? If the answer is ’Yes’, then we know that we can reduce the range to
the first part. If the answer is ’No’ and the answer was ’Yes’ forK ′′, then we know
that we can reduce the range to the second half.

So this binary search allows us to deal with this exponential large number in
polynomial time (log 2n = n) and find the right K. Once we have the right K,
we use the TSP-search procedure to actually find the tour that has length K.

This whole thing is the proof that TSP isNP-equivalent, leading to a basic
insight that in a certain sense optimization problems will tend to be not harder
thanNP-problems (decision versions of the problems) in a certain sense.

220 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 9

Autumn 1999 6 of 13

Focus on task III: Organize
algorithms/solutions
We look at different algorithm-design
paradigms:

• Today: ’Classical’ worst-case/best solution
approaches

• Next three classes: ’Alternative’
approaches

Worst-case/best solution
approaches

• Greedy
•Matching
• Linear programming
•Dynamic programming

• Branch-and-bound
•Dynamic programming

P

Now we shift focus to task 3, which is: We organize algorithms or solutions
by using our map. We have all kinds of algorithms in this world. For every solv-
able problem there are in fact a number of algorithms. So what can we do to say
something general about algorithms?

The key notion here will be the one of algorithm-design paradigm. We will
see that there are some basic approaches for solving problems that are used
over and over again. And we will also see that some approaches are more ap-
propriate for those intractable or hard problems, while others are more appro-
priate for those easy or well-solved or polynomial-time problems. So we will
take just a quick look at some of these algorithm-design paradigms, and try to
understand what they are and how they are used to deal with different classes
of problems.

The big challenge now is: When you meet a problem, how do you actually
go about finding the solution to the problem? And naturally we build on top of
what we already have. So you would look at the problem and try to figure out
what the complexity of the problem is – in other words, where on our map the
problem is coming from. So you meet a problem and you ask: "Where are you
coming from?" And the problem says: "I was born in P. I am a P problem."

Then you know how to deal with the problem, more or less. You know that
for your P problem you will be able to find an exact solution even in the worst
case – even if your instance is the worst possible instance, because he is coming
from a nice country where the nice people live.

To actually solve the problem in a good way, there are all kinds of approaches.

3.9. LECTURE 9 221

And what we are trying to do now is to systematize at least some of those ap-
proaches, and show you some kind of meta-approaches, some basic ways of or-
ganizing things. So that you can by seeing just those few ways really have a good
understanding of what is involved in designing polynomial-time algorithms on
the one hand, and exponential algorithms that are still good. Sometimes we
need exponential-time algorithms for solving those intractable problems.

We will look at the following worst-case & best-solution approaches for solv-
ing problems in P: greedy algorithms, iterative improvement (matching), lin-
ear programming and dynamic programming. For solving intractable problems
as fast as possible, one usually uses branch-and-bound techniques and/or dy-
namic programming. It is still exponential time, but with as little extra work as
possible.

222 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 9

Autumn 1999 7 of 13

Subset systems
A subset system is a triple (E,w, τ) where

E is a set

w is weights on the elements, w : E → Z+

τ is a system of subsets closed with respect to
inclusion (any subset of a set s in τ is also
in τ): s ∈ τ ∧ s′ ⊆ s⇒ s′ ∈ τ

Combinatorial problem associated with a
subset system:

Find s ∈ τ with largest sum of weights.

Example: MAX. SPANNING TREE
In MAX. SPANNING TREE we ask, given a
weighted graph G, for the subtree (subgraph
without cycles) of G that has the highest sum
of weights.

MAX. SPANNING TREE as a subset system:

E is the set of edges inG.

w is weights of the edges.

τ is the set of subtrees ofG. τ is closed with
respect to inclusion, because removing an
edge from a subtree ofG, we still have a
subtree of G.

The challenge is to try to systematize things that are right now scattered in
all sorts of books and all sorts of chapters that correspond to different problems.
We don’t want different problems, we want to unify things. So we unify things
by defining something which is called the Subset System. And the subset system
is a triple, three things. One is a setE– think of edges. Another one is a bunch of
weights we associate with each element of E. The weights are positive integers.
And then τ (tau) is a system of subsets of sets from E that is closed with respect
to inclusion, meaning: If s is in τ and s′ is a subset of s, then s′ is also in τ . So τ
is a nice kind of closed system.

You don’t need to worry too much about details. Just try to follow the basic
ideas. The basic idea here is that a lot of problems that we have seen, such as
MINIMUM SPANNING TREE, MAXIMUM MATCHING, CLIQUE or TRAVELING SALES

PERSON problem and so on, have this basic form. We are given a set, some kind
of edges. And then we have weights associated with edges. The weights can be
all ’1’ – then we get HAMILTONICITY instead of TSP. And then we have some kind
of criteria for choosing subsets – that’s τ . The subsets are the feasible solutions.
In CLIQUE we know what a clique is, in TSP we need a tour of length K or less
and so on.

The basic combinatorial problem associated with the subset system is: Find
a subset s in τ with the largest possible sum of weights. This ’largest’ you can
normally think of as ’smallest’ also – the approach will be completetly similar.

So a familiar example, something that you have seen in your IN115-class, is
the MINIMUM SPANNING TREE problem. I will use a related problem, the MAXI-

3.9. LECTURE 9 223

MUM SPANNING TREE (MST), as an example here. In MST you are asked, given
a graph G with positive weights on the edges, to find the subtree of G with the
highest sum of weights. A subtree of G is a subgraph without cycles.

MST can be viewed as a subset system: Eis the set of edges in G, w is the
weights of the edges and τ is the set of all subtrees of G. τ is closed with re-
spect to inclusion because removing an edge from a subtree of G, still give us a
subtree.

224 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 9

Autumn 1999 8 of 13

MAX. SPANNING TREE

• solved by a greedy algorithm in time
O (n log n):

9

8

2

3

5

7

6

7
9

MAX. MATCHING

• greedy algorithms don’t work

• solved by an “iterative-improvement”
algorithm in timeO

(
n3
)

3

3

1 4

TSP

• NP-complete

• best-known algorithm is exponential time
(exhaustive search)

I will just review the basic algorithm for finding the maximum spanning tree.
It is the greedy algorithm: You order the edges by weight. Then you visit the
edges in the order of decreasing weight, starting with the edge with the largest
weight. You construct the maximum spanning tree as you go along – beginning
with the empty tree – by looking whether or not the edge in G that you are vis-
iting will complete a cycle. If it doesn’t complete a cycle, it is included in the
spanning tree.

So in the example on the foil we start with one of the weight 9 edges. It can
be included, and also the other weight 9 edge. The weight 8 edge is also fine.
Next we include one of the weight 7 edges, but we cannot include both, because
then we get a cycle. The weight 6 edge is fine, but none of the remaining three
edges can be included without destroying the tree property. So the maximum
spanning tree consists of the five green edges.

This is called a greedy algorithm because it never undoes what it has once
done. It does what is best in the given situation without looking globally, just
looking locally. And it can be proven that this is good enough for solving the
MST problem.

So certain problems can be solved by greedy algorithms. Certain other prob-
lems cannot – for example the MAXIMUM MATCHING problem cannot be solved
by a greedy algorithm. Here is a proof by counterexample:

On the foil is a little instance of the maximum matching. This is the opti-
mization version of the MATCHING problem where we are asking for the match-
ing that maximizes the sum of weights of the elements in the matching. What

3.9. LECTURE 9 225

you would do with a greedy algorithm is you would pick the edge with largest
weight first. So here is an edge with weight 4. You pick that edge and you mess
up the solution forever because the largest matching is the one that has these
two horizontal edges – 3 and 3. Those two edges gives a total of 6, but once
you merry the two people with weight 4 then you have to merry these two other
people also, and they carry a weight of 1 only. So the greedy algorithm finds a
matching of weight 5 only.

An efficient algorithm for finding the best matching (remember the story
about Edmonds from the very first lecture) will begin somewhere, maybe marry
these two people of weight 4, and as I briefly showed last time, then it would find
a better matching by finding the alternating path. So it is a kind of a gradual-
improvement strategy as supposed to the just-assembling-things strategy as in
the greedy algorithm.

The greedy algorithms are very efficient, typically linear time or maybe time
O (n log n) (n is the size of the input, typically |V | + |E| for graphs) because
you need time for sorting the edges. This gradual-improvement algorithm for
matching is maybeO

(
n3
)

or something like that. And then there are problems
such as TSP that are kind of similar in flavor, but which don’t seem to be solved
by any polynomial-time algorithm. The best known algorithms for those NP-
complete problems require exponential time, because they basically tries all n!
Possibilities.

226 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 9

Autumn 1999 9 of 13

Generic greedy algorithm
I = ∅
while E 6= ∅ do

Pick largest-weight element e
of E;

Remove e from E;
If I + e ∈ τ then I := I + e;

end while

A subset system whose combinatorial
optimization problem can be solved by a
greedy algorithm is called a matroid.

Next, we define a generic greedy algorithm for the solution of our generic
problem – the generic problem being the one that was associated with the sub-
set system. So this generic algorithm is basically what we have just seen for the
MAXIMUM SPANNING TREE. Initially the solution I is the empty set. And then
we go through edges in the order of decreasing weight. So we pick the edge with
the largest weight.

For some problems where we want to minimize the weights, like the MINI-
MUM SPANNING TREE, largest here could also be the smallest.

We pick the largest-weight edge e and remove it. If your I and that edge e
gives a set that is still in τ , then we put e into I, otherwise we throw it away. You
can think of elements of τ as being feasible solutions such as partial matchings
or partial spanning trees or tour segments. So if the current solution plus e can
still become a good solution, put e into the partial solution.

So this is just the basic greedy algorithm with ’I’ being the bag into which
you just put things. And then once the algorithm is finished, you have in your
bag exactly the best solution, if the greedy algorithm works.

A matroid is the kind of problem for which the greedy algorithm works, by
definition. So a subset system whose combinatorial optimization problem can
be solved by a greedy algorithm, is called a matroid.

3.9. LECTURE 9 227

(This is a blank page)

228 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 9

Autumn 1999 10 of 13

Insights

1 SAT 2 SAT 3 SAT
1 DM 2 DM 3 DM

1 COLORING 2 COLORING 3 COLORING

↓ ↓ ↓

1 matroid intersection of intersection of
2 matroids 3 matroids

↓ ↓ ↓

greedy generic NP-complete
solutions matroid

intersection
algorithm

TSP as an intersection of 3 matroids
(directed graph G, and a TSP-path)

1st matroid: Same as for MIN SPANNING TREE

2nd matroid: Subtrees where each node has
at most 1 outgoing edge (all edges in G get
weight=1)
3rd matroid: Subtrees where each node has
at most 1 ingoing edge (all edges in G get
weight=1)

In addition the intersection tree (solution)
must have exactly n− 1 edges.

Now we have a formalism for dealing with all sorts of problems. And we can
notice a kind of interesting phenomena: 1SAT is a completely trivial problem,
2SAT – the interesting problem – is solvable in polynomial time, while 3SAT
is NP-complete and seems to require exponential time. 1DM is trivial, 2DM
– our standard MAXIMUM MATCHING problem – is interesting and solved by a
polynomial-time algorithm, while 3DM isNP-complete. 1-COLORING is trivial
– it is basically graph connectivity, which solved by the greedy algorithm. 2-
COLORING is basically matching: Can a graph be colored by 2 colors such that
no adjacent nodes get the same color? 3-COLORING isNP-complete.

So there seems to be some kind of regularity in this whole. We can im-
pose order through using our basic machinery of matroids: We can see these
1-problems as matroids – which they are – and these 2-problems as being in-
tersections of two matroids. And there is a proof to the fact that an intersection
of two matroids is solved in polynomial time. There is also a generic matroid-
intersection algorithm which is the kind of iterative-improvement algorithm
that is used for maximum matching. So if we see our problem as a kind of an in-
stance of an intersection-of-two-matroids problem, then we know the basic ap-
proach that works for that problem. And that’s this general matroid-intersection
algorithm.

Let me use matching as an example: Intuitively you think of matching as
satisfying two sets of criteria. On the one side you want to marry the girls exactly
once. If that’s your only requirement – meaning that the boys can be married
multiple times – then you have one matroid. But if you want the girls to be

3.9. LECTURE 9 229

married once and the boys to be married once, then you have an intersection of
two matroids because you are satisfying two conditions.

It turns out that TSP can be defined as an intersection of three matroids. In
the case of a directed graph and asking for a TSP path, the three matroids could
be as follow: The first matroid is the same as for MINIMUM SPANNING TREE,
namely subtrees where we are asking for the smallest total edge weight. The sec-
ond matroid is subtrees where each node has at most one outgoing edge. Here
we consider each edge in G to have weight=1, and we are asking for the largest
weight sum, which is equivalent to asking for the largest number of edges. The
third matroid is subtrees where we again consider each edge to have weight=1,
but now we require that each node has at most one ingoing edge.

These 3 conditions together with the extra requirement that the intersection
tree, the solution, must have exactly n−1 edges, give us anNP-complete prob-
lem. This extra requirement that the solution must have exactly n − 1 edges is
necessary to prevent tours consisting of separate cycles/paths being legal solu-
tions.

It would be useful for you to see the maximum matching algorithm in some
detail. I believe that is done in the groups eventually , and that together with
what we have done here, will give you enough insight into a certain really broad
class of polynomial-time algorithms. This is essential here because we want
to be able to recognize an algorithm that is polynomial time, and to recog-
nize a problem that is polynomial time, and to understand how to construct
polynomial-time algorithms.

230 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 9

Autumn 1999 11 of 13

LINEAR PROGRAMMING (LP
In the LP we want to

•minimize ~c~x (i.e. c1x1 + c2x2 + . . . cnxn) such
that

• A~x ≥ ~r (A is a m× n integer matrix,~r is a
m-vector of integers)

• ~x ≥ 0 (xi are real numbers)

Example: Diet problem

~x = diet

i = food type

xi = amount of food i

ci = cost of food i per unit

Aij = amount of nutrient j in food i

rj = required amount of nutrient j

• Simplex algorithm is not polynomial in
worst-case, but efficient “in practice”.

• Ellipsoid algorihm is polynomial in
worst-case, but not as fast as Simplex “in
practice”.

The greedy algorithms and the matching-type algorithms actually cover a
very large class of algorithms. Another large class of algorithms and problems
has to do with number problems, or with numbers. So a lot of problems either
are of this following kind or can be written or represented in this form. This
format is called LINEAR PROGRAMMING (LP).

Here is how an instance of a LINEAR PROGRAMMING problem can be formally
stated: The problem is to minimize ~c~x – where ~c and ~x are vectors, not just
numbers. So this really means c1x1 + c2x2 + · · · + cnxn – it is the scalar product
of two vectors.

So we are minimizing this scalar product subject to some conditions. The
first condition is that A – a M × n integer matrix – times ~x should be greater
than or equal to~r, a vector. This means thatAj1x1 +Aj2x2 + . . . Ajnxn ≥ rj , for
all 1 ≤ j ≤ m. The last condition is that ~x, meaning all entries xi, should all be
non-negative real numbers.

Let me tell you intuitively what this means, and then you will understand
better what this really is, even if you are not very familiar with this formalism of
matrices and vectors.

Think of vector ~x as being a diet. xi is the amount of food type i in the diet.
So x1 is the amount of bread, x2 is the amount of carrots, x3 is the amount of
milk, and so on. Then think of ci as being the cost per units of food type i.

So these ~x-es are, say, what you eat through the year. And you want to spend
as little money as possible on food, that’s the basic optimization in this world.
We stick to it. You may prefer something else – you may prefer better nutrition

3.9. LECTURE 9 231

or something – but we for the time being minimize money.
And your c-costs multiplied by the amounts will give you the money spend

on food during the year, but you do want to satisfy some basic requirements for
nutrition. So you don’t just want to starve yourself. You are saying: I need this
much of vitamin A and this much of vitamin B, this much of protein, and this
and that.

So Aij will tell you how much of nutrient j there is in a unit of food i, and
then rj is the required amount of nutrient j in a year. So that you know that
your A times ~x – your nutrient contents times the amounts of foods – must be
at least as big as the required minimum amount of nutrients. And then you
also know that you are choosing your food in such a way that you can just eat a
positive amount. So the amounts of food cannot be negative.

This is a very basic problem, and then again a lot of problems can be defined
in this form. So LINEAR PROGRAMMING is a very interesting kind of way of look-
ing at problems, and a very potent way of solving problems. Since many prob-
lems can be embedded into LINEAR PROGRAMMING, then if we have a good way
of solving linear programming problems, then we can solve all sorts of problems
by that way.

It turns out that there is actually a good way of solving linear programming
problems, and that way is what is called the Simplex algorithm, which I believe
you have never seen. That is kind of unfortunate because it is a very interesting
algorithm and a very interesting theory.

There are two things to know about the Simplex algorithm. One thing is
that it is efficient in practice – really works well for practical problems. The
other thing is that in the worst case it is not polynomial. Those worst cases don’t
really ever appear in practice, but for a long time the situation was such that
LINEAR PROGRAMMING was solved by the Simplex algorithm and other variants
of this approach, but it was not known whether LINEAR PROGRAMMING is in P –
whether a good worst-case solution exists.

But around 1979 the Ellipsoid algorithm was constructed. The Ellipsoid al-
gorithm is a very complicated algorithm which you probably would never ac-
tually want to use in your life. There are better versions of this same approach
that actually lead to good solutions, but this algorithm is from a practical point
of view very complicated and inefficient. The theoretical important point about
the Ellipsoid algorithm is that it is a polynomial-time algorithm. And this algo-
rithm was a proof that LP is in P.

So LINEAR PROGRAMMING is solvable in polynomial time, and a lot of diffi-
cult problems that have this kind of borderline flavor have been solved in poly-
nomial time by similar approaches.

232 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 9

Autumn 1999 12 of 13

INTEGER LINEAR PORGRAMMING
(ILP)
•minimize ~c~x such that

• A~x ≥ ~r

• ~x ≥ 0

• xi are integers

Theorem 1 ILP isNP-hard.

Proof: Reduction from TSP

• distance matrix with elements cij

• Variable xij assosiated with edge (i, j)

• xij = 1 if edge (i, j) in the tour, and 0 if not

•minimize z =
∑n

i,j=1;i6=j cijxij

• 0 ≤ xij ≤ 1 and xij integer

•
∑n

i=0 xij = 1, for j = 0, . . . n

•
∑n

j=0 xij = 1, for i = 1, . . . n

• + a constraint that excludes tours
consisting of “subtours”

It turns out that adding one more little condition to LINEAR PROGRAMMING

– namely that the ~x-values in our solution must be integers – changes the com-
plexity completely. When we are talking about foods, then of course you can
eat 1.79 kilos of potatoes, that is no problem more or less. So usually you are
not required to eat integer amounts of food. But if your problem is such that
you cannot divide things into small chunks where you have to either take some-
thing or not take something, then it turns out that the problem becomes harder.
INTEGER LINEAR PROGRAMMING (ILP), as it is called, is in factNP-hard.

This is a rather shocking result, because intuition tells us that ILP should
be at least as easy as LP because there are less feasible solutions when the ~x-es
have to be integers. And a fewer number of feasible solutions normally means
faster algorithms because there are fewer cases to consider. But we will see on
the next foil why intuition fails us this time.

ILP can be proven NP-hard and on this foil I have sketched a reduction
from TSP. It turns out that TSP, SATand all sorts of other NP-complete prob-
lems can be written as integer programs fairly easily. So that essentially the
theory of INTEGER LINEAR PROGRAMMING, and even of LINEAR PROGRAMMING,
can be applied to those problems.

If we have some good ways of solving INTEGER LINEAR PROGRAMMING, then
we can really solve all kinds of problems in that same, good way. And that is
actually what this world of problems currently looks like, very much. A good
solution to TSP – ’good’ mainly in the sense that they work fairly well in practice
– are constructed today by using the INTEGER LINEAR PROGRAMMING theory

3.9. LECTURE 9 233

and approaches.
I am not going to speak about this a lot, but I just want to say that there is a

whole world out there, so it is interesting for us to see how in fact a problem like
TSP can be embedded into this theory, how it can be represented. And let me
just give you some hints.

In TSP we have a distance matrix. Those distances will be the cij-values.
We are going to choose some edges and not choose others. So we define ILP
variables xij , which will tell us about whether the edge from node i to node j is
in the TSP-tour or not. So variable xij is going to be 1 if edge (i, j) is in the tour,
and 0 if (i, j) is not in the tour.

We will write our ILP problem by saying: Minimize z equal the sum of cijxij
for all possible i’s and j’s, with conditions that the xij-values most be between
0 and 1. If we also say that xij’s are integers, then that really means that xij ’s are
either 0 or 1.

And then we want to say that we are taking an ingoing edge once for every
vertex in the graph. In ILP this can be expressed by demanding that the sum of
xij’s for i = 1, . . . , n is equal to 1. This sum must be 1 for all choices of j-values.
Similarly, if we for each i-value demand that the sum of xij ’s for j = 1, . . . , n is
equal to 1 then we express the fact that we are taking an outgoing edge once for
each vertex.

These two last constraints are modeling a simple cycle, because each node
in a cycle has exactly one ingoing edge and one outgoing edge. But we need an
additional constraint that excludes tours or cycles that consist of a number of
"subtours", meaning two or more disjunct cycles.

Together this whole thing is an embedding of TSP into INTEGER LINEAR

PROGRAMMING, and at the same time it is proof that ILP is NP-hard. We have
just reduced the TSP to INTEGER LINEAR PROGRAMMING.

234 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 9

Autumn 1999 13 of 13

Geometric interpretation

LP:

x2

x1

x3

c

Simplex

• It can be shown that all feasible solutions
(= points in a n-dim. space) must be inside
the convex hull.

ILP:

OPT LP

OPT ILP

Algorithm for ILP:

• solve LP-opt (use Simplex)

• find ILP-opt (it should not be too far away)

Note: This algorithm is not pol. time because
the ILP-opt point can be exponential far
away the from LP-opt point given by
Simplex/Ellipsoid (arbitrary small angle . . .).

A way to think of LP and ILP, and to understand the different approaches
for solving those problems, is actually through geometry. It is a very natural and
nice way to gain insights and to organize those insights.

Let me tell you how that works: The critical part in these problems is the xi
variables. Think of them as being coordinates axes. So how much of these foods
we take, that’s determined on the different coordinate axes. And the optimal
solution is expressed as a point in the coordinate system.

Now, what about the conditions? What do they look like in this coordinate
system or solution space? The overall condition is that A × ~x~r. But because ~x
and~r are vectors, this is reallyM different conditions of the form ai1x1 +ai2x2 +
· · · + ai3xn ≥ ri. If we say equals ri instead of greater than or equal ri, then
this whole condition is a hyperplane in this solution space – it’s a plane in a
n-dimensional space. So each of these M equations defines a plane.

An inequality defines a half-plane. So with each condition, it is as if we take
a sword and cut through the space – dividing the space into one part which is
the good solutions, the feasible part, and the other part which is thrown away.
And by cutting this way and this way and this way we cut the space many times,
and what remains is what is called the convex hull. It’s a kind of a body, an
n-dimensional body.

So this convex hull, this n-dimensional body, defines your feasible solution
space. I have drawn a little example in the 3-dimensional space on the foil.
Your best solution must be found inside of this space because it is only points
inside this space that satisfy allM conditions. How do we find the best solution?

3.9. LECTURE 9 235

We look at the cost ~c, which is a vector in this space. The cost vector ~c defines
a direction – it is pointing in one direction. And then what you do is you put
yourself inside of this n-dimensional body, this convex hull, and you go into the
direction of the cost vector as far as possible until you reach a wall and cannot
go any further in that direction. Then you sort of slide along the walls until you
find yourself in a corner and you say: "This is the best, I cannot go any further."

This is the simplex algorithm. The Simplex algorithm would go along the
edges, knowing that the best solution must be in one of the corners. So it is
going along the edges, always going more and more in the direction of vector~c,
until it is stuck in a corner – and that corner point is the best solution.

The reason why the simplex algorithm is efficient is because it is natural,
usually in a few steps you find yourself in the right corner. The reason why the
simplex algorithm is theoretical inefficient is because when you cut with poly-
nomially many planes, you can get exponentially many edges. So you can al-
ways construct pathological kind of instances of LP for which the simplex algo-
rithm doesn’t work because it will slide along exponentially many walls before
it get to the corner of the best solution.

However, if we introduce the requirement that the solutions are integers
then we are in deep trouble, as shown on the foil. Because even if we find the
optimum for the corresponding linear program – which is this red point here –
that point can be arbitrarily large from the actual optimum of the ILP – which
must be an integer point inside the feasible space, also shown in red on the foil.

There can be other points which are near to the optimum of ILP, but those
points can be infeasible because they are outside the convex hull. And because
we can make this angle arbitrarily small, the optimum of ILP can be exponen-
tially far away from the LP solution.

That is the bad news. The good news is that in practice, if you can solve the
LP problem, then you will find good solutions to the ILP in the neighborhood.

That’s one way of looking at this. Another way of looking is that this whole
theory that has been developed around these LP/ILP problems is of a great
help in finding approximate solutions, or even relatively fast solutions to NP-
complete problems like TSP. There is a kind of a world championship in how
big instances of TSP you can solve, and that sort of issues is dealt with by using
this theory.

Next time I am going to finish this review of classical approaches to algo-
rithm design by telling a few words about branch-and-bound and dynamic pro-
gramming, and then we will move on to alternative approaches to algorithm
design.

236 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

3.10 Lecture 10

IN210 − lecture 10

Autumn 1999 1 of 22

Classical algorithm-design
paradigms (cont.)

Branch-and-Bound
Branch:

b

c d

e f

a

2k

k

Leaf nodes = possible solutions

Bound:

• Bactracking

• Pruning (’avskjæring’)

G&J:
4, 6.0-6.2

We have organized solutions or algorithms according to paradigms. We have
seen that certain ways of constructing algorithms work well for certain classes
of problems – one kind of approach for polynomial time, another kind for prob-
lems that we believe cannot be solved in polynomial time. Today we will see
also that some approaches (i.e. dynamic programming) are suitable for both P
problems andNP-complete problems.

Last time we have seen a bunch of design paradigms for problems in P.
Now we are going to see two design paradigms that are widely used for prob-
lems that are not known to be in P, such as NP-complete problems. Those
two paradigms are branch and bound and dynamic programming. I am going
to introduce them just very briefly and schematically. You are going to see more
details in the group practices, hopefully.

First we look at branch and bound. I have drawn a kind of a tree on the foil,
and you can think of this tree as being some record of all possible computa-
tions. The leaves of the tree are all possible solutions to a certain problem, say
all possible orderings of vertices or all possible TSP-tours. And those solutions
are determined by a bunch of individual choices: You start from a certain node
and then you have a certain number of neighbors, and for each of those neigh-
bors you have more neighbors and more neighbors. What choices you make
determine the tour. So the root node in the tree represent the first city you visit.
If that city has two neighboring towns, then you have two roads to choose be-

3.10. LECTURE 10 237

tween – represented by two outgoing edges from the root node in this search
tree.

You can think also of this tree as being really the computation of a non-
deterministic Turing machine. We think of the computation of a NTM as being
a tree of configurations, and k as being the non-deterministic polynomial time.

What a branch-and-bound algorithm would do, it would explore all these
possibilities, but in a clever way so that it doesn’t have to do the same work
twice, and so that it doesn’t investigate hopeless partial solutions. That’s roughly
the idea.

There are two characteristic parts of a branch-and-bound algorithm: One is
the branching part where an algorithm would explore this three of possibilities
in some organized way, say depth-first. And that is already some saving because
then it doesn’t compute the same prefix path twice, meaning: If the algorithm
has followed the path a−b−d and is currently at node d, then it will first try to go
to node e. After trying all possibilities from node e, the algorithm somehow has
to come back to node d and try the other possible path to node f . A branch-and-
bound algorithm doesn’t start all over again from node a, computing the a−b−d
part again. It reuses that prefix path a − b − d. And it does so by backtracking
from node e to node d, and then going the other way to node f .

So this is how the algorithm branches back and forth, and it is a little bit
clever, but not so very clever. What is actually a lot more important here in
branch and bound is the ’bound’ business. Bounding means that you can come
up to a certain partial solution and realize that below there are no really great
solutions – ’great’ meaning ’not good enough’ for optimization problems and
’not a correction solution’ for decision problems.

What you do is you produce a kind of a bound on the value of the solutions
that begin with what you already have. And then you use this bound or estimate,
maybe comparing it with the best solution found so far, to decide whether you
really want to explore these solutions further or not. For example if we are talk-
ing about HAMILTONICITY, then if you are looking at tours beginning with the
three vertices a, b, c in that order and (b, c) is not an edge, then it doesn’t make
sense to look at further solutions beginning with a, b, c. Because (b, c) is already
not an edge, so there are no Hamiltonian cycles here.

Or in a TSP problem maybe you would discover a road which is a kind of a
bumpy mountain road that is 500 km long between city b and c. And you know
that there is this freeway that is really just 100 km long, that would first go from b

to d and then from d to c. So you know that the solutions that take this mountain
road they are all going to be bad solutions, and you sort of drop this possibility
of going from b to c right away and favor going to city d.

So you just drop – prune away – this part of the search tree. And if you do
this systematically, then hopefully you end up exploring much fewer solutions
then all permutations.

238 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 10

Autumn 1999 2 of 22

Dynamic Programming
• Building up a solution from solutions from

subproblems

• Principle: Every part of an optimal solution
must be optimal.

v ts
sv vt

Now we compare this branch-and-bound idea with the idea of dynamic pro-
gramming, which is in a certain sense similar, but in another sense opposite
from it. Dynamic programming will not branch and bound. DP will build a
complex solution from smaller solutions. So it is usually some kind of building-
up process.

So in DP we build up a solution to a problem from solutions to subprob-
lems. There is a kind of a principle which is sometimes called the principle of
Dynamic Programming, but it is not really a formal principle. It’s more an intu-
itive idea. The DP principle says that if something is an optimal solution, then
every one of its parts must be also optimal.

If we are looking, say, at the shortest path in a graph from point s to point
t, and this shortest path goes through a vertex v, then we know that sv must be
the shortest way to get from s to v and vt must be the shortest way to get from v

to t, otherwise there would be a shorter path from s to t.
So if we build shortest paths between nearby cities, then we use those short-

est paths to build paths between further-away cities, and so on. This is how
Dijkstra’s algorithm for finding the shortest path in a graph works. Dijkstra’s
algorithm is dynamic programming applied to a problem in P. We will see dy-
namic programming applied to anNP-complete problem in a moment.

With this we finish the part on the classical worst-case & best-solution algo-
rithm design and analysis paradigm.

3.10. LECTURE 10 239

(This is a blank page)

240 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 10

Autumn 1999 3 of 22

Managing Intractability
• Idea: Perhaps the hard instances don’t

arise in practice?

• Often restricted versions of intractable
problems can be solved efficiently.

Some examples:
• CLIQUE on graphs with edge degrees

bounded by constant is in P :
const. C ⇒

(
n
C

)
= O

(
nC
)

is a polynomial!

• Perhaps the input graphs are

— planar

— sparse

— have limited degrees

— . . .

• Perhaps the input numbers are

— small

— limited

— . . .

We move on to some ideas on managing intractability. Suppose you en-
counter an NP-complete problem, and you prove that your problem is NP-
complete. What then? The problem still has to be dealt with; it still has to be
solved. Of course, if the problem instances are small and if it is extremely im-
portant to have an exact solution in the worst case – in all possible cases – then
you may look at one of those two approaches: branch and bound and dynamic
programming.

However if the instances are large, then those algorithm will take forever be-
cause they are exponential time. But you still want to do something with the
problem, and the question is what. We are now going to look at some possibili-
ties.

The first thing that one would think about is: "Let’s look at the problem care-
fully once more. maybe the problem is not as hard as it seems." And the point
of this is that it happens quite often that the instances of the problem that arise
in practice have some natural restrictions which make the problem easy.

And if you look at your G&J textbook then you would see that with every
problem there is a list of restrictions and statements explaining for what kind
of restrictions your problem remains NP-complete, and when the problem is
solvable in polynomial time. So you would typically look at your practical prob-
lem, see what restrictions apply and then look at something like the G&J text-
book or investigate the problem yourself – trying to see whether the problem
remainsNP-complete orNP-hard under those restrictions.

As an example we will look at the CLIQUE problem, which is deciding whether

3.10. LECTURE 10 241

your input graph has a clique of size K – a ’clique of size K’ being a complete
subgraph with K vertices. If the degrees in your graph – the number of edges
from any vertex – are bounded by a constant C, then your problem is always
solvable in polynomial time, no matter whatK is. This is so because if your de-
grees are bounded by a constant C, then the largest clique that can be in your
graph is C. If your K is larger than C, then you can immediately answer "No,
there is no clique of size K in this graph." And if K is equal to C, which is the
most difficult case, then you just try all possible sets withC nodes and see if any
of them is a clique. How many C-sets are there in a graph with n nodes? The
number of possible C-sets are

(
n
C

)
, which isO

(
nC
)
. So there are only this many

possible cliques of order C, and if C is a constant, then this is a polynomial.
So with this restriction CLIQUE is solvable in polynomial time, and it is a very

natural restriction because in practice you don’t see very messy graphs. Quite
often the graphs are bounded by a constant, or they are planar or in some sense
sparse. So you can use these restrictions and see whether your problem remains
NP-hard or difficult under them, and then find good algorithms that solve the
problem maybe in polynomial time with those restrictions.

This is if you have graph problems. If you have number problems, then
the natural restriction is that the numbers that would make your instance hard
if they are astronomically large, in practice end up being somehow limited –
maybe small, maybe limited by a constant and so on.

242 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 10

Autumn 1999 4 of 22

Pseudo-polynomial algorithms
Def. 1 Let I be an instance of problem L, and
let MAXINT(I) be (the value of) the largest
integer in I. An algorithm which solves L in
time which is polynomial in |I| and
MAXINT(I) is said to be a pseudo-polynomial
algorithm for L.

Note: If MAXINT(I) is a constant or even a
polynomial in |I| for all I ∈ L, then a
pseudo-polynomial algorithm for L is also a
polynomial algorithm for L.

We will now look at these possibilities to manage number problems a little
more carefully, because they give us an interesting class of algorithms that are
almost polynomial, and that in practice are quite often just polynomial-time
algorithms for solving problems that are intractable in the worst-case. Those
are the so-called pseudo-polynomial algorithms – algorithms that just about
pretend to be polynomial. They are pseudos but in practice they may work very
well.

Let me first define what these pseudo-polynomial time algorithms are. Ba-
sically you can look at the number value of the largest integer in the instance I.
This integer we call MAXINT(I). If your algorithm works in time which is poly-
nomial in MAXINT(I) and the size of the instance, then your algorithm is said
to be a pseudo-polynomial time algorithm for the problem.

What this means is the following: It means that if for all instances your
largest integer happens to be bounded by a constant, or even if it is bounded
by a polynomial in the size of the instance, then this pseudo-polynomial time
algorithm will really be a polynomial-time algorithm. So if you know that the
numbers that appear in the instances are all smaller than 1000, or that they are
never bigger than 10n2, then you know positively that your pseudo-polynomial
time algorithm is a polynomial-time algorithm.

We are now going to look at a pseudo-polynomial algorithm for a problem
called 0-1 KNAPSACK.

3.10. LECTURE 10 243

IN210 − lecture 10

Autumn 1999 5 of 22

Example: 0-1 KNAPSACK

In 0-1 KNAPSACK we are given integers
w1, w2, . . . , wn and K, and we must decide
whether there is a subset S of {1, 2, . . . , n}
such that

∑
j∈S wj = K. In other words: Can

we put a subset of the integers into our
knapsack such that the knapsack sums up to
exactly K, under the restriction that we
include any wi at most one time in the
knapsack.

Note: This decision version of 0-1 KNAPSACK

is essentially SUBSET SUM.

0-1 KNAPSACK can be solved by dynamic
programming. Idea: Going through all the wi
one by one, maintain an (ordered) set M of all
sums (≤ K) which can be computed by using
some subset of the integers seen so far.

0-1 KNAPSACK is a restricted variant of INTEGER LINEAR PROGRAMMING, and
there is a story that goes with the problem: You are going backpacking and you
want to take a bunch of things with you, but you know that you definitely don’t
want to carry more than 20 kilos. So K is 20 kilos. Every item i that you want
to carry in the backpack has a weight wi, which is an integer. So you want to
pack as much as possible, but not exceeding K. In the decision version of 0-1
KNAPSACK the question is: Given this numberK and a bunch of weights wi, can
we choose the items so that their total weight ends up to exactlyK, to the limit,
and such that we carry at most one piece of each item?

The decision version of 0-1 KNAPSACK is in fact identical to the SUBSET SUM

problem which we have seen already, so you know immediately that it is NP-
complete. But 0-1 KNAPSACK can be solved by a pseudo-polynomial algorithm.
We will call that algorithm for DP because it is a version of the dynamic pro-
gramming technique. You will recognize the dynamic programming principle
here. We are building up a solution from partial solutions in a certain way.

The basic idea behind the DP is this: We go through all the wi one by one,
updating an ordered setM of all sums less than or equal toK, that can be com-
puted by using some subset of the integers seen so far. This will be done by
checking whether we get some new sums by adding wj to any of the sums al-
ready in M . If K is a member of M when all the weights have been processed,
then we have a positive instance, otherwise we have negative instance.

244 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 10

Autumn 1999 6 of 22

Algorithm DP
1.Let M0 := {0}.
2.For j = 1, 2, . . . , n do:

Let Mj := Mj−1.
For each element u ∈Mj−1:

Add v = wj + u to Mj if v ≤ K and
v is not already in Mj.

3.Answer ’Yes’ if K ∈Mn, ’No’
otherwise.

Example: Consider the instance with wi’s
11, 18, 24, 42, 15, 7 and K = 56. We get the
following Mi-sets:

M0 : {0}
M1 : {0, 11} (0 + 11 = 11)
M2 : {0, 11, 18, 29} (0 + 18 = 18, 11 + 18 = 29)
M3 : {0, 11, 18, 24, 29, 35, 42, 53}
M4 : {0, 11, 18, 24, 29, 35, 42, 53}
M5 : {0, 11, 15, 18, 24, 26, 29, 33,
35, 39, 42, 44, 50, 53}
M6 : {0, 7, 11, 15, 18, 22, 24, 25, 26, 29, 31, 33,
35, 36, 39, 40, 42, 44, 46, 49, 50, 51, 53}

Theorem 1 DP is a pseudo-polynomial
algorithm. The running time of DP is
O (nK logK).

Proof: MAXINT(I)= K . . .

Here we give the DP algorithm in pseudo-code: The initialization step is
to put 0 in M . Then we process the weights one by one. For each weight wj
(1 ≤ j ≤ n) we do the following: We check whether adding wj to any of the
elements in M would give us a sum which is less than or equal to K and not
already in M . If so, then we add this new sum to M . We do this check for each
element in M before moving on to wj+1. The only pitfall is that we might add
the weight wj two times if we first add wj +m toM and thenwj + (wj +m) toM
again. The simplest solution is to compute a new version ofM in each iteration,
so that we only compare wj with the sums in the old M set. We indicate this in
the algorithm by using subscripts onM .

If K is a member of the final M set, then we have a positive DP instance,
otherwise we have negative instance.

On the foil I have shown how the algorithm runs on an example instance.
The set of computable sums contains in the beginning only ’0’. Then we process
the first element which is 11. Naturally we add 11 to M . The next element is 18.
Then we have to add both 18 (0+18) and 29 (11+18) toM . So after two iterations
M = {0, 11, 18, 29} because that is the possible weights of the knapsack after
placing zero, one or both items into the knapsack. The algorithm continues as
on the foil.

So this is the dynamic programming algorithm for 0-1 KNAPSACK. What is
its complexity? It is a very simple algorithm. It has a loop where j ranges from
1 to n. And then each iteration of the loop takes the work of the orderK logK,
because we can have up to K numbers (sums) inM and we need logK time for

3.10. LECTURE 10 245

searching/insertion intoM . So the complexity of the algorithm isO (nK logK).
Since MAXINT(I) = K (we can ignore input elements which are bigger than
K since they obviously doesn’t fit into the knapsack), DP is per definition a
pseudo-polynomial algorithm.

How big is this running time? It looks like it is linear time, and it is indeed
linear in n – the number of items. However K is a part of the input, and K as a
number can in fact be exponential large compared to its own length (number of
digits), because it is written in binary. So the running time as a function of the
input length isO

(
n · 2|K| log 2|K|

)
=O

(
nK · 2|K|

)
.

So to begin with this is exponential time. But if there is a natural limit onK,
if we know that our big K is somehow bounded by something, then this is all
bounded. If K happens to be constant, this is just linear time. If K happens to
be polynomial in n, then nK logK is a polynomial in n. The running time as a
function of the input length is also a polynomial because |K| is of the order log n
whenK is a polynomial in n.

So naturally you would look at your problem and see if there is some limita-
tion on K, and if there is a limitation on K, you run to the first store and buy a
pseudo-polynomial time algorithm, because that’s your good guy – it’s polyno-
mial.

246 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 10

Autumn 1999 7 of 22

StrongNP-completeness
Def. 2 A problem which has no
pseudo-polynomial algorithm unless P = NP
is said to beNP-complete in the strong sense
or stronglyNP-complete.

Theorem 2 TSP is stronglyNP-complete.

Proof: In the standard reduction HAM ∝TSP
the only integers are 1, 2 and n, so
MAXINT(I)= n. Hence a pseudo-polynomial
algorithm for TSP would solve
HAMILTONICITY in polynomial time (via
the standard reduction).

a

b c

d
∝

a b c d

a 2 1 2 1
b 1 2 1 2
c 2 1 2 1
d 1 2 1 2

K = n(= 4)

There are number problems which cannot be solved by pseudo-polynomial
time algorithms unless P=NP . We call such problems strongly NP-complete,
orNP-complete/NP-hard in the strong sense.

To prove for those problems that they are NP-hard in the strong sense, is
usually rather easy. I demonstrate with a familiar example: TSP is stronglyNP-
complete. The proof is simply to look at the standard reduction from HAMIL-
TONICITY, where we label an TSP edge with ’1’ if there is an edge in the corre-
sponding HAMILTONICITY instance, and ’2’ otherwise, and we ask whether there
is a TSP tour of length n or less.

So the standard reduction from HAMILTONICITY creates TSP-instances where
the only numbers are 1’s, 2’s and n. This implies that MAXINT(I)= n, which is
obviously a polynomial in n. This means that if TSP can be solved by a pseudo-
polynomial algorithm, then this straight-forward reduction plus that algorithm
give us a polynomial-time algorithm for HAMILTONICITY. And since HAMIL-
TONICITY is an NP-complete problem, that means that P=NP . Remember
that if we can solve anNP-complete problem in polynomial time, then allNP
problems can be solved in polynomial time, by virtue of the definition of NP-
completeness.

So proving that a problem P2 is NP-complete in the strong sense amounts
to showing that a knownNP-complete problemP1 can be reduced toP2 in such
a way that all numbers in the P2 instance always are of limited size, meaning at
most polynomial in the length of the original P1 instance.

Notice the ’unlessP=NP’ part in the definition of strongNP-completeness.

3.10. LECTURE 10 247

This P=NP is like a big cloud hanging over our heads all the time. Why is it
there? Because we haven’t been able to prove that those hard problems that we
are talking about, really cannot be solved in polynomial time. Then of course
we cannot say that they cannot be solved in pseudo-polynomial-time, because
one guy might find a polynomial-time algorithm for SATtomorrow, and that
algorithm will solve all problems inNP in real polynomial time.

The best statements we can make are of the form: "UnlessP equalsNP , this
is impossible", and those are the kind of statements that we are showing here.
Since we know that it is very unlikely that P will turn out to be equal to NP –
because that would mean that all of those difficult problems can be solved in
polynomial time magically somehow – those statements are pretty strong re-
sults, and for practical purposes they are strong enough.

248 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 10

Autumn 1999 8 of 22

Alternative approaches to
algorithm design and analysis
• Problem: Exhaustive search gives typically
O (n!)≈O (nn)-algorithms for
NP-complete problems.

• So we need to get around the worst case /
best solution paradigm:

— worst-case→ average-case analysis

— best solution→ approximation

— best solution→ randomized algorithms

We have now seen one way to try to crack down NP-completeness in its
original form. We have a whole other set of alternative approaches, which are
based on looking at the foundation of this whole theory that we have made here
and saying: "Wait a minute, this really doesn’t do us much good in practice!"

The weak point that is easy to attack in the theory we have constructed, is
the fact that it is based on the worst-case & best-solution approach. What is
this worst-case & best-solution approach? We know that there are exponential
many possible instances. We say that there is a "combinatorial explosion". You
look at a graph and it is an innocent kind of simple object. But if you are saying:
Let’s see how many ways there are to arrange the vertices, how many possible
Hamiltonian paths there are in this graph. Then you see that with n vertices
there are n! possible orderings of vertices.

Basically n! is something like nn, and we know that if we are looking at some
number like 2200, this number is bigger than the number of molecules in the
whole universe – not only planet earth, not only our solar system, but the whole
big universe.

So 2200 is an astronomically huge number, and 100100 also. But one hundred
is a small instance – it is not a big graph. We have graphs with thousands of
vertices that naturally arise as instances of problems. So the point is that we are
looking for the very best solution among these astronomically many possible
solutions! This is kind of psychologically wrong – it is greedy. Why do you want
the very best solution out of 100100 possible solutions? Let’s just find a good
solution and live with it. This is basically how we do it in normal life.

3.10. LECTURE 10 249

And we are also looking at how the algorithm performs in the worst case –
how it performs for the most annoying input. The number of graphs that can
arise on n vertices is also an astronomically large number. So the fact that there
are some very bad cases doesn’t tell us really much about the difficulty of the
problem.

We want to relax the requirement that our whole approach should be based
on the worst-case, which may never occur in practice, and say: "Let’s look at
the average, let’s look at the typical cases. That’s more natural!" That gives rise
to average-case analysis. It is a whole approach to algorithm design and to an-
alyzing algorithms and problems.

We also want to look at the solution and say: "We don’t necessarily want the
very best solution, let’s find something that we can live by. That’s good enough!"
This leads to two kinds of approaches. One is approximation, and another one
is probabilistic or randomized algorithms.

We are going to look at all three of those alternative approaches. We begin
with approximation.

250 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 10

Autumn 1999 9 of 22

Approximation

)(
OPT

ε·OPT ε·OPT

Def. 3 Let L be an optimization problem. We
say that algorithm M is a polynomial-time
ε-approximation algorithm for L if M runs
in polynomial time and there is a constant
ε ≥ 0 such that M is guaranteed to produce,
for all instances of L, a solution whose cost is
within an ε-neighborhood from the optimum.

Note 1: Formally this means that the relative
error |tM(n)−OPT|

OPT must be less than or equal to
the constant ε.

Note 2: We are still looking at the worst case,
but we don’t require the very best solution
any more.

Example: TSP with triangle inequality has a
polynomial-time approximation algorithm.

bc

a

c ≤ a + b

Obviously approximation doesn’t fit very well with decision problems, be-
cause ’Yes’ and ’No’ cannot easily be approximated (although fuzzy logic is try-
ing to do exactly that). So decision problems are not something that we look at
in approximation, instead we look at optimization problems.

In optimization the algorithm is supposed not only to say ’Yes’ or ’No’, but
actually produce a solution, and solutions they have costs which reflect their
value. There is always the best possible solution, which is either the largest or
the smallest possible cost. So we are talking about maximization or minimiza-
tion problems.

So optimum, OPT for short, is either the biggest possible value or the small-
est possible value that can arise as a result. In either case we can look at an
interval around this optimum, which is of ε · OPT width. The figure on the foil
illustrates this. You can think of this epsilon as begin k percent, say 10 percent.
So ε is something like a small constant, i.e. 10 percent would give ε = 0.1.

The question that we are asking here is: Can we find an algorithm that doesn’t
necessarily give us the optimal solution, but some "reasonable good" solution?
There maybe just one out of astronomically many solutions that actually has
that optimality, but maybe there are lots of good solutions. So can the algo-
rithm find a solution that is within 10 percent from the optimum? That is a very
natural question.

We now define what a polynomial-time ε-approximation algorithm is: Given
some positive constant epsilon, given some bound, if we have an algorithm that
can certainly find a solution that is always within the epsilon bound from the

3.10. LECTURE 10 251

optimum in polynomial time – ’always’ meaning for every instance – then we
have a polynomial-time approximation algorithm for the problem.

Another way of saying the same is that the relative error |tM (n)−OPT|
OPT must be

less than or equal to the constant ε.
This definition here is different from the definition in your G&J textbook. In

G&J it is not required that epsilon is a fixed constant, a well-defined constant. It
is enough the relative error, called RA, is some epsilon. That is not a standard
definition, it is not very good. So epsilon needs to be a constant in this class,
constant meaning fixed for all problem instances.

Notice that we are still talking about the worst case, because the algorithm
has to find an ε-approximation to the optimum for all possible instances. But
we are not requiring the best possible solution anymore. So worst case is still
there, but we don’t require the best possible solution. Instead we say: Give us
an approximation to the optimum.

And if we can live with that, then some problems can be solved efficiently.
For example the TSP with the triangle inequality has a polynomial-time approx-
imation algorithm which I am going to show now.

Let me first explain what the triangle inequality is. Triangle inequality is the
kind of inequality that points in plane satisfy, and triangles also. If you have a
triangle with the three edges having costs a, b and c then you know that if this
is a nice triangle in a nice Cartesian plane, then for any pair of edges the sum
of length of those two edges must be greater than or equal to the length of the
third length. This is the triangle inequality.

The sum of two edges must be larger than the third edge because this whole
thing would otherwise not be a triangle. But if you are talking about the cities in
a normal map, then there can be a kind of bumpy mountain road going left and
right. But who cares about those guys? If you are looking at nice, honest roads
that are not too dirty and too dusty – so that your traveling sales person can use
them without getting his car messed up and his suit torn into pieces – then you
can assume rather safely that the triangle equality holds in any reasonable map.
And if that is the case, then it turns out that TSP has a natural polynomial-time
approximation algorithm, which I am going to describe now.

252 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 10

Autumn 1999 10 of 22

Algorithm TSP-4:
Phase I: Find a minimum spanning
tree.
Phase II: Use the tree to create a
tour.

2

1 1

2 2
2

s

The cost of the produced solution can not be
more than 2·OPT, otherweise the OPT tour
(minus one edge) would be a more minimal
spanning tree itself. Hence ε = 1.

Opt. tour

So assume that this graph on the foil is an instance of an optimization-TSP.
We are trying to find the shortest tour. There are some edges missing here, but
you can think of these edges as being infinite or being large numbers. So nor-
mally you have some kind of edges between every pair of cities in a distance
matrix, but since those edges can be infinite large (but they must be finite num-
bers), there are no loss of generality here.

I will explain the approximation algorithm using the example instance on
the foil. The algorithm has two phases. In phase 1 we find the MINIMUM SPAN-
NING TREE in this network, a network being a graph with edges that has dis-
tances or weights. I am showing a minimum spanning tree here in green, and
you know from our last class that there is an n log n algorithm for finding the
minimal spanning tree.

So the algorithm for solving MST is efficient, and then in phase 2 we use this
minimum spanning tree to construct an optimal tour. That is the interesting
part, and this is how it works: Think of this minimum spanning tree as being a
tour. It is not a tour really, but think of it as being a tour. And it would be a kind
of a tour where we start from vertex s, and then we go along the edges, visiting
this tree in a depth first order. So we do just simply a depth-first enumeration
of the tree. We go around the tree on one side, and then we go around the same
edges on the other side and come back to s. I have marked this tour in red.

The problem with the tour is that it is not really a Hamiltonian tour, because
we are going along each edge in the spanning tree two times. But the good
thing about it is that we know its cost. The cost of this red pseudo-tour that I

3.10. LECTURE 10 253

have made, is 2 times the cost of the minimum spanning tree, and I claim that
that cost cannot be more than 2 times the optimal solution.

To prove this claim I have to show that the cost of the optimal solution can-
not possibly be smaller than the cost of the minimum spanning tree. That is
easy to show because an optimal solution to TSP is a cycle in the graph, and if
this cycle would cost less than the minimum spanning tree, we could then ob-
tain a more minimal spanning tree by just leaving out one of the edges in the
cycle. So the optimum solution must cost at least as much as the minimum
spanning tree.

This means that if we have a solution that cost no more than this red pseudo-
tour, then this solution will cost not more than 2 times the cost of the minimum
spanning tree and also not more than then 2 times the optimum. So it is an
approximation with ε = 1.

Now we construct such a solution from our red pseudo-tour. The solution
follows the red line for a while until the red line starts doing weird things like
visiting a vertex it has already been at. So when your red pseudo-tour revisits a
vertex and then goes to a new vertex, our new solution would go directly to that
new vertex. And by virtue of the triangle inequality this new red-dotted path
fragment is not any longer than the old red path fragment.

If our red path does the same weird thing again – going back to a vertex that
has already been visited – then we do the same trick once more: We go directly
to the next vertex on the red line. And so on and so force. Because of the triangle
inequality, we don’t make the solution worse by taking these shortcuts.

So these two phases put together give us a TSP-solution which is within
epsilon= 1 from the optimum. And it works in polynomial time because phase
1 works in timeO (n log n) while phase 2 works in linear time. So the whole thing
is an extremely efficient algorithm for approximating TSP on graphs where the
triangle inequality holds.

254 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 10

Autumn 1999 11 of 22

Theorem 3 TSP has no polynomial-time
ε-approximation algorithm for any ε unless
P=NP.

Proof:
Idea: Given ε, make a reduction from
HAMILTONICITY which has only one solution
within the ε-neighborhood from OPT, namely
the optimal solution itself.

a

b c

d
∝

a b c d

a 2+ε n 1 2+ε n 1
b 1 2+ε n 1 2+ε n
c 2+ε n 1 2+ε n 1
d 1 2+ε n 1 2+ε n

K = n(= 4)

The error resulting from picking a non-edge
is: Approx.solutin - OPT =
(n− 1 + 2 + εn)− n = (1 + ε)n > εn

Hence a polynomial-time ε-approximation
algorithm for TSP combined with the above
reduction would solve HAMILTONICITY in
polynomial time.

Now we will look at the other side of the coin. We are going to show that un-
lessP=NP the original TSP, TSP without triangle inequality, has no polynomial-
time approximation algorithm for any epsilon. In other words, I am going to
show that if there is a polynomial-time approximation algorithm for TSP for
some epsilon, then immediately we can solve all theNP-complete problems in
polynomial-time, meaning that P=NP .

The idea is again that we use the standard reduction from HAMILTONICITY,
but when we do the reduction we choose the numbers in the TSP-instance such
that there will be one and only one solution in the epsilon interval around the
optimum. That one and only one is of course the optimal solution, and finding
an approximate solution within epsilon, would mean finding the exact solution.
It is as simple as that.

In the standard reduction we begin with an instance of HAMILTONICITY, like
on the foil, and we are creating a TSP distance matrix. Because we are not
obliged to fulfil the triangle inequality constraint, we can choose any numbers
we like. For edges we choose 1’s as before, but for non-edges we choose some
huge number. So that if ever we end up choosing one non-edge in the tour, au-
tomatically the overall solution is going to fall out of this epsilon interval around
the optimum – the optimum being n if the graph is Hamiltonian.

It turns out to be enough to translate non-edges into 2 + εn. So that if we
take n− 1 edges and 1 non-edge, the tour will cost (n− 1) + (2 + εn). The error,
which means how much we deviate from the optimal cost n, is then (1 + ε)n,
which is always bigger than εn.

3.10. LECTURE 10 255

So even the smallest possible error, which happens if we choose one non-
edge in our Hamiltonian graph, gives an approximate solution that is not within
an epsilon-interval from the optimum. This means that any algorithm that ap-
proximate TSP within epsilon, actually finds the optimal TSP-tour in this re-
duced instance, and it solves the HAMILTONICITY problem by virtue of this re-
duction. And by solving HAMILTONICITY it solves all other NP-problems be-
cause all problems in NP are reducible in polynomial time to HAMILTONICITY

by virtue of HAMILTONICITY beingNP-complete.

256 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 10

Autumn 1999 12 of 22

Example: VERTEX COVER

•Heuristics are a common way of dealing with
intractable (optimization) problems in
practice.

•Heuristics differ from algorithms in that they
have no performance guarantees, i.e. they
don’t always find the (best) solution.

A greedy heuristic for VERTEX COVER-opt.:

Heuristic VC-H1:
Repeat until all edges are covered:

1.Cover highest-degree vertex v;
2.Remove v (with edges) from

graph;

Theorem 4 The heuristic VC-H1 is not an
ε-approximation algorithm for VERTEX

COVER-opt. for any fixed ε.

We will now go through another example, namely VERTEX COVER. The opti-
mization version of VC asks for the smallest set of vertices covering all the edges.
We will first see an approximation algorithm based on a heuristics.

Heuristics are a common way of dealing with intractable problems in prac-
tice, and especially optimization problems. A heuristic is often based on a rule
of thumb and is widely used in the field of artificial intelligence (AI) to model
human behavior and reasoning. Heuristics differ from algorithms in that they
have no performance guarantees. A heuristic for an optimization problem does
not always find the best solution.

On the foil there is a greedy heuristic for VC, which we will call VC-H1:
"Cover the highest-degree vertex v and remove v and its edges from the graph.
Repeat this until all edges are covered."

What is the idea? Remember that we are trying to put guards on intersec-
tions so that all streets are surveyed with as few guards as possible. Look at the
example on the foil: Wouldn’t it be the most natural thing in the world to put
a guard on this red intersection because there are so many streets coming out
of here? And once you have that then already all these streets are covered, and
then you need only one more here on the other red vertex. So this is obviously
the optimum.

So you would think that this kind of approach should work very well: You
pick the highest-degree vertex, put a guard on that vertex and then remove the
vertex from the graph together with the incident edges, and then look at the
rest. In our example the rest is already only one edge, so you put one guard here

3.10. LECTURE 10 257

and you have a nice solution.
The question is: How well does this greedy heuristic really work for solving

the optimization version of VERTEX COVER – for finding the minimum number
of guards needed? And you would expect that it works pretty well.

If you want to answer this question, then there are two approaches to follow:
One is trying to prove that the heuristics work. Another is trying to prove that
it doesn’t work. We have seen lots of "positive" proofs in this class already, but
how do we prove that something doesn’t hold? It is in fact much easier than
proving that something holds in all possible cases. To disprove something, it is
enough to show one ’counterexample’: You present a kind of a bad instance of
a problem and show that your heuristic or algorithm does poorly on that bad
instance.

I am going to show that this completely natural heuristic can do very poorly,
by cooking up a bad instance of the problem – in jargon it is called an ’con-
terexample’. This bad instance will in fact be a pattern which proves that VC-H1
is not an ε-approximation algorithm for optimization-VC for any fixed epsilon.
This means that no matter how big you choose the constant ε, I will be able
to construct an instance, based on this pattern, such that VC-H1 fails to find a
solution within epsilon from the optimum.

258 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 10

Autumn 1999 13 of 22

Proof:
Show a counterexample, i.e. cook up
an instance where the heuristic per-
forms badly.

Counterexample:

• A graph with nodes a1, . . . , an and b1, . . . , bn.

• Node bi is only connected to node ai.

• A bunch of c-nodes connected to a-nodes in
the following way:

— Node c1 is connected to a1 and a2. Node c2 is
connected to a3 and a4, etc.

— Node cn/2+1 is connected to a1, a2 and a3.
Node cn/2+2 is connected to a4, a5 and a6, etc.

— . . .
— Node cm−1 is connected to a1, a2, . . . an−1.
— Node cm is connected to all a-nodes.

...

b2

a1

b1 b6b5b4b3

a6a5a4a3a2

c2 c3 c4 c5 cmc1

So I am cooking up a bad instance of VC where the heuristic performs badly,
and this is how I do it: I have a graph with a bunch of ai vertices and a bunch
of bi vertices – n of each. a1 is connected to b1, a2 to b2 and so on, as shown on
the foil. I have also a huge number of ci vertices which are connected to the
a-vertices in a way I will describe soon.

We can see immediately that the optimal solution is to cover all the a-vertices,
because they are connected to all the b- and c-vertices. So the optimal solution
has cost n.

I am going to fool the heuristic by connecting the c-vertices to the a-vertices
in such a way that the heuristic will cover all the c-vertices before the a-vertices,
because in each step it will be one of the c-vertices which has the highest degree.
So the algorithm will do lot of unnecessary work before covering then a-vertices
(or b-vertices), which have to be covered in the end anyway.

This is how it works: I connect the first c-vertex with the first two a-vertices,
then the second c-vertex with the second two a-vertices, then the third with
c-vertex the next two, and so on until all a-vertices have been connected to a
c-vertex.

I continue by connecting vertex cn/2+1 with the three first a-vertices, cn/2+2

with the next three a-vertices, and so on until all a-vertices have been connected
once more. Then I connected the next c-vertex with the first four a-vertices,
and so on – the pattern should be visible now. The last c-vertex, cm, will be
connected to all n a-vertices.

3.10. LECTURE 10 259

(This is a blank page)

260 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 10

Autumn 1999 14 of 22

• The optimal solution OPT requires
n guards (on all a-nodes).

• VC-H1 first covers all the c-nodes (starting
with cm) before covering the a-nodes.

• The number of c-nodes are of order n logn.

• Relative error for VC-H1 on this instance:
|VC-H1| − |OPT|

|OPT|
=

(n log n+ n)− n

n

=
n log n

n
= log n 6= ε

• The relative error grows as a function ofn.

Heuristic VC-H2:
Repeat until all edges are covered:

1.Pick an edge e;
2.Cover and remove

both endpoints of e.

• Since at least one endpoint of every edge
must be covered, |VC-H2| ≤ 2 · |OPT|.

• So VC-H2 is a polynomial-time
ε-approximation algorithm for VC with ε = 1.

• Surpisingly, this “stupid-looking” algorithm is
the best (worst case) approximation
algorithm known for VERTEX COVER-opt.

So all c-vertices will have high degrees, and cm the highest of them all. So VC-
H1 is going to pick cm first and remove it from the graph. It is quite easy to see
that cm−1 is now the highest-degree vertex, because that is how we constructed
the edges between the c- and a-vertices. And then comes cm−2, etc. all the way
down to c1. So all the c-vertices will be chosen before any a-vertex.

How many c-vertices do I have? It turns out that I have approximately n log n
of them when you do the counting properly. So instead of picking just n a-
vertices, I pick n log n c-vertices and then n a-vertices. So my heuristic is going
to end up with a solution which is of costO (nlogn) instead of nwhich is the op-
timum. And the ratio between these two solutions is ’actual cost minus optimal
cost divided by optimal cost’. This is called the relative error.

We see that on this instance the relative error is O (log n). And this is not a
constant. It is actually something that grows with n. – it is a function of n. So
this heuristic does in fact very poorly in the worst case.

I will now show you another heuristic which have a better worst-case perfor-
mance – and mind you, we are talking about worst-case here. Heuristic VC-H2
says: "Pick an edge. Cover and remove both of its endpoints! Repeat until all
edges have been covered."

This sounds completely absurd. Why should we place guards on both ends
of the edge when – as far as that edge is concerned – you need a guard only on
one side. That is surely not going to be an optimal solution. The point is that
this gives us a simple performance measure: The edge e we have picked, the
fact that e is an edge in the graph implies that any solution to the VERTEX COVER

3.10. LECTURE 10 261

problem must have one of e’s endpoints covered. Here in VC-H2 we are covering
both endpoints. So we are introducing only a factor 2, a constant factor.

The solution you get in this way is only at most by a constant factor 2 worse
than the best possible solution. In other words: VC-H2 is an approximation
algorithm to VC with ε = 1.

This absurd heuristic is actually better in the worst case than the completely
natural VC-H1. And VC-H2 is actually the best worst-case polynomial-time ap-
proximation algorithm known for VC. This should give you an indication that
although worst-case performance is easy to analyze, it doesn’t always model
real-world complexity very well.

262 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 10

Autumn 1999 15 of 22

Polynomial-time approximation
schemes (PTAS)

I

ε
Algorithm

M from OPT

solution within
ε-neighborhood

Running time of M is O (Pε(|I|))
where Pε(n) is a polynomial in n and
also a function of ε.

Def. 4 M is a polynomial-time
approximation scheme (PTAS) for
optimization problem L if given an instance I
of L and value ε > 0 as input

1. M produces a solution whose cost is within
an ε-neigborhood from the optimum (OPT)
and

2. M runs in time which is bounded by a
polynomial (depending on ε) in |I|.

M is a fully polynomial-time approximation
scheme (FPTAS) if it runs in time bounded by
a polynomial in |I| and 1/ε.

Example: 0-1 KNAPSACK-optimization has a
FPTAS.

So some problems have polynomial-time approximation algorithms for cer-
tain epsilons, other don’t unless P=NP . The question now is: How big is this
epsilon? And for some problems there are natural limitations to how much you
can approximate the problem, but other problems can be approximated arbi-
trarily precisely. ’Arbitrarily precisely’ meaning the following: You give me an
epsilon and I give a solution that is within epsilon from the optimum, no mat-
ter how small your epsilon is.

You say: "I want a solution that is within 1 percent from the optimum." And
I say: "OK, I give you that solution." So if I am an algorithm capable of pro-
ducing such solutions efficiently, meaning in polynomial time in the size of the
instance, then I call myself a polynomial-time approximation scheme (PTAS).

Let me tell you just before I dive into technicalities that this is the best way
you can approximate problems. These PTAS they are like really very sleek solu-
tions to optimization problems and to this whole issue of intractability.

Here is the idea behind a PTAS: Think of this box on the foil being an algo-
rithm, and then the algorithm will take two pieces of information as input: One
is the original instance I, the other is this epsilon. You, the customer, are saying:
"Give me a solution which is within epsilon, say, 10 percent from the optimum."

And the algorithm is then going to produce that kind of solution that is
within epsilon from the optimum, in time which is polynomial in the size of
the instance. But obviously that polynomial is itself depending on epsilon (i.e.
has epsilon in it). So the smaller the epsilon – the more precision you want –
the more time this algorithm is going to take. But if you say: "For the rest of my

3.10. LECTURE 10 263

life I want to give you solutions that is within 10 percent from the optimum."
Then you fix epsilon to 10 percent and the whole thing is going to be polyno-
mial. It is going to give you approximate solutions within epsilon in time which
is polynomial in the size of the input.

So these schemes they are really like families of algorithms – one algorithm
for each epsilon. Here is a formal definition of a PTAS:M is a polynomial-time
approximation scheme (PTAS) for optimization problemL if given an instance
I of L and a positive value epsilon as input: One, M produces a solution whose
cost is within an epsilon-neighborhood from the optimum. Two: M runs in
time which is bounded by a polynomial in |I|. That polynomial is allowed to be
depending on epsilon.

If in addition to all this M happens to run in time which is bounded by a
polynomial in |I| and 1/ε, then we say thatM is a fully polynomial-time approx-
imation scheme, FPTAS. So we are not only saying that the algorithm runs in
time which is polynomial in I, but it is also a polynomial in 1 over epsilon. It is
a very strict condition on how your polynomial may depend on epsilon.

We are now going to see, as an example, a FPTAS for the optimization version
of 0-1 KNAPSACK.

264 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 10

Autumn 1999 16 of 22

0-1 KNAPSACK-optimization

Instance: 2n+ 1 integers: Weights w1, . . . , wn
and costs c1, . . . , cn and maximum weight K.

Question: Maximize the total cost
n∑
j=1

cjxj

subject to
n∑
j=1

wjxj ≤ K and xj = 0, 1

Image: We want to maximize the total value
of the items we put into our knapsack, but the
knapsack cannot have total weight more than
K and we are only allowed to bring one copy
of each item.

Note: Without loss of generality, we shall
assume that all individual weights wj are≤ K.

0-1 KNAPSACK-opt. can be solved in
pseudo-polynomial time by dynamic
programming. Idea: Going through all the
items one by one, maintain an (ordered) set
M of pairs (S,C) where S is a subset of the
items (represented by their indexes) seen so
far, such that S is the “lightest” subset having
total cost equal C.

We have just seen the decision version of the 0-1 KNAPSACK. An instance
to the optimization version contains n weights wi and a maximum knapsack
capacity K. This is just like in the decision version. But in addition to that each
item is now given a value or cost cj . So for example a compass is of huge value
and is very light, while a television set is heavy and not of much value up in the
mountains.

We want to maximize the total value of the items we put into the knapsack,
but the knapsack cannot have total weight more thanK and we are only allowed
to bring one copy of each item. I have written the same question in a more
linear-programming kind of style on the foil.

With loss of generality, we shall assume that alle individual weights are less
than or equal toK. That is a very reasonable assumption – we are not interested
in items which cannot even fit into an empty knapsack.

It turns out that the optimization version of 0-1 KNAPSACK can be solved in
pseudo-polynomial time by dynamic programming, in almost exactly the same
as the decision version could. The algorithm is just a variant of what we have
seen before.

The idea is to go through all items one by one, maintaining an (ordered) set
M of pairs (S,C) where S is the lightest set among the subsets of items seen so
far having total cost C. So we again build up partial solutions, extending and
improving them as we process more and more items.

3.10. LECTURE 10 265

(This is a blank page)

266 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 10

Autumn 1999 17 of 22

Algorithm DP-OPT
1.Let M0 := {(∅, 0)}.
2.For j = 1, 2, . . . , n do steps (a)-(c):

(a) Let Mj := Mj−1.
(b) For each elem. (S,C) of Mj−1:

If
∑

i∈s wi + wj ≤ K, then add
(S ∪ {j}, C + cj) to Mj.

(c) Examine Mj for pairs of
elements (S,C) and (S′, C)
with the same 2nd component.
For each such pair, delete
(S′, C) if

∑
i∈s′ wi ≥

∑
i∈S wi

and delete (S,C) otherwise.
3.The optimal solution is S where
(S,C) is the element of Mn having
the larges second component.

• The running time of DP-OPT is
O
(
n2Cm log(nCmWm)

)
where Cm and Wm

are the largest cost and weight,
respectively.

Here I have given the algorithm in pseudo-code. We are looping through all
items and for each item i we do the following:

First we make a new copy of the setM . As explained earlier this is to prevent
that we put the same item into the knapsack twice.

Then we go through each element (S,C) in Mi−1 and check whether we get
a new partial solution by adding element i to S, meaning that the total weight
of the elements in S plus element i is less than K. If so, then we add the new
element, consisting of S plus iwith the corresponding total cost, toMi.

In order to avoid having an exponential large set M , we have to do some
cleaning up. The key observation is that if we have two elements with the same
second component – meaning with the same cost – in the set M then we can
delete the one which has the bigger weight. Because we don’t want to exceed
total weight K, and if some set with the same total cost already has a bigger
weight after considered the same elements, then putting in new elements will
not help.

This cleaning-up we do as the third step in the loop, and we can do it ef-
ficiently if we keep the set M ordered on the elements’ second component,
namely their total weight C.

After looping through all n items, we can conclude that the optimal solution
is S where (S,C) is the element of Mn having the largest second component.

So in effect what we are doing is that we have a big sack M , and we keep
putting in all partial solutions which have weight less than or equal than our
limit K. And when we find two solutions which have the same cost, we simply

3.10. LECTURE 10 267

throw away the one that has the bigger weight, because that one is uninteresting
for us. In the end we find the solution inside the bag having the biggest possible
total cost, and we say that is our best solution.

How much time does this algorithm take? We have an outer loop which will
be repeated for all n items – that’s a factor n. We are keeping at most

∑
cj ≤

n · Cm elements in M by virtue of this throwing away business, where Cm is the
biggest cost among all items. For each of those n · Cm elements we compute
their sum of weights in 2b and 2c, but we don’t need to recompute it for every
iteration of the loop. We can store the result somewhere. Computing a weight
sum takesO (n logWm) time, where Wm is the largest weight, because each ele-
ment inM consists of at most n items. In 2b and 2c we need to be able to insert,
delete and search in the set M , which can be done in timeO (log(nCm)).

A little bit of calculation will show that our solution isO
(
n2Cm log(nCmWm)

)
.

268 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 10

Autumn 1999 18 of 22

Example: Consider the following instance of
0-1 KNAPSACK-opt.

j 1 2 3 4

wj 1 1 3 2

cj 6 11 17 3

K = 5

Running the DP-OPT algorithm results in the
following sets:

M0 =
{

(∅, 0)
}

M1 =
{

(∅, 0), ({1}, 6)
}

M2 =
{

(∅, 0), ({1}, 6), ({2}, 11), ({1, 2}, 17)
}

M3 =
{

(∅, 0), ({1}, 6), ({2}, 11), ({1, 2}, 17),
({1, 3}, 23), ({2, 3}, 29), ({1, 2, 3}, 34)

}
M4 =

{
(∅, 0), ({4}, 3), ({1}, 6), ({1, 4}, 9),

({2}, 11), ({2, 4}, 14), ({1, 2}, 17), ({1, 2, 4}, 20),
({1, 3}, 23), ({2, 3}, 29), ({1, 2, 3}, 34)

}
Hence the optimal subset is {1, 2, 3}with∑

j∈S cj = 34.

Here I am showing how the DP-OPT algorithm actually runs on a certain
problem instance. Notice that we just keep the item indexes in the set S, not
the items themselves. So ({1, 2}, 17) means that items 1 and 2 together have a
cost of 17. You should study this example carefully in order to understand the
algorithm.

3.10. LECTURE 10 269

IN210 − lecture 10

Autumn 1999 19 of 22

The FTPAS for 0-1 KNAPSACK-optimization
combines the DP-OPT algorithm with
rounding-off of input values:

j 1 2 3 4 5 6 7

wj 4 1 2 3 2 1 2

cj 299 73 159 221 137 89 157

K = 10

The optimal solution S = {1, 2, 3, 6, 7} gives∑
j∈S cj = 777.

j 1 2 3 4 5 6 7

wj 4 1 2 3 2 1 2

cj 290 70 150 220 130 80 150

K = 10

The best solution, given the trunctation of the
last digit in all costs, is S′ = {1, 3, 4, 6}with∑

j∈S′ cj = 740.

The next step is to turn DP-OPT into an approximation algorithm APPROX-
DP-OPT. APPROX-DP-OPT will essentially consist of two phases: Phase I will be
rounding off the input values, and phase II will be running the algorithm that
we have just seen, DP-OPT, on this modified instance.

These two phases together give us a FPTAS, the kind of miracle polynomial-
time algorithm that for any given epsilon can produce solutions that are within
epsilon from the optimum.

So before we go into details, let me just illustrates how these two phases
works. On the foil is an instance of 0-1 KNAPSACK with 7 elements and K equal
10. The question is: Can we combine elements such that the total weight is no
more than 10, and so that the elements combined have the maximum possible
cost or value.

The best solution found by dynamic programming or branch and bound is
elements 1, 2, 3, 6 and 7. The sum of their costs is 777. If we truncate the last
digit of each elements cost, meaning approximating the costs by replacing the
last digit with 0, then we have a different solution – namely elements 1, 3, 4 and
6, with total cost 740. This is about 5 percent from the optimal solution for the
non-truncated costs. It is a good, decent solution.

270 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 10

Autumn 1999 20 of 22

Algorithm APPROX-DP-OPT

• Given an instance I of 0-1 KNAPSACK-opt
and a number t, truncate (round off
downward) t digits of each cost cj in I.

• Run the DP-OPT algorithm on this
truncated instance.

• Give the answer as an approximation of
the optimal solution for I.

Idea:

• Truncating t digits of all costs, reduces the
number of possible “cost sums” by a factor
exponential in t. This implies that the
running time drops exponentially.

• Truncating error relative to reduction in
instance size is “exponentially small”:

Cm = 53501 87959︸ ︷︷ ︸
half of length
but only 10−5 of
precision

We now give a rough pseudo-code of the APPROX-DP-OPT algorithm: Given
an instance I of 0-1 KNAPSACK and a number t, it will first truncate (round off
downward) t digits of each cost cj in I. Then it will run the DP-OPT algorithm
on this truncated instance. Finally it will return the answer from DP-OPT as an
approximation of the optimal solution for I.

In practice, already with a little bit of truncation this works very well, as il-
lustrated by the example on the previous foil. The question now is: "How can
this be a way of getting around intractability?" Let me tell you how: Think of
the pseudo-polynomial-time algorithm DP-OPT which basically works in time
polynomial in n, Cm and some log-factor – where Cm is the largest cost in the
input. The reason why DP-OPT is not a real polynomial algorithm is the size of
the set M , which can be as big as nCm. This size is exponential in the length of
the input because Cm is coded in binary.

What happens when we truncate t digits? Eliminating t digits will actually
reduce the number of possible total cost sums by a factor exponential in t. So
there will be exponentially fewer possible elements in the set M , because each
element inM has a different total cost. The "number value" ofCm will also drop
exponentially. This means that the running time drops exponentially in t. But
what happens with precision?

We are truncating from below. So who cares about these lower-order digits?
Not much of precision is lost. Let’s assume Cm has 10 digits and t = 5, meaning
that we truncate half of the digits. We then know that a pseudo-polynomial-
time algorithm will gain something like 105 factor in running time, but in pre-

3.10. LECTURE 10 271

cision, what we have lost? We have lost only 10−5 of precision because we are
keeping the higher order digits – throwing away the least significant bits.

I am giving you intuition. This intuition should suggest that in fact trun-
cating is what does a miracle here, combined with a pseudo-polynomial time
algorithm, because it gives us great savings in running time with a small loss in
precision – exponential saving in running time with "exponentially small" loss
of precision.

272 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 10

Autumn 1999 21 of 22

Theorem 5 APPROX-DP-OPT is a FPTAS for
0-1 KNAPSACK-opt.

Proof: Let S and S′ be the optimal solution of
the original and the truncated instance of 0-1
KNAPSACK-opt., respectively. Let cj and cj be
the original and truncated version of the cost
associated with element j. Let t be the
number of truncated digits. Then∑

j∈S

cj
(1)

≥
∑
j∈S′

cj
(2)

≥
∑
j∈S′

cj
(3)

≥
∑
j∈S

cj

(4)

≥
∑
j∈S

(cj − 10t)
(5)

≥
∑
j∈S

cj − n · 10t

1. because S is a optimal solution

2. because we round off downward (cj ≤ cj
for all j)

3. because S′ is a optimal solution for the
truncated instance

4. because we truncate t digits

5. because S has at most n elements

This means that the have an upper bound on
the error: ∑

j∈S

cj −
∑
j∈S′

cj ≤ n · 10t

Now I am going to show you the proof that APPROX-DP-OPT is in fact a fully
polynomial-time approximation scheme for 0-1 KNAPSACK. This means prov-
ing two things: One, that the error – meaning how far from the optimum the
approximated solution can be – is bounded by the constant epsilon given as
part of the input. Two, that the running time of APPROX-DP-OPT is bounded by
a polynomial in n and 1/ε.

The main part of the proof is a series of inequalities giving a bound on the
error. Let S and S′ be the optimal solution of the original and truncated in-
stance of 0-1 KNAPSACK, respectively. Let cj and cj be the original and trun-
cated version of the cost associated with element j. Finally, let t be the number
of truncated digits.

The validity of the inequality series is explained on the foil. Together they
give us a bound on the error, which is the difference between the optimal solu-
tion and the truncated solution. This error is less than or equal to n · 10t, where
t is the number of truncated digits.

3.10. LECTURE 10 273

IN210 − lecture 10

Autumn 1999 22 of 22

• Running time of DP-OPT is
O
(
n2Cm log(nCmWm)

)
where Cm and Wm

are the largest cost and weight,
respectively.

• Running time of APPROX-DP-OPT is
O
(
n2Cm log(nCmWm)10−t

)
because by

truncating t digits we have reduced the
number of possible “cost sums” by a factor
10t.

• Relative error ε is∑
j∈S cj −

∑
j∈S′ cj∑

j∈S cj

(1)

≤
n · 10t

cm
, ε

1. because our assumption that each
individual weight wj is≤ K ensures that∑

j∈S cj ≥ Cm (the item with cost Cm
always fits into an empty knapsack).

• Given any ε > 0, by truncating
t = blog10

ε·cm
n
c digits APPROX-DP-OPT is an

ε-approximation algorihtm for 0-1
KNAPSACK-opt with running time

O
(
n3 log(nCmWm)

ε

)
.

We have seen that the running time of the DP-OPT algorithm is bounded by
O
(
n2Cm log(nCmWm)

)
, where Cm and Wm are the biggest cost and weight, re-

spectively. The running time of APPROX-DP-OPT isO
(
n2Cm log(nCmWm)10−t

)
because by truncating t digits we have reduced the number of possible "cost
sums" – and thereby the maximum number of elements in M – by a factor 10t.

The relative error is defined as optimal solution−approximated solution
optimal solution . It is no more

than n · 10t divided by Cm because we have already calculated an upper bound
on “optimal solution - approximated solution”, and our assumption that each
individual weight wj is less than or equal to K ensures that

∑
j∈S cj ≥ Cm (the

item with cost Cm always fits into an empty knapsack).
We define (n · 10t)/Cm to be equal to ε. Then given any ε > 0 as input, by

truncating t = blog10
ε·cm
n c digits APPROX-DP-OPT is an ε-approximation algo-

rihtm for 0-1 KNAPSACK-opt with running timeO
(
n3 log(nCmWm)

ε

)
.

Now we have come to the end. This whole thing is a proof that our approxi-
mation algorithm is a fully polynomial-time approximation scheme. The mean-
ing of this is that given an epsilon, the algorithm can give us an approximation
that is within epsilon from the optimum. The algorithm does it by choosing this
t, which is depending on epsilon, truncating t digits and running the algorithm
in time which is polynomial in the size of the input and in 1/ε.

274 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

3.11 Lecture 11

IN210 − lecture 11

Autumn 1999 1 of 8

Average-case analysis &
algorithms

Worst case

This is lesson eleven, and we have now constructed a whole theory, a kind of
a map on which we placed problems according to their complexity or difficulty.
And at this point we are looking at alternative approaches to algorithm analysis
and design, which are based on some possible weaknesses of the theory that
we have constructed. And which allow us to solve problems in practice that
according to our theory seem exceedingly difficult.

Often there are problems which in the worst case cannot really be solved ef-
ficiently. There are always some problem instances that are too difficult to solve
according to the theoreticians. But then there are people who deal with those
problems routinely, who solve them and who would say to the theoreticians:
"Who cares if your problem isNP-complete? We have to solve those problems,
and we do solve them."

So today we are going to talk about average-case analysis and corresponding
algorithms. And I am first going to tell you a little story that is kind of a very
strong argument against worst-case analysis, which is what we have done so
far.

What you see in the picture on the foil is a computer scientist, a theoretician
presumably, lying in bed in the morning as he woke up. He is thinking about
his day, about what he is going to do. He is supposed to go to work and teach a
class in algorithm theory, and he is thinking about his standard way of coming
to work. Normally he would just go into his car, start the car and drive to work.

3.11. LECTURE 11 275

It takes about 15 minutes to get there.
But he is thinking about the worst case, the worst possible scenario, and he is

thinking about whether his standard algorithm, namely driving to work, solves
the problem efficiently in the worst case.

Now what is the worst case? You can think of all kinds of disasters happen-
ing, like his car breaking down when he tries to start it, the car not starting –
there are all kinds of things that can happen. But ignore those, think that his car
is working. Then what happens is: Right at the very moment when he is about
to drive out of his garage, all the cars from the cities, they just for some reason
pile up into his street, and then there is that endless row of cars. He cannot even
come out of his driveway, not of speaking about getting to work on time. It takes
the whole day to drive to work – at least.

So our computer scientist, still in bed, he decides that his standard solution
in fact doesn’t work. He either has to buy a helicopter to drive to work, or just
give up the whole thing all together because the problem is hopeless.

This illustrates a situation with worst-case analysis. Worst-case analysis is
not just pessimistic, it is in a way totally misleading. The good thing about it
is that it can be done. It is manageable, theoretically. It is relatively easy to do
the analysis. But basing our solutions on the worst case, on the worst possible
instance of a problem, it is not a very good idea. It is not very natural and as we
have seen, it can be very misleading.

So this is a warning to you to take everything that you hear in your class,
especially also in this class, with a grain of salt. Analyze all theories carefully
to see what they really mean. So a theory that is based on worst case is in fact
useful, but it can also be in very misleading, and because of that we are able to
solve in practice some problems that according to the worst-case theory seems
intractable or unsolvable.

A more realistic approach to algorithm analysis is the average-case analysis
where we try to not just look at the worst case, but we try to look at the typical
situations, in a certain sense.

276 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 11

Autumn 1999 2 of 8

• Problem = (L, Pr) where Pr is a probability
function over the input strings:
Pr :

∑∗ → [0, 1].

•
∑

x∈
∑∗ Pr(x) = 1 (the probabilities must sum

up to 1).

• Average time of an algorithm:

TA(n) =
∑

{x∈
∑∗ ∣∣ |x|=n}TA(x)Pr(x)

• Key issue: How to choose Pr so that it is a
realistic model of reality.

• Natural solution: Assume that all instances of
length n are equally probable (uniform
distribution).

In average-case analysis, in addition to the language L that defines a prob-
lem, we introduce a probability function which assigns to every possible string,
or to every possible instance of a problem, a probability number between zero
and one.

The meaning of this probability is obviously. It’s the probability of that par-
ticular instance arising as an instance of the problem in practice. So the proba-
bility models the practical likelihood of an instance. And of course we want all
the probabilities over the instances to sum up to 1, meaning 100%. Because we
will get as input either this instance or that instance or that instance or . . .

If we happen to have those probabilities, then we can estimate the average
time of an algorithm as the sum over all possible instances of length n of the
time the algorithm takes on that instance times the probability of the instance
arising. You would call this ’expectation’ in probability theory. So this is ex-
pected time or average time.

The problem in practice is of course how to choose this function Pr so that
Pr is more or less realistic. The way this problem is solved routinely, is to say:
Since we really don’t know anything about the practical instances, let’s assume
that all instances of length n are equally probable.

3.11. LECTURE 11 277

(This is a blank page)

278 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 11

Autumn 1999 3 of 8

Random graphs

Uniform probability model (UPM)
• Every graph G has equal probability

• If the number of nodes = n, then
Pr(G) = 1

#graphs = 1

2(n2)
, where

(
n
2

)
= n(n−1)

2

•UPM is more natural for interpretation

Independent edge probability model (IEPM)
• Every possible edge in a graph G has equal

probabilility p of occuring

• The edges are independent in the sense that
for each pair (s, t) of vertices, we make a new
toss with the coin to decide whether there will
be an edge between s and t.

• For p = 1
2 IEPM is identical to UPM:

Pr(G) =

(
1

2

)m
·

(
1

2

)(n2)−m
=

1

2(n2)

• IEPM is easier to work with

So the most natural way to assign probabilities is to assume that all instances
of length n have the same probability of occurring. And if our instances are
graphs, then this way of assigning probabilities to instances gives rise to a ran-
dom graph model called the uniform probability model (UPM). In UPM we as-
sume that we have a hat, and in this hat we have all labeled graphs on n vertices
– ’labeled’ meaning that the vertices are distinct. And then we just close our
eyes and take out of the hat a graph at random.

What is the probability that a given graph will be picked from the hat? Since
we draw graphs on random, then the probability that a given graph is picked is
obviously 1 divided by the number of graphs in the hat. And in the hat we have
all labeled graphs on n vertices. Let’s count them:

Given n labeled (distinct) vertices, how many possible pairs of vertices are
there? There are n ways of choosing the first element in a pair of nodes. And as
the second element you can choose everybody else except the first node. That
gives usn−1 possibilities for the second element. We don’t permit you to choose
the first element again, because our graphs don’t have loops, meaning edges of
the form (x, x).

So we have n(n − 1) ways of choosing two vertices. Now we have to divide
this by 2 because it doesn’t matter whether we choose the first one first and the
second one second, or the second one first and the first one second, meaning:
Edge (x, y) is the same as edge (y, x) because our graph is undirected.

The number of pairs of vertices is thenn(n−1)/2. This number is also known
as
(
n
2

)
– the number of ways to choose 2 elements out of n distinct ones. In a

3.11. LECTURE 11 279

given graph each such pair of vertices can either be an edge or it can be a non-
edge. That gives us 2 choices for each pair of vertices, and all together we can

construct 2 · 2 · 2 · · · · 2 = 2(n2) different graphs.

So there are 2(n2) possible labeled graphs on n vertices, and each one of them

has the probability 1/2(n2).
The uniform probability model is a very natural model. The problem with

UPM is that it is very difficult to work with. Why? Because if it turns out that if
my random graph has an edge here, then the fact that this being an edge influ-
ences the probability of this other pair of vertices being an edge and this other
pair and this other pair and so on. It turns out there is a lot of difficulties in
analyzing the running time of an algorithm on this kind of graph model.

A much easier model to use in algorithm analysis is the so-called indepen-
dent edge probability model (IEPM), where each pair of vertices is an edge with
probability p, some probability, and where the probability of this being an edge
and that being an edge, they are independent probabilities.

To create graphs in this model you can think that you consider each pair of
vertices and toss a coin to decide whether that pair should be an edge or not.
And if the coin turns up head, which happens with probability p, then you make
that an edge, else you make it a non-edge. You do that for every pair of vertices,
and in the end you have your graph g.

If you want to calculate the probability of the outcome of this experiment
being that particular graph g, then you just have to multiply all the individual
probabilities –

(
n
2

)
of them all together. This is legal because every coin toss is

an independent event. They don’t interfere with each other, per definition.
So if your graph g happens to have m edges and

(
n
2

)
− m non-edges, then

the probability for that graph occurring is pm · (1− p)(
n
2)−m, where (1− p) is the

probability for a non-edge.
If this coin is a fair coin, meaning that it turns up head with the probabil-

ity 1/2, then we have p equals 1/2. The overall probability for a given graph is
then 1/

(
n
2

)
, namely exactly the same probability as in the uniform probability

model. This is what happens if p is equal to 1/2. If p is something else, then the
probabilities will differ in these two models.

I will not say more about this, but the point is that IEPM is in a certain sense
a model of this situation with the hat. It is a way for us to assign probabilities to
graphs in a manner which is more conducive to analysis and which still can be
interpreted in this very natural way.

280 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 11

Autumn 1999 4 of 8

Example: 3-COLORABILITY
In 3-COLORABILITY we are given a graph as input
and we are asked to decide whether it is possible
to color the nodes using 3 different colors in
such a way that any two nodes have different
colors if there is an edge between them.

Theorem 1 3-COLORABILITY, which is an
NP-complete problem, is solvable in constant
average (expected) time on the IEPM with
p = 1/2 by a branch-and-bound algorithm (with
exponential worst-case complexity).

Proof:
Strategy (for a rough estimate): Use the indep.
edge prob. model. Estimate expected time for
finding a proof of non-3-colorability.

a

b c

d
K4 (a clique of size 4) is a proof
of non-3-colorability.

Once we have the probabilities, then the question is: What can we do? What
are the kinds of results that can come out of this average-case analysis? And
here is one sort of shocking example:

We are looking at the 3-COLORABILITY problem, which is an NP-complete
problem. The question of 3-COLORABILITY is: Can we color the vertices of a
graph with 3 colors so that both endpoints of any edge have different colors?

You can think of an application of this as being coloring a map. You can eas-
ily represent a map by a graph by representing countries with vertices and rep-
resenting borders between countries as edges. If two countries have a border,
then obviously these adjacent countries would need to be colored in different
colors. So that is one application of this graph colorability problem.

The question we are asking is: Can we color the map with 3 colors? And the
problem is known to beNP-complete. However, if we look at the average case,
then we can prove that 3-COLORABILITY is solvable in constant expected time
by a branch-and-bound algorithm, assuming the IEPM with p = 1/2.

Now, this is completely shocking because we are talking about anNP-comp-
lete problem, and we know that most probablyNP-complete problems cannot
even be solved in polynomial time. But I claim that it can be solved in constant
average time.

We know that a branch-and-bound algorithm takes exponential time in the
worst case. And constant time is even a lot shorter time than polynomial time
or than linear time. In the worst-case analysis you need linear time even to see
the whole instance, to read the data. You have to go through the entire input.

3.11. LECTURE 11 281

Here you are not even going through the entire input: In constant time, say in
exactly 197 steps, you figure out the solution no matter how large the instance
is. This sounds like a miracle.

This sort of puts all our ideas about complexity in question. Let’s see into
the miracle a little bit. How does this happen? Intuitively speaking you can say
that this happens because with IEPM and p = 1/2 almost all graphs are non-3-
colorable, and there are lots of witnesses that prove it. So after just checking a
constant number of potential witnesses, you are expected to find a witness that
proves that your instance is a ’No’-instance.

The proof of this theorem is a research paper, and the actual result is based
on analysis on a kind of recurrence relations that allow one to calculate the ex-
pected time of the branch-and-bound algorithm more or less exactly. We are
not going to do that. I am just going to show you the reason why this works. We
are going to do just a very rough estimate.

Think of the branch-and-bound algorithm as either producing a proof of
NON-3-COLORABILITY or of coloring the graph in 3 colors. What is the proof of
NON-3-COLORABILITY like? Here is one possibility: If my algorithm discovers
this subgraph in the input graph, then it can immediately say: "Look, this is not
3-colorable, because this subgraph K4 is already not 3-colorable. You need 4
colors to color this complete graph on 4 vertices." So as soon as you discover a
K4 in your input, you say: "I give up. This is not 3-colorable. I am done."

282 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 11

Autumn 1999 5 of 8

• The probability of 4 nodes being a K4:
Pr(K4) = 2−(4

2) = 2−6 = 1
128

• Expected no. of 4-vertex sets examined before
a K4 is found:
∞∑
i=1

i
(
1− 2−6

)i−1
2−6 = 2−6

∞∑
i=1

i
(
1− 2−6

)i−1

∗
= 2−6 1

(1− (1− 2−6))2

= 2−6 1

(2−6)2 =
212

26
= 26 = 128

— (1− 2−6)
i−1

2−6 is the probability that the
first K4 is found after examining exactly i
4-vertex sets.

— (∗) is correct due to the following formula
(q = 1− 2−6) from mathematics (MA100):

∞∑
i=1

iqi−1 =
δ

δq

(
∞∑
i=1

qi

)
=

δ

δq

(
q

1− q

)
=

1

(1− q)2

In a random graph based on the independent edge probability model and
with p = 1/2, then the probability of four given vertices being a complete graph

is 1/2(42)]. Because there are
(

42

)
possible graphs on 4 vertices and only one

of them is a K4. This probability is equal to 2−6 = 1/128 which is a constant
probability.

So if I look at 4 particular vertices, the probability that they are aK4 is 1/128.
Now the question is: What is the expected number of 4-vertex sets that we need
to examine before we can hope to find one configuration like this?

The expected number of trials is
∑∞

i=1 i
(
1− 2−6

)i−1
2−6. What does this sum

say really? i is the number of 4-vertex sets examined. It might seems a bit
strange to take the sum from i to infinity because given an n we have only a
finite number of possible 4-vertex sets. But we will see that the expectation is
going to be a constant, even when we take the sum to infinity. So this will only
strengthen the proof.

We know from basic probability theory (ST001/100) that in order to compute
the exactation we must sum up number of steps used times the probability for
using exactly that many steps. So i is the number of steps used – or here, the
number of 4-vertex sets examined. And (1 − 2−6)i−12−6 is the probability that
the first K4 is found after examining exactly i 4-vertex sets. So first we have
examined i − 1 sets which were not K4’s, and the probability that a 4-vertex set
is not a K4 is 1− 2−6. Then we found a K4, and that has probability 2−6.

This is quite technical, but there is a reason why I am going through it. I

3.11. LECTURE 11 283

want to show you a little bit of this probabilistic calculations, and also make a
point in the end.

The question now is: How do we estimate this sum? It is not an easy sum to
calculate. So we use a trick. First, because 2−6 is a constant we can move it out
of the sum, and then we have a sum of the form iqi−1, where i ranges from 1 to
infinity and q is a constant.

How do we calculate such a sum? We use a little trick known from MA100
that is called the formal derivation. Think of this sum here

∑
qi, which is a

nicer sum because we have got rid of one of the i’s. If we compute the derivative
of this sum with respect to q, then we get

∑
iqi−1.

So let’s first sum up
∑∞

1 qi. This sum we know how to sum up because it is
the standard kind of geometric series. The answer is q/1− q. When we compute
the derivative of this, we get 1/(1− q)2.

This means that we can basically substitute 2−6
∑∞

1 (1 − 2−6)i−1 with 2−6 ·
1/(1 − (1 − 2−6))2, and now we have just a constant expression, which can be
shown to be equal to 26 or 128.

284 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 11

Autumn 1999 6 of 8

Conlusion: Using IEPM with p = 1
2 we need to

check 128 four-vertex sets on average before we
find a K4.

Note: Random graphs with constant edge
probability are very dense (have lots of edges).
More realistic models has p as a function of n
(the number of vertices), i.e. p = 1/

√
n or p = 5/n.

So using the IEPM with p = 1/2 we need to check 128 4-vertex sets on aver-
age before finding a K4. But watch what have happened: We went through this
whole calculation, which is pretty mind-boggling, in order to figure out some-
thing which should have been obvious in the first place. Why? Look at the prob-
ability for a 4-vertex set being a K4. The probability of that event happening is
1/128, it is 1 over something. What does it mean? This means that this happens
1 time out of 128. So the expected number of trials that we need to make in
order for this event to happen once, should be 128.

The point is that in probability you can use calculations, and that is pretty
messy, but you can also just use common sense and understand what the result
should be. Here the result should obviously be 128. Common sense is a very
powerful tool in probability.

So the bottom line is that if your branch-and-bound algorithm were not do-
ing anything else but actually looking for counter-examples of 3-COLORABILITY

of the form of a K4, then after examining 128 4-vertex subgraphs, it is likely to
find a counter-example. So the expected running time for an algorithm that was
just looking for a K4, would be 128 times some constant.

After being dug down in details, let’s try to see what I am really saying here.
What are the basic insights? To begin with, this class is about theory modeling
practice. That’s the main thing. So we construct theory as a model of practice.
At this point I am trying to sort of teach you a little bit about this business, how
everything in life is relative, and how even the nicest possible theory can be
misleading. When you look at it as a theory it is such a beautiful thing. You tend

3.11. LECTURE 11 285

to believe in everything it says. And then you change the way of looking, you
look from a certain angle and you can tear the theory into pieces. You can say:
Look, how different life can really be from what the theory says.

So our theory says that NP-complete problems they cannot be solved in
polynomial time. You need exponential time unlessP=NP but we believe that
P is different fromNP . And then we know that branch-and-bound algorithms,
they take exponential time.

But I have just shown you an example where an NP-complete problem is
solved in constant time by a branch-and-bound algorithm when we use a cri-
terion for computing time which is in fact more realistic practically speaking,
namely average case instead of worst case.

The point is that when you change the way of looking, then that way of look-
ing can be more realistic, and with that more realistic way of looking you may in
fact draw conclusions which are just totally different from what you had before.

And then we did a little bit of calculation to show that calculations can be
very clever and still have the result that can be guessed right away if you just
use common sense. That is another insight.

So what is this branch-and-bound algorithm that is going to 3-color the
graph doing really? Instead of trying all possible 3-coloring – by branching – the
algorithm is focusing on the bounding part. It is trying find a counter-example.
If it finds a counterexample, this algorithm is going to stop and say: "No, this
graph is not 3-colorable." And the counterexample which disproves 3-coloring
is aK4, a complete subgraph on 4 vertices. And we have seen that the algorithm
on average needs to check 128 4-vertex subsets before finding aK4.

I am now going to criticize this approach. I am going to tell you that this
what I have just done is, in a certain sense, misleading. Here is why: A graph in
which each pair of vertices is an edge with probability 1/2 is a very dense graph,
dense meaning having many edges. What are graphs? They are relations, say,
brothers or sisters or friends. Think that you have n people and n being, say,
4 billions or 5 billions. How many pairs of these people are brothers? Or how
many pairs do know each other? Whatever your relation is, it is not that if you
pick two random people then the probability that they are brothers is 1/2. The
probability that the two people are brothers is very, very small. The point is that
these dense graphs are not really natural problem instances. Natural problem
instances are much, much sparser, sparse meaning few edges. And in a sparse
graph the probability of any 4 vertices being aK4 is much lower.

So this graph model where every graph has the same probability indepen-
dent of n, can actually be very misleading. Because that graph model favors
very dense graphs which never arises in practice. If you have 10 countries, than
a country could be neighbor with half of the other countries. But if you have
100 countries, how many neighboring countries does a country typically have?
Certainly not 50. A country cannot be a neighbor to 1/2 of the other countries
in this case. So p = C where C is a constant not depending on n is in fact an
unrealistic assumption.

So we would need to be more careful about our choice of probability func-
tion. And for a practical problem the functionP will typically not be a constant,
but it will be some kind of function of n. Maybe P is equal to 5/n or something
like that, meaning that each country in average is a neighbor with 5 other coun-
tries. This would give you a graph where a typical vertex has 5 neighbors. That
is more realistic.

286 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 11

Autumn 1999 7 of 8

0-1 Laws
as a link between probabilistic and deterministic
thinking.

Example: “Almost all” graphs are

• not 3-colorable
•Hamiltonian
• connected
• . . .

Def. 1 A property of graphs or strings or other
kind of problem instances is said to have a
zero-one law if the limit of the probability that a
graph/string/problem instance has that property
is either 0 or 1 when n tends to infinity (limn→∞).

And with this kind of p, this average-case analysis would look quite a bit dif-
ferent. However, we can learn something from this example that is very impor-
tant. That is our next story, and the story is about 0-1 laws. This is one chapter
of probabilistic analysis of algorithms, problems or sets in general.

My story will be rather intuitive. Intuitively 0-1 laws are a link between prob-
abilistic and deterministic thinking. And let me tell you a good example of this
link. Think about your program running on the computer, and the probability
of a meteorite hitting into the computer and into your building during the time
the algorithm is running.

You will say: "Who cares? These things don’t happen." Well, there is a prob-
ability that this will happen. So you may or may not take that probability into
account. Typically you don’t. You say: "Come on, there is a lot more proba-
ble that the electrical circuit will jam. There are all kinds of disasters that can
happen."

But typically you don’t think in terms of all kinds of disasters. Why? Because
intuitively you divide events into low-probability events and high-probability
events. So although this life and this world they are fundamentally probabilistic
– there is some probability of all kinds of things happening – typically events
have either probability 0 or probability 1. Probability 0 meaning that they typ-
ically don’t happen, probability 1 meaning that they typically do happen. You
wait for a train or you wait for a bus. Typically this bus comes – maybe a little
late, but typically it comes more or less on time. So you typically expect that
certain things will happen and that certain things won’t happen.

3.11. LECTURE 11 287

So it is with graphs. It turns out that most of the properties you think about
testing in graphs – such as Hamiltonicity, connectedness, 3-Colorability – if you
pick a random graph model, whatever this model is, the probability of your
graph having the property is typically either 0 or 1. Technically we say that
graphs properties tend to have 0-1 laws.

So we say that a property of graphs, strings, problem instances or whatever,
has a zero-one law if the limit of the probability that a graph/string/problem
instance has that property is either 0 or 1 when n tends to infinity (limn→∞).

If we calculate the probabilities of a graph being Hamiltonian or connected
or 3-colorable, then we will see that when P is very small, e.g. 5/n, then with
probability 1 our graph will not be connected, our graph will not be Hamilto-
nian and our graph will be 3-colorable, because there are just about no edges.

And then asP increases, at a certain very distinct point called the threshold:
Bang, the things change! So up to P of the threshold for a connectivity, the
graph will be disconnected, and then: Bang! The graph will almost certainly be
connected.

As an example, it has been calculated that the threshold function for aK4 is
p = n−2/3, meaning that if p is less than n−2/3 then almost no graph has a K4

(and therefore almost all graphs are 3-colorable) , while if p is greater than n−2/3

then almost every graph has a K4 (and virtually no graphs are 3-colorable).
0-1 laws allow us to construct algorithms which works efficiently on average,

because we use this fact that a typical instance is either a positive instance or a
negative instance. So in this example that we have just seen, we have seen that
with a very large probability a random graph with p = 1/2 is not 3-colorable.
It is just a matter of finding a proof of NON-3-COLORABILITY, and these proofs
they are found in almost no time. There are zillions of them all over the graph,
it is just a matter of finding one. So we find one with a large probability in very
short time (constant time).

The same kind of idea can be used in all sorts of different ways because of
the 0-1 laws.

288 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 11

Autumn 1999 8 of 8

Example: HAMILTONICITY
a linear expected-time algorithm for random
graphs with p = 1/2.

• Difficulty: The probability of
non-Hamiltonicity is too large to be ignored,
e.g. Pr(∃ at least 1 isolated vertex) = 2−n.

• The algorithm has 3 phases:

— Phase 1: Construct a Hamiltonian path in
linear time. Fails with probability P1(n).

— Phase 2: Find proof of non-Hamiltonicity
or construct Hamiltonian path in time
O
(
n2
)

. Unsuccessful with probability P2(n).

— Phase 3: Exhaustive search (dynamic
programming) in timeO

(
22n
)

.

• Expected running time is
≤ O (n) +O

(
n2
)
P1(n) +O

(
22n
)
P1(n)P2(n)

= O (n) if P1(n) · O
(
n2
)

= O (n)

and P1(n)P2(n) · O
(
22n
)

= O (n)

• Phase 2 is necessary because
O (2−n) · O

(
22n
)

= O (2n).

• After failing to construct a Hamiltonian path
fast in phase 1, we first reduce the probability
of the instance being non-Hamiltonian (phase
2), before doing exhaustive search in phase 3.

We will now show another example by constructing an algorithm for HAMIL-
TONICITY which runs in linear expected time on a random graph model with
p = 1/2.

The difficulty here is that we cannot just blindly try to construct a Hamilto-
nian path, even though we know that most likely there will be one. The proba-
bility of the graph being non-Hamiltonian is too large to be ignored. If the graph
is non-Hamiltonian and we cannot prove it in some clever way, then we have to
do exhaustive search. We have to examine all possibilities.

What is the probability of a graph being non-Hamiltonian? It is not very
easy to estimate that, but it is easy to compute a lower bound. Think of a vertex
v. What is the probability of v being isolated, meaning not having any edges?
There are n− 1 possible neighbors to v. Each of these is a non-edge with prob-
ability 1/2. So 2−(n−1) is the probability of this vertex being isolated. This is an
exponentially small probability.

This probability is a lower bound on the probability of your graph G be-
ing non-Hamiltonian, because if you have an isolated vertex then certainly the
graph is not Hamiltonian. So the probability of a graph being non-Hamiltonian
is certainly greater than 2−n.

It is an exponentially small probability but it is a large probability if with
this probability we are going to run the exhaustive search algorithm. Because
the exhaustive search algorithm takes more time than 2n. The naive exhaustive
search algorithm would take O (n!) which is much bigger than O (2n). Even a
more optimized exhaustive search algorithm usesO

(
22n
)

.

3.11. LECTURE 11 289

So if with probability 2−n we are running an algorithm that takes time 22n,
then this here is much bigger than any polynomial – 2−n22n = 2n is exponential.
So if with probability 2−n we are running an exhaustive search algorithm, then
the overall performance of our algorithm is exponential.

There is a published algorithm for HAM, which has linear expected time
using the IEPM with constant edge probability. This algorithm has 3 phases:

Phase 1 will construct a Hamiltonian phase in a kind of a quick-and-dirty
greedy way in linear time, and fail with a certain probability. Call that probabil-
ity P1. So for most graph instances this will be successful, but with some small
probability P1 it will fail.

In case phase 1 is successful, then of course you are done. The Hamilto-
nian path is constructed, and there is nothing more to do. If phase 1 fails, then
phase 2 is activated. Phase 2 will find a proof of NON-HAMILTONICITY or con-
struct a path. Phase 2 takes a little more time – it is a little more careful. It
usesO

(
n2
)

time, so it can look at all pairs of vertices and things like that. What
phase 2 will typically do, it will eliminate some odd situations like if you have
an isolated vertex. But also if you have a vertex with degree 1, then the graph is
non-Hamiltonian.

Although NON-HAMILTONICITY is difficult to check in general, there are cer-
tain NON-HAMILTONICITY proofs that are easy to check. And the trick here is to
find a kind of criterion for NON-HAMILTONICITY, which happens quite often. So
if the graph is non-Hamiltonian, then it will have this kind of non-Hamiltonian
property, which is easy to check. It doesn’t always work of course, but it works in
a lot of instances. So you check for that kind of non-Hamiltonian property, and
either you find that your graph has that property or if it doesn’t, then it turns out
that it is fairly easy to construct a path in quadratic time.

So again this phase 2 will work with a large probability, but with some small
probability P2 it will fail. And in case it fails, then you run phase 3, which is ex-
haustive search using dynamic programming. This can be done in time O

(
22n
)

.
My point is that all of these 3 phases they are necessary. Exhaustive search

is necessary for your algorithm to always work. Phase 2 is necessary because
you do need to deal with NON-HAM in some way, and resolve it for most of the
non-Hamiltonian instances – only phase 3 will take of NON-HAMILTONICITY in
the general case. And phase 1 you need for the whole thing to be efficient in
most cases – to construct a quick and dirty solution.

Now a few words about the analysis of this algorithm: The expected running
time is the expected running time for phase 1, O (n), plus the contribution of
phase 2 and phase 3. The contribution from phase 2 is not quadratic time. It is
O
(
n2
)

times the probability that phase 2 will ever be activated, which is P1. And
then the contribution of phase 3 is O

(
22n
)

times P1 · P2, the running times of
the exhaustive search algorithm times the probability that both P1 and P2 fails.

So the whole algorithm is linear if P1n · O
(
n2
)

and P1nP2n · O
(
22n
)

is both
O (n).

This algorithm is studied in detail in IN391 which is normally taught in the
fall. Here I have just been trying to describe to you what is really involved in
solving anNP-complete problem by an algorithm which has efficient average-
behavior and always produces a correct solution. This algorithm that I have de-
scribed is a kind of a pattern. Those phases are something that you will always
have to do in order to produce this kind of solution.

Next time I am going to talk about randomized algorithms and parallel algo-
rithms – two other kinds of analysis and kinds of algorithm design.

290 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

3.12 Lecture 12

IN210 − lecture 12

Autumn 1999 1 of 12

Randomized computing
Machines that can toss coins (generate
random bits/numbers)

•Worst case paradigm

• Always give the correct (best) solution

Algo:
10 (265-281),
11 (309-323)

Today we continue with alternative approaches to computation and to al-
gorithms. The idea here is to combat intractability by using alternative ap-
proaches to either computation or to algorithm analysis. The reason why we
have this possibility is that all the classical theory of algorithms that we have
seen is based on the worst case & best solution approach, which is kind of un-
realistically pessimistic and demanding – it is kind of greedy. Why do you worry
about the worst case if it practically never happens, and why do you want the
very best solution if there are really just very few of them? And if there are many
of those best solutions, then just pick any one of them. And so on.

So we have seen some very strong arguments against the worst case & best
solution approach. Today we are about to see a couple of other approaches
to computation and to algorithm design and analysis. The first one being ran-
domized computing, and the second one parallel computing. We will finish
this theme next time by looking at another kind of computing device, namely
the quantum computer.

What is randomized computing? It uses machines or algorithms that can
make decisions based on "coin tosses". I put this in quotes. In reality this means
that the machines can generate and use random bits or random numbers, and
then make decisions based on those.

Now you wonder right away: Why would a machine use random numbers?
Why would a machine toss a coin? Isn’t computation something from which we

3.12. LECTURE 12 291

expect certainty, not randomness? Isn’t randomness something that we want
to avoid as much as possible from the machines? It is enough that people are
random and events in nature. Why would we make a random machine?

That is a good question, and I hope to answer that question right away by
showing you an example. Notice that we will still be stuck in the worst-case
paradigm, but in randomized computing we will permit that the computer does
not always give the correct/best solution.

292 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 12

Autumn 1999 2 of 12

Randomized algorithms
Idea: Toss a coin & simulate
non-determinism

Example 1: Proving polynomial
non-identities

(x+ 2)2
?

6= x2 + 2xy + y2

?

6= x2 + y2

•What is the “classical” complexity of the
problem?

• Fast, randomized algorithm:

— Guess values for x and y and compute
left-hand side (LHS) and right-hand side
(RHS) of equation.

— If LHS 6= RHS, then we know that the
polynomials are different.

— If LHS = RHS, then we suspect that the
polynomials are identical, but we don’t
know for sure, so we repeat the
experiment with other x and y values.

• Idea works if there are many witnesses.

Our strategy is to illustrate each of these alternative approaches by showing
a situation where the approach really works well. I am now showing you such a
situation for randomized computation.

The problem here is proving POLYNOMIAL NON-IDENTITIES. What does this
mean? Given two polynomials as input, we want to decide whether these two
polynomials are different or not. Two polynomials are different if there is at least
one set of values for the variables such that the two polynomials give different
answers. They are identical if they compute the same value for all values of the
variables.

So what is involved in testing this kind of thing? This is essentially theorem
proving, and we have said already that theorem-proving problems tend to be
very hard. I would encourage you to think about the complexity of this problem
– what is it? Is this problem undecidable? Is itNP-hard orNP-complete? What
is it? And how can we in fact figure this out?

I will just give you some hints, and let you think about the rest. We have said
that basically theorem-proving problems tend to be undecidable. Because as
soon as you can simulate a Turing machine with some kind of language, some
kind of expression, some kind of axiom system, then proving theorems would
in a certain sense be equivalent to showing that a TM doesn’t halt or halt.

That is one side of the story. Another side of the story is that this kind of
problem would seem to be inNP . And let me tell you why: If these two polyno-
mials are not identical, then a NTM can simply guess values of x and y for which
the two expressions evaluate to different values, and then say ’No’. So POLYNO-
MIAL NON-IDENTITIES would seem to be inNP , while POLYNOMIAL IDENTITIES

would seem to be in Co-NP.
What is the difference between the two situations? Is this a proof that POLY-

3.12. LECTURE 12 293

NOMIAL NON-IDENTITIES is in NP? No, there is a big whole in this argument,
and it has to do with the size of the numbers. At the present there is no bounds
on how big the numbers can be. So a NTM would apparently need to guess arbi-
trarily large numbers in order to prove that the polynomials are different. That
is not in our scheme of things. Everything has to be polynomial if a problem is
going to be in NP . If these two polynomials are not identical, then there are
witnesses, but it seems that they can be arbitrarily large.

In fact, it turns out that the witnesses cannot be arbitrarily large. There are
limitations to this. And this has to do with a very interesting area of mathemat-
ics and algorithm theory, which is related to geometry of numbers. And I am not
going to go into that, but the whole point is that there are ways of calculating the
limits to the size of these witnesses.

So I will just mention geometry of numbers. And this geometry of numbers
has to do with this theory of linear programming which we have seen before.
Looking at numbers in a coordinate system, and just looking how big or small
they can be and so on. This is a very interesting area to research in.

But this is just proving that the problem is, say, solvable in polynomial space.
Still, even if the witnesses are limited and so on, it seems that in order to dis-
prove this non-identity – meaning to prove that the polynomials are identical
– we would need to manipulate these two polynomials by using some kind of
transformation, as a mathematician would do.

How does a mathematician prove that these two polynomials are identical?
She uses certain rules. She says that (x+ y)2 is equal to (x+ y)(x+ y) and this is
further equal to x(x + y) + y(x + y), etc. But there are no rules explaining how
to use these rules, so she uses trial and error. And then at some point she either
gets the right-hand side or she doesn’t. If she do, she says: "Bingo, I succeeded,
I proved a theorem. I proved that the polynomials are identical."

So proving or disproving theorems is definitely very hard, and especially
proving theorems by an algorithm, by a machine. So it is a hard problem. Let us
not worry about the details of its complexity too much.

Now I am going to show you that this hard problem is in practice made very
easy by the probabilistic approach. Here is why: If these two polynomials turn
out to be non-identical, then they may evaluate to the same value for a small
number of choices of x and y. But actually most of the choices of x and y will
give different values of the right-hand side and of the left-hand side. So the
point is that we don’t really need to go through all this calculation to prove that
the two polynomials are different or identical. It is enough to pick a couple of
values for x and y, evaluate those values in the right-hand side and in the left-
hand side, and calculate. And if the two values turn out to be different, then we
say: "Yes, the two polynomials are not identical. We have found a witness."

Evaluating a polynomial for two small values, that is obviously efficiently
computable. It is a very easy problem. What you do is: You evaluate the left-
hand side and the right-hand side, compare the two values and ’bang’! If the
values are different, then you say that the two polynomials are not identical.

But what if the values are the same, can you then say with certainty that the
polynomials are identical? No, because obviously they have to evaluate to the
same for all possible numbers, not just for one choice of x and y. So what do
you do then? Well, you repeat the procedure. You pick another two numbers,
evaluate the left-hand side and the right-hand side again, and compare the re-
sults. And again if the results are different, then you say the polynomials are not
identical. If the results are the same, what then? Repeat again!

So this can obviously go indefinitely, but every time you repeat, you are more
certain that the two polynomials are in fact identical. You can never be com-
pletely certain, but we will see in a moment how well this is doing.

294 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 12

Autumn 1999 3 of 12

1 kr Mynt

f(n)

witnesses

Let f(n) be a polynomial in n and let the
probability of success after f(n) steps/coin
tosses be≥ 1

2. After f(n) steps the algorithm
either

• finds a witness and says “Yes, the
polynomials are different”, or

• halts without success and says “No, maybe
the polynomials are identical”.

This sort of algorithm is called a Monte Carlo
algorithm.

Note: The probability that the Monte
Carlo algorithm succeeds after f(n)
steps is independent of input (and
dependent only on the coin tosses).

• Therefore the algorithm can be repeated
on the same data set.

• After 100 repeated trials, the probability of
failure is≤ 2−100 which is smaller then the
probability that a meteorite hits the
computer while the program is running!

So, this is the algorithm. Now I will formalize a little bit. The algorithm actu-
ally uses coin tosses. How does it use coin tosses? It use coin tosses to generate
the values of x and y. You can think of this algorithm as tossing a coin and gen-
erating a random number of random bits: 1001101 – call this x – and then 10110,
this is y. So these random bits they are randomness in this algorithm.

We want to embed these random algorithms into our existing theory, into
our map. That is important because we do want to still use the basic map that
we have developed in the first part of the class. We want to explain, by using
that map, what we can do with this new approach.

So think of this random algorithm as being something like a canonical NTM
that can toss coins. As you might remember, a canonical NTM is a NTM that
always has exactly two possible transitions, and which halts after exactly f(n)
steps – if it halts. Think that this canonical NTM is solving a problem that is in
NP. It is solving the problem by finding a witness in f(n) time, where f(n) is a
polynomial.

I have drawn the computation tree of the canonical NTM on the foil. These
green leaves represent the outcomes where the machine has found a witness.
Imagine now that there are many ’Yes’-witnesses which can be found after f(n)
steps. In our example we have that kind of case because if the two polynomi-
als are non-identical, then they will evaluate to different numbers for a large
proportion of choices of x and y.

If we simply use random bits or a coin to decide which way to go in the
computation tree, then all of these leaves will have the same probability. And if,

3.12. LECTURE 12 295

say, half of these leaves represent successful computations that result in finding
a witness, then the probability that the corresponding randomized machine will
give the right answer for a positive instance is at least 1/2.

That is roughly the situation we have when proving non-identities. We have
the probability of success, which is at least 1/2. After f(n) steps our probabilistic
algorithm will either find a witness and say "Yes, the polynomials are different",
or it will halt without success and say "No, maybe the polynomials are identi-
cal." Notice that if the machine doesn’t find a witness after f(n) steps, then it
cannot be certain whether its input is a positive instance or a negative instance,
so it says only ’maybe no’. This kind of algorithm is called a Monte Carlo algo-
rithm, Monte Carlo being a big gambling place in Italy.

So this is an informal definition of a Monte Carlo algorithm, and you can
now understand why I have presented the problem as ’proving non-identities’,
instead of the more natural ’proving identities’. Because a Monte Carlo algo-
rithm has only positive witnesses – ’Yes’-witnesses. There are no negative wit-
nesses. It cannot say ’No’ with certainty. And that is also the case for the POLY-
NOMIAL NON-IDENTITIES problem. We have lots of ’Yes’-witnesses, meaning
x- and y-values which proves that two polynomials are non-identical. But we
don’t know of any witnesses to the fact that they are not non-identical, or in
other words, identical.

The beauty of this probabilistic approach is that it can in a way simulate
non-determinism, under the assumption that the number of witnesses has a
lower bound – when there are lots of witnesses. And this is the important in-
sight. This is how we can understand what is good about randomized algo-
rithms or randomized computation.

Notice that the probability that the Monte Carlo algorithm succeeds after
f(n) steps is independent of the input. This probability refers only to the out-
come of the coin tosses. Which means that we can repeat the whole procedure
for the same input, and independently of the first outcome have again the prob-
ability of 1/2 of success.

And since the two probabilities are independent, they multiply. So if the
probability of getting a wrong answer is 1/2 or less in one iteration of the algo-
rithm, the probability that we will have a wrong answer two times is 1/2 · 1/2.
Three times is (1/2)3. And the probability that after 100 repetitions we will still
have a wrong answer, is less than or equal to 2−100.

How big is this probability 2−100? What sort of number is it? It has been cal-
culated that this probability is smaller than the probability of a meteorite hitting
the computer while the algorithm is running. So there are two ways of looking
at this. You can say: "Well, this is not certain." Because it is not certain. This
algorithm can in fact never give you complete certainty. But you can also say:
"Look, for all practical purposes we don’t worry about such things as a meteorite
hitting the computer while the program is running, or a hardware failure turn-
ing a ’1’ into a ’0’. Why would we worry about the probability of failure which is
2−100 or less?"

I think this is a very valid sort of argument. So for practical purposes a Monte
Carlo algorithm is a very good solution. We are talking about 100 repetitions.
100 is not a big number. We are not talking about anything exponential. 100
is a constant. It is one of those things that we typically neglect when we do
algorithm analysis. So after only 100 repetitions you get this kind of error which
is for all practical purposes negligible. It is a good solution.

296 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 12

Autumn 1999 4 of 12

Def. 1 A probabilistic Turing machine (PTM)
is a canonical NTM modified as follows:

• At every step computation the machine
chooses one of the two possible transitions
uniformly at random.

• The machine has two final states: qY and
qN .

Note: An algorithm on a PTM doesn’t have to
toss coins explicitly at every step, there can be
implicit coin tosses with the two possible
transitions being to the same state.

Def. 2 A PTM M is said to be a Monte Carlo
algorithm for language L if there is a
polynomial f(n) such that for all inputs xM
halts in f(|x|) steps and

• if x 6∈ L then M halts in qN .

• if x ∈ L then Pr(M halts in qY) ≥ 1
2.

Notes:

• The probability 1
2 can in principle be

replaced by any fixed probability ε > 0,
because of the technique of repeated trials.

This is roughly the story of randomized computing. Now we formalize this
a little bit, and I just want to show you in a couple of pages how exactly this
randomized computation and randomized algorithms are formalized. And also
what sort of theory emerges in relation to this. The details are in class IN394. In
that graduate class we see some complexity classes. We study whether there are
complete problems, what sort of problems are in these classes, and what sort of
problems are solved by these approaches. The idea here is just to illustrate the
approaches and stimulate your interest.

We have said that a canonical NTM is a NTM that always has exactly two
possible transitions, and which halts after exactly f(n) steps – if it halts. It is
easy to see how any NTM that is time bounded, can be turned into a canonical
TM simply by using some extra states and making sure that if you have 3 or 4
transitions possible from a certain state and a certain input, then you first make
a transition to two invented auxiliary states, and then from those two to those
real ones. So that you always has exactly two transitions.

This canonical NTM equipped with a coin turns into what is called a Prob-
abilistic Turing machine (PTM). A PTM is not non-deterministic anymore, but
it is not deterministic either. It is probabilistic in the sense that it can make
choices based on random bits.

We can formalize as follows: We can define a PTM as being a canonical NTM
modified so that in every step of computation the machine chooses one of the
two possible transitions uniformly at random – that means with probability 1/2.
And then the machine has two final states qY and qN . Intuitively this would

3.12. LECTURE 12 297

mean that it can answer ’Yes’ or ’No’.
Notice that an algorithm on a PTM doesn’t have to toss coins explicitly at ev-

ery time step. There can be implicit coin tosses with the two possible transitions
being to the same state.

Then we say that a PTMM is a Monte Carlo algorithm for languageL if there
is polynomial f(n) such that for all inputs x, M halts in f(|x|) steps. And if x is
not in L, then M always halts in qN . If x is in L, then M says ’Yes’ (halts in yY)
with probability at least 1/2.

Some remarks: The probability 1/2 can in principle be replaced by any fixed
probability ε > 0, because by doing repeated trials we can invent a new algo-
rithm which has probability at least 1/2.

298 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 12

Autumn 1999 5 of 12

Notes (continued):

• The probability 1
2 for choosing the right

answer for positive instances must hold in
the worst case, meaning even for the most
tricky input.

• A Monte Carlo algorithm never gives
incorrect positive answers, but it can give
false NO-answers (“maybe NO”).

• Only languages that are inNP or in
Co-NP can have Monte Carlo algorithms.

Def. 3 A pair of Monte Carlo algorithms, one
for language L and one for Lc, together
compose a Las Vegas algorithm for L.

Notes:

• Only problems inNP ∩ Co-NP can have
Las Vegas algorithms. Example:
PRIMALITY.

• After 100 repetitions of a Las Vegas
algorithm on the same input, we are
“pretty sure” to get either a definite
YES-answer (from the L-algorithm) or a
definite NO-answer (from the
Lc-algorithm).

An important point is that this approach to computation is still worst case.
The probability 1/2 for choosing the right answer for positive instances must
hold in the worst case, meaning for the most tricky input.

Another point is that only the languages that are in NP or Co-NP can have
Monte Carlo algorithms. This is an interesting point. You cannot solve any other
sort of problem in polynomial time with this kind of algorithm. This follows
directly from the definition.

A Monte Carlo algorithm never gives incorrect positive answers. If it says
’Yes’ then the instance is for sure a positive instance, because the algorithm has
found a witness. But if it says ’Maybe no’, then it can by lying, because it can
happen that it just didn’t find a witness even though the input is a positive in-
stance.

Can we get rid of this asymmetry in the definition of the Monte Carlo algo-
rithm? This asymmetry can be somehow bothersome if you are solving some
very important problem by Monte Carlo algorithm. And this happens because
this kind of algorithms they are used very much in number-theoretic computing
– in finding very large prime numbers or proving that a number is composite,
and things like that. We will see next time why these sorts of computations are
important, but I will just give you a hint now. They are used in cryptography
for creating codes and for encoding messages and sending secret messages, or
decoding secret or not so secret messages. And since a lot of money and also se-
curity of countries depend on the outcome of these algorithms, then you may
actually want certainty. You may don’t want to live with this 2−100 kind of prob-

3.12. LECTURE 12 299

ability. The defense people and banking people are sometimes like that. They
really want to be certain.

How can you get certainty from this kind of probabilistic approach without
really going all the way to determinism? It turns out to be easy. You put two
Monte Carlo algorithms together – one for the language L and another one for
LC – and you run them in parallel. You run one and then you run the other. So
what happens? One of them can answer ’Yes’ or ’Maybe No’, another one can
answer ’No’ or ’Maybe Yes’.

So you can with probability 1/2 always get a certain ’Yes’ or a certain ’No’
answer, and then with some smaller probability you get a ’Maybe’ answer. But
if you get a maybe answer, you repeat the whole thing. And again with proba-
bility 1/2 you get a certain ’Yes’ or a certain ’No’. So in due time, unless you are
extremely unlucky, you do get a certain ’Yes’ answer or a certain ’No’ answer.

This sort of algorithm that in polynomial time produces either a certain ’Yes’
or a certain ’No’ answer or the answer ’Maybe’ with a small constant probability,
is called a Las Vegas algorithm. And Las Vegas is just about the best approach
there is. But unfortunately, and this is the limitation, only problems that are in
NP intersection Co-NP can have Las Vegas algorithms. An example of such
a question that is in NP intersection Co-NP is primality testing – testing for
prime numbers. This is explained in more details in IN394.

300 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 12

Autumn 1999 6 of 12

Randomized omplexity classes
RP (randomizedP)
A language belongs to classRP if it has a
Monte Carlo algorithm.

ZPP (zero error probabilityP)
A language belongs to class ZPP if it has a Las
Vegas algorithm.

BPP (bounded probability of errorP)
A language L belongs to class BPP if it is
recognized in polynomial time by a PTMM
such that

• x ∈ L⇒ Pr(M answers ’YES’) ≥ 2
3

• x 6∈ L⇒ Pr(M answers ’NO’) ≥ 2
3

I will just mention some randomized complexity classes. First of all we have
RP – Randomized P. This is a natural class. We say that a language belongs to
the classRP , randomized P, if it has a Monte Carlo algorithm.

A language belongs to ZPP (Zero error Probability P) if it has a Las Vegas
algorithm. It is named zero error probability because ultimately, after enough
repetitions, algorithms that put a language into ZPP give the definite answer
’Yes’ or ’No’. So we don’t have to live with these errors.

A ZPP algorithm gives you a definite ’Yes’ or ’No’ answer with a probability
which is exponential high in the number of repeated trials. On the other hand
aRP algorithm gives you definite ’Yes’ answers, but it doesn’t give definite ’No’
answers, only ’No’ answers that is correct with exponentially high probability
in the number of repeated trials. So the subtle difference is that with a ZPP
algorithm you will, with a very high probability, know that your answer is the
correct answer. While with a RP algorithm you will get a correct ’No’ answer
with a very high probability, but you can never be absolutely sure that it is the
correct answer.

And then there is a third class which is a little bit broader and also very nat-
ural: BPP , or Bounded Probability of error P. A language L belongs to the class
BPP if it is recognized in polynomial time by a PTM M such that 1) if x is in L

then the probability thatM answers ’Yes’ is greater than or equal 2/3, and 2) if x
is not in L then the probability that M answers ’No’ is also greater than or equal
2/3.

This 2/3 is an arbitrarily constant. In fact any constant strictly greater than

3.12. LECTURE 12 301

1/2 will do, because then we can repeat the algorithm many times, and the
probability of error will drop exponentially.

If you want this constant to be 99/100 instead of 2/3 but 99/100, a constant
number of repetitions of an algorithm that has probability 2/3 is enough. The
proof of this fact is a little bit more involved. It involves a certain kind of math-
ematics which we don’t know here. It is not difficult, but we don’t really have
time to go into that. Again that is taken up in IN394.

302 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 12

Autumn 1999 7 of 12

NP
Co

P

PSPACE

NP

ZPP RP

BPP

• The map of complexity classes augmented
with randomized classes.

•We don’t know whether the inclusions are
proper (e.g. we don’t know whetherRP (
NP orRP =NP).

• It is unknown whether BPP is contained
inNP , so it has a stippled line on the map.

Applictations
Cryptography, number-theoretic comp.,
pattern matching, etc.

Here I have drawn our map of complexity classes and augmented it with the
three randomized classes. The situation is like this: We know that RP is defi-
nitely contained in NP , and that ZPP is definitely contained in Co-NP inter-
section NP . So there are obvious limits to the complexity of problems that we
can solve with these approaches. It is for example impossible to solve a PSPACE-
complete problem in polynomial time by using a Monte Carlo algorithm.

We don’t know whether the inclusions are proper. For example, we don’t
know whether RP is a proper subset of NP or if RP happens to be equal to
NP. In other words: We have no answer to the question "Is there a problem
in NP which cannot be solved by a Monte Carlo algorithm?" This implies that
we haven’t yet found a Monte Carlo algorithm for a NP-complete problem L,
because if we have such an algorithm, then all problems in NP could be solved
by Monte Carlo algorihtms, by virtue ofL beingNP-complete.

It is also unknown whether BPP is contained inNP , so it has a stippled line
on the map. But we do know that BPP is contained in PSPACE, because we can
only use a polynomial amount of space in polynomial time.

Finally just a word about applications of this. One very important appli-
cation of these approaches is cryptography and number-theoretic computing.
The reason being that PRIMALITY, testing whether a number is prime, belongs
to the intersection of NP and Co-NP . PRIMALITY has very important applica-
tions in cryptography and all sorts of things. It has been shown that PRIMALITY

is in fact in ZPP .
Similar kinds of ideas can be used for pattern matching. Assume that you

3.12. LECTURE 12 303

have a big text and you are in a text editor and you are saying: "Search whether
the word polyscope is in the text." The text editor can compare character by
character, or it can do some kind of randomized test along the lines which I
have shown you. And those randomized tests they turn out to be much more
efficient. So if you have this kind of problem where you are searching for a string
within a larger string – checking whether this string is a substring of the other
string, which is something that text editors do all the time – then you would be
advised to use the randomized approach because it is much more efficient.

304 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 12

Autumn 1999 8 of 12

Example: Combining randomizing
and average-case analysis

A “random walk” algorithm for
HAMILTONICITY with good average-case
performance:

• Idea: Try to construct a Hamiltonian path
by adding nodes at random:

— Pick one of the neighbors, x, of the
LAST-node at random.

— If x is not in the path, add x as the new
LAST-node.

— If x is already in the path, change the
path in the following way:

LAST
x LAST

y

• The algorithm is very simple, but the
analysis is not.

• Algorithm is based upon coupon collector
pattern:

— How many coupons does it take on
average to collect n different ones?

O (n),O (n logn),O
(
n2
)

,O (2n)

As an example of the probabilistic approach to algorithm design, I am now
going to briefly illustrate an efficient algorithm for HAMILTONICITY. The al-
gorithm uses a probabilistic technique called random walk to achieve a good
average-case performance.

HAMILTONICITY is an NP-complete problem and therefore intractable in
the worst-case paradigm, but last time we have seen a three-phase algorithm
for HAMILTONICITY which runs in linear expected time on a random graph with
edge probability 1/2. That algorithm always produced an answer, even when
the graph didn’t have a Hamiltonian path.

The random-walk algorithm on the contrary will only produce positive an-
swers but it will do it fast – meaning that it will find a Hamiltonian path very
fast with high probability, but it will never succeed when the graph is non-
Hamiltonian. In practice you might want to combine this random-walk algo-
rithm with some other approach, so that you also eventually get an answer if
the graph is not Hamiltonian.

How does the random-walk algorithm work? You start from a certain vertex,
call it vertex 1, and then we look at its neighbors and choose one neighbor at
random by tossing a coin. Say that’s vertex number 4. And then from that vertex
number 4 we try to extend our Hamiltonian path further by tossing a coin again.
And say we get vertex number 17, and so on.

So in the general case we have the last vertex assembled, which I have la-
beled ’LAST’ on the foil, and then from this last vertex we toss a coin, picking
one of its neighbors at random, and then that one becomes the next last. If the

3.12. LECTURE 12 305

new vertex happens to be a complete new vertex, then we are fine – we just ex-
tend the path. The problems arise if the neighbor happens to be already in the
path.

If we pick the vertex y which happens to be already in the path, then the
algorithm does something strange: It is going to make y the new LAST vertex in
the path by disconnecting the edge between x and y, make a new edge from x

to the old LAST, and then reverse the path from y to the old LAST. So this red
marked path becomes the new Hamiltonian subpath, and then from the new
LAST vertex we toss a coin, trying to find one of its neighbors.

The reason for changing the last vertex, is that we want to give this new ver-
tex y and its neighbors a change. This simple algorithm will for a large enough
p, the edge probability, find a Hamiltonian path in very short time almost cer-
tainly. Almost certainly means with probability 1, asymptotically speaking.

The way this algorithm is constructed is based upon the coupon collector
pattern. And my idea here is this: Instead of showing you the exact analysis of
this algorithm, which maybe somewhat complicated and somewhat confusing
to you, I am going to tell you how to think about this kind of random-walk al-
gorithm in general, by using a kind of a pattern – a simple model which just
models the basic thinking style that is behind the algorithm and its analysis.

So here is that model: What we are doing in this algorithm, is that we start
from a vertex, and we pick another vertex at random and then another vertex at
random and another vertex at random. And maybe the next vertex is going to
be one that is already picked.

In the beginning of time, when we just have vertex 1 and we pick anyone of
its neighbors, then of course we get a new guy. But if we have already just about
all of the vertices assembled, then the probability of picking a new guy is rather
small, and the probability of picking an old guy is rather big. So that when we
have n− 1 vertices in our pocket, the probability of picking the n’th guy is low –
it is just about 1/n.

The question is how many times do we have to run this procedure, how
many times do we have to pick a vertex at random in this way, before we have
assembled all n of them? And this situation is modeled by the coupon collec-
tor pattern where you assume that you are a little kid with an album where you
glue pictures. And you get those pictures from little chocolates – this is what
chocolate people like to do in order to make kids buy as many chocolates as
possible.

So in each chocolate you would find a picture, and you have space for n
different pictures in the album. The question is: How many chocolates do you
have to buy before you can have all n of them?

Say there are n = 1000 different pictures. What should be the expected num-
ber of chocolates that you need to buy in order to get all n of those? Is it O (n),
O (n log n),O

(
n2
)

orO (2n)?
What about the distribution, you might ask. And of course you cannot trust

the chocolate sellers, but if they were fair and nice people, then all the choco-
lates would have the same probability. Now, sometimes they may just keep
some few pictures kind of non-existent or very difficult to get a hold of. Because
when you complete the album you send it to the factory and you get a box full
of chocolates. It is pretty expensive to send people boxes of chocolates. It is
much better to make them buy more chocolates because they are just missing
3 pictures, but those 3 pictures they don’t exist at all.

But suppose that these people they are fair. If they are fair it turns out that
O (n log n) is the number of chocolates you have to buy. And I don’t want to
bother you with the details in this class, but this is what comes out of the anal-
ysis. This algorithm and its analysis is studied in more detail in the algorithm

306 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

design class – IN391.
So the expected number of steps for this algorithm to construct a path is

O (n log n). But what about NON-HAMILTONICITY? What happens if the algo-
rithm does not construct the Hamiltonian path, and what happens if the Hamil-
tonian path does not exist at all? Well, it turns out that this algorithm that I have
just described, it cannot really deal with NON-HAMILTONICITY. It can only con-
struct a Hamiltonian path if it exists, or raise its arms and say: "I am sorry, I am
just having a bad day. I don’t know how to deal with this graph."

As we have talked about before, NON-HAMILTONICITY is actually quite a bit
more difficult then HAMILTONICITY, because it is an co-NP complete problems
and those problems doesn’t seem to have short ID’s or proofs of membership.
So to prove that a graph is non-Hamiltonian you basically have to try all possible
sequences of vertices, which means exhaustive search.

So this algorithm that we have seen, it does not really produce a proof of
NON-HAMILTONICITY. All it does is, it either constructs a Hamiltonian path or it
fails. But if we assume a constant edge probability, say p = 1/2, then the 0-1 law
says that any graph almost certainly have a Hamiltonian path. And then this
algorithm is successful with a large probability – large probability meaning with
probability asymptotically 1. So that’s the kind of statement that you can make
about this algorithm: We run the algorithm for a polynomial number of steps,
and it finds a Hamiltonian path with probability asymptotically 1.

3.12. LECTURE 12 307

(This is a blank page)

308 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 12

Autumn 1999 9 of 12

Parallel computing

?
= 3×

• some problems can be efficiently
parallelized

• some problems seems inherently
sequential

Parallel machine models
• Alternating TMs

• Boolean Circuits

∨

¬

output

x2x1 x3inputs:

∧

¬

"time" = 3

— Boolean Circuit complexity: “time”
(length of longest directed path) and
hardware (# of gates)

There is a very well known book, kind of a classic in software engineering
and one of those books that applied people in computer science like to read.
It’s called "The Mythical Man-Month" and it was written by Frederick Brooks
back in 1975. There is a message that comes from that book, and I will introduce
parallel computing by using that message. The title of the book says "The Myth-
ical Man-Month", and the point is that the effort involved in a software project
was typically measured in man-month, meaning that many people, that many
months. So according to that idea if one person would finish a software project
in 10 months, then 10 people would finish it in 1 month.

Brooks was saying in the book that this is in fact not at all the case. He was
experiencing lots of situations where some number of people would be working
on a project. And then you bring more people to the project, trying to speed
it up, but in reality the project just slows down by bringing more people. So
bringing more people doesn’t necessarily mean efficiency.

Parallel computing is the kind of computing where computation happens in
parallel in different places, e.g. on different processors or on different machines.
This is roughly similar to having a number of people working on a project. The
question is: Can we speed up the computation drastically by bringing more
hardware, more things, so that the computation happens in different places in
parallel? It is a very natural idea and there has been a lot of talk about parallel
computing, actually since the year 1960. Since the time where the limitations of
sequential computing became apparent to people, they were looking at parallel
computing as the solution to all sorts of issues, especially to complexity issues.

3.12. LECTURE 12 309

According to "The Mythical Man-Month"’s idea there will be two kinds of
situations in this world, two kinds of problems: One kind that can be efficiently
parallelized, meaning that bringing more people will speed up the solution.
Another possibility is that the problem or the situation is inherently sequen-
tial, meaning that no matter how many people or how much hardware or how
many processors you bring, you still has to do this step by step – it doesn’t help
to bring more people on the project. You can think of real-life projects that have
that quality and you can think of real-life projects that can be efficiently paral-
lelized.

In the world of parallel computing there are obviously parallel machines
which run parallel algorithms, but the situation is very different from the world
of sequential computing. While in sequential computing the von Neumann-
machine is predominant there are all kinds of parallel computers in this world.

So without going into details, it is a tremendous variety, and this provides
some obvious problems when we want to come up with good abstractions or
with good formal models of parallel machines. In practice three kinds of models
are used. One of them is not very widely used. I mention it only because it is a
straightforward generalization of the approach we have had so far, which is the
Turing machine approach.

So there is a kind of a TM that is used in parallel computing, which is called
the Alternating Turing machine (ATM). And let me just very briefly mention to
you what this is. An ATM would be a generalization along the lines in which a
NTM is a generalization of a deterministic TM. A deterministic TM is just the
stupid, ordinary deterministic machine which just does a sequence of compu-
tations as it is told, without any sort of fancy tricks. A NTM on the other hand
does something really fancy. It can check efficiently whether there exists a wit-
ness. So it can guess. And this is why a NTM has an easy time with NP kind
of problems, while it cannot do anything with Co-NP kind of problems. But if
it could answer this kind of questions: "Is it True that for all witnesses some-
thing holds?", then it could also deal with Co-NP kind of problems. For ex-
ample a NTM can easily find a witness that proves that two polynomials are
non-identical. But it has to answer the question "Is it true that for all values of x
and y, the two polynomials evaluates to the same value?" in order to deal with
the polynomial identity problem which is in Co-NP .

An alternating TM is a generalization of a NTM along this approach – alter-
nating between existential and universal quantification. In one step an ATM
can act as an ordinary NTM and give an answer whether there exists a witness.
Then in the second step it can check whether for all witnesses something holds,
and so on.

In a certain sense this generalization of the TM makes it parallel, because
this checking whether something holds for all witnesses is something that you
could do in parallel on many machines. So this is roughly a kind of a parallel
TM model.

The problem with it is that it is highly unrealistic. This is not something that
you can actually build. It is very much a mathematical construct, and it is only
used in very limited circumstances.

Next we will talk about a very realistic parallel machine model which is called
Boolean Circuits. This is actually in a way the most realistic machine model in
existence, because every digital computer today is by and large a Boolean cir-
cuit. A CPU is a circuit – a kind of bunch of wires and gates – which computes a
certain function. And a Boolean circuit is just that.

Formally a Boolean circuit is a directed acyclic graph in which the nodes
have labels, and those labels are Boolean operators. So here on the foil we see
a Boolean circuit that computes a certain function. It has input nodes on the

310 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

bottom – x1, x2 and x3. And then what happens with x2 is that it gets negated
when passing through the negation gate. And following that we have an AND
gate. So in this AND gate we have x1 ∧ ¬x2 computed. And that result comes
into this OR gate together with the negated x3. The OR gate is computing the
final output function x1 ∧ ¬x2 ∨ ∧x3.

This is a logical function but as you should know already from other classes
(IN147), anything that a computer can do – all computations with numbers and
things – can be represented in this way as Boolean expressions. So Boolean
circuits can compute anything that any sort of machine can compute.

And there is parallelism. The negation of x2 and the negation of x3 can hap-
pen in parallel, but the AND operation must wait until the negation of x2 is
finished. And then the OR gate has to wait until but the AND and the negation
of x3 has happened.

We have a natural notion of time as a complexity measure in a Boolean cir-
cuit, namely the length of the longest directed path in the graph. In this case
that length would be 3, so we can say that this Boolean circuit computes this
Boolean function in 3 steps. There is another highly relevant complexity mea-
sure in parallel computation, and that is what is roughly called "hardware" or
sometimes "work". And this is the man-month measure. Here the hardware is
expressed as the number of gates. If we have 4 gates, then we say that hardware
equals 4. We have 4 people working on the project.

And then the question would be: What is the shortest time for computing
this function, supposing that hardware is cheap? Or if you really care about
hardware, the question is: What is the minimum time of computing this func-
tion with the hardware we have?

Hardware and time they are obviously related. If you have some limits on
hardware, then how much time we can save is also limited. But then also there
are interesting questions of the type: If we really don’t care about hardware –
people are cheap, computers are cheap – what is the shortest time we can solve
the problem? That is a kind of question that is studied in parallel computing.

One very important issue here, which I want to mention to you, is the issue
whether a Boolean circuit is actually an algorithm or not. And the issue trans-
lates into what is called uniformity. What is really the problem? The problem is
that our standard notion of an algorithm is something that can fit on a piece of
paper. Maybe not a single piece of paper, maybe on five pieces of paper, but the
main point of an algorithm is that an algorithm is finite. It is a finite description
of something – it is a recipe.

You open a book of recipes. Then you can figure out how to make a bread,
how to make this or that. In computer science you find recipes for dealing with
problems instances of arbitrarily size, but the recipes themselves must be finite
– something that can fit into a book. But these circuits they seem to grow with
the size of the input, because this is really what these algorithms are like: If you
have lots of input variables, then you have lots of these gates.

If a circuit can be arbitrarily large, can it then be called an algorithm at all?
And we say ’Yes’ if the description of the circuit itself is finite! You might say:
"Wait a minute. How do you define this? How do you formalize this notion
of ’description of the circuit is finite’?" Well, we say that the description of the
circuit is finite if the circuit can be generated by an algorithm or a TM that has
a certain complexity. This is a very interesting idea – the idea that the notion
of a ’finite description’ is modeled by TM in a natural way. It is a very, very
fundamental notion. You should think about this.

The problem with Boolean circuits in practice is that they are extremely dif-
ficult to program. Think of solving the TSP with this sort of device. It is months
of work and nobody could understand it. So Boolean circuits are by and large

3.12. LECTURE 12 311

for proving lower bounds, for proving that something has to use at least that
much time. But for actually showing programs they are pretty hopeless and
pretty useless.

312 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 12

Autumn 1999 10 of 12

• Parallell Random Access Machines
(PRAMs)

...
...

P0 P2P1

m0 m2m1 m3

— Read/Write conflict resolution strategy

— PRAM complexity: time (# of steps) and
hardware (# of processors)

Example: Parallel summation in time
O (log n)

m5:1m4:6

P2

m7:5m6:2

P3P0

m1:5m0:3 m3:7m2:2

P1

log2 n

time

P1

m2 : 7m1 : 9

m1 : 14

P0

m0 : 17

m0 : 8 m3 : 7

P0

m0 : 31

Result: Boolean Circuit complexity = PRAM
complexity.

So instead of Boolean Circuits, the Parallel Random Access Machine (PRAM)
is used as a kind of a high-level-language construct in parallel computing. A
PRAM is a straightforward generalization of a RAM. It is a parallelization of
a RAM, where a Random Access Machine is the theoretical model that corre-
sponds to our standard von Neumann machine. If the standard RAM has a
memory and a processor with a certain instruction set such as LOAD, ADD, SUB
and thinks like that, then a PRAM would have the same except that it would have
multiple processors that can work in parallel.

So a PRAM has a memory consisting of memory cells, each able to contain
some binary number. And it also has some number of processors that can op-
erate on this shared memory in parallel. In every step of computation each pro-
cessor can read an arbitrarily memory cell, perform some computation based
on the contents of that cell and its internal registers and state, and then load the
result into an arbitrarily memory cell.

Obviously there are some problems here – read and write conflicts can oc-
cur. If two processors attempt to write into memory cell M1 in the same time
step, then the question is: What is really written inM1? And this question is han-
dled by the so-called conflict resolution strategy. Different conflict resolution
policies give rise to different variants of this model. This is not so interesting or
important, so I am not going to go into more details than that.

PRAM complexity is naturally measured by the amount of time (number of
steps) and hardware (number of processors) used.

I will now show you an example of a situation where this kind of approach

3.12. LECTURE 12 313

leads to a dramatic speedup in computation time, a dramatic improvement.
Think of adding n numbers. We have numbers 3, 5, 2, 7, 6, 1, 2 and 5. These
are stored in the first eight memory cells. To add these numbers in parallel you
would use four processors. The first processor P0 is adding the first two num-
bers and computing an 8, and then storing this 8 maybe into the first memory
cell. P1 would compute 2 plus 7, resulting in a 9, and then put the result into
M1. And then the third processor will compute 6 plus 1, and store result into
M2, and finally processor P3 would add 2 and 5 and store a 7 into M3.

So this is two steps of computation – one step for reading the first input
element, and one more step for reading the second number and computing and
storing the result. In two steps of computation the number of input elements
will effectively be reduced by a factor 2.

And then in the third step of computation the number of input elements will
again be reduced by a factor 2. M0 will already have in its internal register the
sum it computed in the first two steps, so it would just need to read this 9 stored
in M1, compute 9 plus 8 which is 17, and store the result maybe in M0 again.
At the same time P1 would add 7 and 7 together and compute 14. And then all
that remains in the fourth step is P0 adding 17 and 14, obtaining the final result
which is something like 31.

Obviously the time that this computation takes is the height of this tree. And
this computation tree looks like a binary tree. The height of this tree is in fact
the logarithm base 2 of the number of inputs. We know that the fastest possible
way of solving in the worst case this or any other reasonable problem sequen-
tially, is n. A sequential TM needs n steps even to read the input. But a parallel
algorithm, a PRAM, can solve the problem in logarithmic number of steps –
O (log n).

So this is an exponential speedup. This is good news. We can speed up some
computations dramatically. The question is: What about intractable problems?
Can we solve, say, TSP in polynomial time by using parallel computing? And we
will come back to this in a second.

Let me just say that these two machine models, as different as they may
look, they are in fact shown to be equivalent. We have a result which says
that the complexity measured using PRAMs and the complexity measured us-
ing Boolean circuits, they evaluate to roughly the same thing. To prove such a
result one should prove that a PRAM can simulate a Boolean Circuit efficiently,
and vice versa.

It is not surprising that a PRAM can do fast anything that a Boolean circuit
can do fast. You just use processors to do this simple Boolean operations, and
if you are allowed to have as many processors as there are gates in the Boolean
Circuits, then that’s easy.

So simulating a Boolean circuit by using a PRAM is easy. The question is:
Can we simulate efficiently a PRAM with a Boolean circuit? The answer is ’Yes’.
How do we prove this? We use our old friend, the computation matrix. I will
not get into this, but the idea is roughly to use the computation matrix, and just
about the same idea that we have seen in this class already, which is computing
the next row of this matrix from the previous row as input, using logical gates.

314 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 12

Autumn 1999 11 of 12

Limitations to parallel computing
Good news

parallel time↔ sequential space

Example: HAMILTONICITY can easily be
solved in parallel polynomial time:

• On a graph with n nodes there are at most
n! possible Hamiltonian paths.

•Use n! processors and let each of them
check 1 possible solution in polynomial
time.

• Compute the the OR of the answers in
parallel timeO (log(n!)) =O (n).

Bad news

Theorem 1 With polynomial many processors

parallel poly. time = sequential poly. time

Proof:

• 1 processor can simulate one step of m
processors in sequential time
t1(m) = O

(
mk
)

, for a constant k

• Let t2(n) be the polynomial parallel time of
the computation. If m is polynomial then
t1(m) · t2(n) = polynomial.

The next question and the most interesting question for us, is whether we
can solve some intractable problems efficiently in parallel. There is good news
and bad news – there is an answer ’Yes’ and an answer ’No’ here. The answer
’Yes’ says that roughly speaking parallel time corresponds to sequential space.
There is a theorem which says approximately that. Let me give you an idea of
why this is so:

Can we solve HAMILTONICITY in parallel polynomial time? Yes, we can! Say
you have a graph. And then in this graph there is some number of orderings
of nodes, which are the potential Hamiltonian cycles. We know that we have
n! possible orderings of n nodes. Our parallel algorithm will use n! processors,
each responsible for checking one of the candidate solutions.

Obviously this work can be done in polynomial time. All a processor needs
to check is whether there is an edge between each of the nodes in the ordering,
and then an edge between the first and the last node. And if this happens to be
so, then the processor will say ’Yes’, otherwise he will say ’No’.

Then it is just a matter of bringing the information from all of thesen! pro-
cessors together. And that bringing of information together will amount to
computing an OR function of these n! partial results. And since an OR func-
tion can be computed in parallel logarithmic time, that will turn this also into a
polynomial. So this whole algorithm is parallel polynomial time algorithm for
HAMILTONICITY.

This is good news. The good news is that we can solve, by using the same
kind of idea, just about any problem inNP efficiently in parallel.

3.12. LECTURE 12 315

What is the problem with this? The problem is that we are using too much
hardware! We are using n! processors, and that is even more unrealistic than
using n! steps of computation. Imagine n! processors – a number of processors
that grows exponentially with the size of the input, and which even for mod-
erately small n values exceeds the number of available molecules in the whole
universe. That is very unrealistic.

The interesting question is what we can do with polynomially many pro-
cessors. The bad news is that with polynomially many processors, P remains
robust, meaning that parallel polynomial time is the same as sequential poly-
nomial time. The proof is trivial by simulation:

If I have polynomially many processors, say m of them, then I can simulate
what these m processor can do in parallel by using 1 single processor. This is
how I do it: My single processor will first run the first processor for a while, then
run the second one, then the third one, and so on. This is similar to how a job
scheduler in a multi-task operating system operates.

So my single processor can simulate one parallel step ofm processors by us-
ing t1(m) sequential time, where t1(n) = O

(
mk
)

for some constant k, meaning
that t1 is a polynomial in m. And if this m processors parallel machine works in
parallel polynomial time t2(n), then the single processor would need t1(m)f2(n)
sequential time. And given that these two guys are polynomials, then the overall
sequential time is also polynomial.

So if a parallel machine with a polynomial number of processors solves a
problem in polynomial time, then a sequential machine with a single processor
can solve the same problem in polynomial time.

This means that speeding up intractable problems turns out to be hope-
less with parallelism, at least from a theoretical viewpoint. In practice even a
constant speedup of a HAMILTONICITY-solving program or a chessplaying pro-
gram might be interesting. So most of theoretical parallel computing focuses
on speeding up problems that can be really speeded up, and those are some of
the problems in P.

316 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 12

Autumn 1999 12 of 12

Parallel complexity classes
Def. 4 A language is said to be in classNCif it
is recognized in polylogarithmic,O

(
logk(n)

)
,

parallel time with polynomial hardware.

NC

P

P-hard, Ex: CIRCUIT VALUE

•P
?
= NC

Most of the theory of parallel computing is focused on the issue ofNC versus
P. By definition a language is said to be in class NC if it is recognized in poly-
logarithmic parallel time with polynomial hardware. And here polylogarithmic
means function in time which is O

(
logk(n)

)
. This is a straightforward general-

ization of the idea of efficiently sequential computable, meaning computable
in polynomial time.

I should mention that here we are again talking about uniform models if we
are talking about Boolean circuits.

So the classNC involves those problems that are solvable in sequential poly-
nomial time, and that can be efficiently parallelized. Efficiently means that
bringing polynomially more hardware results in a dramatic, exponential, drop
in computation time. In contrast to the problems that are inNC, there are prob-
lems which are shown to be P-hard, or hard for class P, and those are believed
to be not parallelizable efficiently.

The situation here is exactly analogous to the situation between P andNP .
If one of the P-complete problems turns out to be inNC, then all ofP turns out
to be inNC. But whether or not P=NC, that is again not known.

So to show that a problem is not efficiently parallelizable, amounts to show-
ing that the problem is P-complete or P-hard. An example of a P-hard prob-
lem is the Boolean circuit value problem, where we are given a description of a
Boolean circuit and the values of the inputs, and the question is to compute the
value of the output. This problem seems to be inherently sequential.

This is all I wanted to say about randomized and parallel computing. Next

3.12. LECTURE 12 317

time, in our last lecture, I will first talk about a new computer model which
challenges the Computational Complexity Thesis. Then I will switch to certain
big aspects of computation, namely cryptography and language design, which
are not directly part of complexity analysis, but where complexity theory really
throws a lot of lights on the essential issues.

318 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

3.13 Lecture 13

IN210 − lecture 13

Autumn 1999 1 of 9

Alternative machine models
Computational complexity thesis: All
reasonable computer models can simulate
one another in polynomial time (i.e. P is
“robust” or “machine independent”).

But the Turing machine is based on a
classical physics model of the universe,
whereas current physical theory asserts that
the universe is quantum physical!

Question: Can we build more powerful
computing devices based on quantum
physics?

(Another interesting kind of computing
device is the biological computer . . .)

Algo:
11 (323-342),
12 (347-353)

This is our last lecture, so the natural question to start with is: What have
we been doing here in this class? Well, we have constructed a map of classes,
and we have used this map to organize our world – to organize our thinking
about informatics, about computers, about problems, and about their solutions
in terms of algorithms.

We first focused on the borderline between those problems that are solvable
by algorithms and those that aren’t. We learned different techniques – diagonal-
ization and reduction in particular – for proving that a problem is unsolvable,
and we got insights about how those unsolvable problems look like. Then we
started to focus on the solvable problems and we made a distinction between
those problems that are properly solvable – meaning solvable in polynomial
time – and those that seem inherently intractable. We identified intractable
problems with the classNP-complete, and we used quite a few lectures to learn
how to prove that a new problem is NP-complete by reducing in polynomial
time anotherNP-complete problem to our new problem.

So we have constructed a complexity theory which says something about
how difficult different classes of problems are to solve. This complexity theory
is based on the Turing machine as a model of an algorithm, and it is also based
on a certain approach which we called worst case & best solution. And this
approach is pessimistic. It can be criticized.

We have been looking in the previous lectures at some alternative ways of

3.13. LECTURE 13 319

defining and analyzing algorithms, which has led to certain design paradigms
which we could analyze and then place on the map too. We have seen approxi-
mation algorithms, average-case analysis, randomized computing and parallel
computing. We have tried to grasp the possibilities and limitations of those ap-
proaches, and especially how suited they are for dealing with those problems
that are intractable in the worst-case & best-solution paradigm – the NP-hard
problems.

Today we will start by finishing this part on alternative approaches. We will
take a critical look at the backbone of our theory – the Turing machine as a
formal model of a computer. This whole complexity theory that we have studied
is based on TMs. What if we make a completely different kind of computer that
is nothing like a Turing machine? Can we then solve some of those intractable
problems efficiently?

And to begin with it seems like that won’t really work, because we have the
Computational Complexity thesis (CCT), which says that all the reasonable com-
puters – all the digital computers that we have today including parallel com-
puters with polynomially many processors – they can simulate one another in
polynomial time. In other words we say that P is robust or machine indepen-
dent.

But you must remember that CCT is only a thesis, it is not a theorem which
can be proven. So the fact that we haven’t been able to construct a significant
more powerful computing device yet, doesn’t mean that the Turing machine is
the best we can get. Maybe it just reflects our lack of knowledge and skills.

So the question is a valid one: What about making some completely differ-
ent kind of machine that is nothing like the classical deterministic TM? Can we
solve some of the intractable problems, some of the NP-hard orNP-complete
problems, on that kind of machine? And what should such a machine be like?

A lot of people have been working along these lines, and some ideas have
emerged, such as the quantum computers, and then there are also biological
computers and all kinds of other computers. And every once in a while one
finds an issue of a scientific journal or a computer science journal that is dedi-
cated to one such special kind of computation.

We will now take a look at the quantum computer. We know that the TM
is based on the classical physics model of the universe, which is described by
Newtonian mechanics. But today we don’t believe that the world is a large
mechanism. Instead we believe that the universe is quantum physical. So the
natural question is whether we can build more powerful computing devices
based on quantum physics instead of classical physics. And we will see that
the answer is a ’Yes’ and a ’No’ – as usual.

320 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 13

Autumn 1999 2 of 9

Quantum Computers
or outsmarting complexity

• According to quantum physics a particle
(elctron, proton, etc) can be in several
different quantum states at the same time.

• A quantum computer can follow several
different path in the computation tree at
the same time, and therefore somehow act
as a NTM.

• Several quantum machine models have
been proposed, e.g. a quantum Turing
machine.

• In 1994 Peter W. Shor showed a
polynomial time quantum algorithm for
FACTORING and DISCRETE LOG, two
problems that seem to be difficult on a
classical TM, and whose intractability
modern cryptography relies upon.

What is a quantum computer? I cannot really tell you in detail how it works,
because it involves some interesting physics, but I can tell you a little story
about some principles behind it. The story is about one of the most interest-
ing things that have happened in our time. It is about what has been called the
paradigm change in science

In quantum physics people have discovered that small particles actually defy
our normal logic. What is "the normal logic"? It is the true/false logic that all
branches of science have been using, including computer science. But that
logic actually was formulated by the ancient Greek Aristoteles and it is a very
old thing. The logic for example says that a statement A and its negation cannot
be simultaneously true.

That logic was assumed to be first God-given, and then somehow to be natu-
ral or to be obvious without doubt. So in various ways this logic was established
or postulated, but always it was assumed to be right. Until people proved exper-
imentally that small particles – those guys that are invisible by eye, and that all
those clever people in the past didn’t know about – that they actually just simply
defy the classical logic.

An electron can in fact be in two states simultaneously. It can go through two
holes simultaneously, and how this can happen, nobody can quite understand.
There is an interesting paper written by Heisenberg, one of the famous physi-
cists, which is called "Physics and philosophy". It is a kind of a monograph on
quantum theory and on consequences of it – just completely practical cultural
consequences.

In that book Heisenberg is talking about an interesting situation of physi-
cists talking to one another, and they are talking about those electrons and small
particles. The problem is that they cannot even use the normal language, be-

3.13. LECTURE 13 321

cause what they are observing cannot really be described in the normal lan-
guage, because our language is based on a certain logic. And that logic just
doesn’t apply there.

So the language doesn’t work. Instead they invent their own language, a kind
of descriptive language which more or less works. One things works and that is
mathematics. Because mathematics is a design kind of language, so you can de-
sign exactly the kind of mathematics – not of course this old logic – but you de-
sign a logic that works, the equations, and you can compute the consequences.
But you cannot really describe those consequences in the normal language, and
mentally you cannot grasp them.

There is these two things. One is what we can grasp mentally and what our
normal language can describe. The other is experimental physics and its math-
ematical models. And those two worlds, they are two disjunct worlds.

Why is this so interesting? It is interesting for many reasons, but one of the
reasons is that it was the death of metaphysical thinking. For centuries we had
been believing that we could with our minds grasp the reality out there, and that
our logic is the logic. Now it turns out that what is out there is much deeper and
much more complex and much more full of surprises, then what our logic can
grasp and anticipate, and then what our language can express.

So we are left doubting, but we are also living in a world which is full of
unbelievable possibilities. I am currently working in an emerging field called
information design, and information design actually begins from there. I will
not say more now, but maybe some of you will take our new class in information
design, which is normally taught in the spring, and then we can talk more about
these things.

There are possibilities opened by this new kind of logic and physics for a new
kind of computer. And very roughly speaking this new kind of computer – the
quantum computer – exploits this possibility of an electron being in two states
or going through two holes at the same time. So you can think of actually some
physical device which explores not one possibility at a time, but two possibili-
ties. And then again two possibilities, and so on. So something that can more
or less do the non-deterministic computation in a real sense.

It is difficult to follow these images with our mind, but the point that I am
trying to make here is that nature has all sorts of wonderful possibilities for us.
One of them is a completely different kind of computation, which uses a dif-
ferent kind of logic, and which can solve intractable problems in polynomial
time.

Several quantum machine models have been proposed. One of them is the
quantum Turing machine (QTM). The QTM is almost like a normal TM, except
that in each time step it is allowed to do one extra operation on one single bit.

Feynman, a famouse physicists, pointed out in 1982 that the classical TM
seems to require exponential time to simulate a step of a quantum computer.
But how powerful are these new quantum computers? In 1994 Peter W. Shor
gave remarkable polynomial-time quantum algorithms for two of the most fa-
mous problems in computer science, namely FACTORING and DISCRETE LOG.
What is FACTORING? Think of having a large number which is a product of two
prime numbers. FACTORING is then finding those two primes.

Shor’s algorithms have very big practical consequences. FACTORING and
DISCRETE LOG are computational hard problems on a classical computer, mean-
ing that we haven’t yet found polynomial algorithms for solving them. And
several famous cryptosystems widely used today are based on the assumptive
hardness of those problems. So solving those problems efficiently means the
possibility of breaking "all" the codes in the world. We will come back to this in
a short moment.

322 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 13

Autumn 1999 3 of 9

• E. Bernstein and U. Vazirani have recently
showed that a certain problem — the
recursive Fourier sampling problem — can
be solved in polynomial time on a
quantum Turing machine, but requires
superpolynomial time on a classical TM
unless P=NP.

• This was the first evidence ever
contradicting the Computational
Complexity Thesis!

• It has recently been proven that the class
NPcannot be solved on a quantum Turing
machine in time o(2n/2) unless P=NP .

• To this date (1998) the “largest” quantum
computer actually build has 2 bits, but
there is much research going on.

•Many excellent articles on quantum
computing and complexity can be found
in SIAM Journal on Computing Vol. 26, No.
5, pp. 1409-1557.

A polynomial algorithm for FACTORING is of course impressive, but it doesn’t
necessarily contradict the Computational Complexity Thesis even if P 6= NP ,
because FACTORING is not shown to be an NP-complete problem. So maybe
the quantum computer isn’t so powerful after all?

Two scientists E. Bernstein and U. Vazirani have recently showed that a cer-
tain problem, called the recursive Fourier sampling problem, can be solved in
polynomial time on QTM. The interesting part here is that this problem has
been shown to be impossible to solve on a classical TM using polynomial time,
unless P=NP . This is the first evidence ever contradicting the Computational
Complexity Thesis!

Does this mean that all our theory, we can just throw it away because it is
based on the classical TM? No, even if you have the quantum computer, you
can still use our basic map in order to say what sort of problems the quantum
computer can solve efficiently. And this has been done. People have proven that
it is very unlikely that the NP-complete problems can be solved by quantum
computers efficiently. It has been proven that the classNP cannot be solved on
a QTM in time Ω(2n/2) unlessP=NP . This little-O notation means that the class
NP cannot be solved in time which is asymptotically faster than exponential
time. In other words, there is at least one problem in NP that a QTM needs
exponential time to solve, unless P=NP . So we cannot really hope to solve any
NP-complete problems in polynomial worst-case time, even on a QTM.

Another basic observation is that QTM doesn’t move the border between the
solvable problems and the unsolvable ones. Because a classical TM can simu-

3.13. LECTURE 13 323

late a QTM if it is allowed to us exponential time. So the quantum computers
cannot solve any problem which a normal TM cannot. They can only compute
faster. And they cannot even solve NP-complete problems efficiently unless
P=NP . However they can solve some problems faster. That is the bottom line.

Your next question is maybe: Where can I by this new quantum computer?
The answer is that at the present, you cannot – no matter how much money you
have. Because to this date (1998) the largest quantum computer actually build
computes only twobits. So the quantum computer is still mainly a theoretical
notion. But there is much research going on, and most scientists believe that a
functional quantum computer will soon be build.

So this is roughly the story about quantum computers, and there are also
all kinds of other ideas, i.e. biological computers. It might sounds strange, but
people are really working on these things. They are looking into genes and little
organisms multiplying in their test tubes, and they want to use them for com-
putation. There are whole issues of journals devoted to such ideas.

Why are people so attracted by any ideas which can result in a more powerful
computer? It turns out that solving intractable problems can have very, very
interesting consequences. It is not just about telling the traveling sales person
which way to go – how to save gasoline. There are some much deeper problems
that are related to complexity. And that we will talk about next.

324 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 13

Autumn 1999 4 of 9

Cryptography
or cultivating complexity

• Security & legal issues limit the use of
computers.

• A foundation stone: Public Key
Cryptosystem.

Dino
Dino

y = E(e, x)
x = D(d, y)

Public key (function)

e
d

Secret key (function)Encoding
Decoding

•D(d, E(e, x)) = E(e,D(d, x)) = x

• The system depends upon the existence of
one-way functions — functions that are
easy to compute, but difficult to invert.

I will now briefly cover two large research fields where we use complexity
theory to understand the issues. The first field is cryptography. Cryptography
introduces an interesting twist on complexity, because there complexity is ac-
tually desirable. You eliminate complexity and cryptography is in deep trouble.
So whereas until now we were interested in combating complexity in all sorts
of ways – eliminating complexity, simplifying things – now we are interested in
finding properly complex problems, because without them there is no cryptog-
raphy as we know it now.

What is the issue? The issue is practically extremely important, very big. You
would like to use computers today for all sorts of things. We are linked with
networks. People have their home computers and hand-held digital time man-
agers. And many banks today, instead of having a piece of paper with your sig-
nature on it saying: "Please transfer money from my account A to my account B,
or from my account to this other guy’s account", allows you to just log on with
your home computer and do all these transactions, see how much money you
have, transfer money from one account to another. And if you are an organi-
zation, then that goes infinitely faster than sending those little guys on bicycles
carrying the bills and papers and documents in their bags.

The reason why we may still need the guys on bicycles and why we may
still need to send letters with signatures from Oslo to Vancouver and to Hong
Kong, is the issue of security and certain legal issues. And the point is that if I
transfer all my money from my account to this other guy’s account, and then
later I come into the bank and say: "Look, I have never done that. I don’t know

3.13. LECTURE 13 325

what you did with my money." Then, who is really legally accountable for this?
Who is responsible? It is difficult to prove that I actually did this unless I came
in person and showed my ID, and so on and so forth.

So there are these issues which are obvious, and which severely limit the use
of computers now. And if we can somehow get around those issues, if we can
resolve them, then we can use computers in all sorts of wonderful ways and get
rid of those boys bicycling around with bags full of papers. We can get rid of
storing those papers, or signing legal documents and having two witnesses, etc.
All can be done by just simply pressing the buttons on the computer.

This raises the issue of cryptography. Cryptography is a very old business.
In the olden days before the computers it mainly had to do with one army
sending messages to different parts of the army or to the general. Or it had to
do with Russians or Germans having military personal around the world, and
they wanted to send instructions to those people about what to do – all sorts
of spying things. And then people tried to read those messages. They tried to
break the codes. So there is a lot of science involved and a lot of things involved
around creating those secret codes and breaking those secret codes.

With computers around there is even more interest in creating cryptographic
systems – cryptosystems for short – and also there has been a lot of progress on
creating cryptosystems because computers can do things which are difficult for
humans. And a foundation stone for working in different ways with cryptogra-
phy has been laid by the so-called Public Key Cryptosystem (PKC).

Let me tell roughly what this is. There are two keys involved. Those two keys
they are really functions that you apply to the text, or to a sequence of bits, in
order to transform the text. You want to transform the text in such a way that
the characters are complete nonsense to anybody looking at them, unless the
person can decode that message and turn the nonsense into sense.

So basically you can think of any cryptosystem as being two functions, one
encoding function, E(x), and one decoding function, D(x). The two functions
being inverses of each other, so that when you apply one and then the other,
you get the original message. And it is nice if those two are commutable in the
sense that you can apply one first and then the second, or the second first and
then the first, always getting the same result, the original message.

What is interesting about the PKC is that one of the two keys, one of the two
functions, is made public. So that you, an organization or a computer user or
a bank, you have two keys associated with yourself. You have two keys of your
own – one being a public encoding key, another one being your secret decoding
key. And then what you do is you send your public key with your name on it to
everybody around. You say: "Look, this is my key, and if you want to send me a
message, please you this key to encode the message."

The point is that only I have my secret key which is the inverse of this en-
coding function. Only I am able to read that message. So although everybody
has the encoder – everybody can encode messages and send them to me – only
I can read them, because only I have the decoding function.

So you see how this solves zillions of problems. One of the problems is for
example: You are an army in a war. Then you need some way of encoding your
messages so that only the people within the army can read them. The question
is: How do you distribute the keys which encodes and decodes the information?
These keys or codes they have to change every once in a while. How do you send
the code to people? If you are sending the secret code, you may as well send the
message! Some way or the other the code must be distributed. With PKC that
problem is solved. You just broadcast your public key, because it is completely
public, everybody knows it.

Still, even though this public key is known, its inverse is not known. So what

326 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

is this whole thing dependent on? Just look at the situation. It is dependent
on the existence of functions which have the following property: They can be
computed efficiently, because obviously this encoding it has to be done in poly-
nomial time. Unless you can encode text efficiently, it is completely useless. You
cannot use zillions of years making your message unreadable to others. It has
to be done fast.

So this encoding functions has to be polynomial-time computable. At the
same time this is public information, so if I take this little piece, if I can invert
the function, then I have this secret text right away, and I can break the code. So
it is essential that this function is efficiently computable, but not efficiently re-
versible – the inverse of this function should not be computable from the func-
tion itself!

So the safety of these public key cryptosystems depends on the existence of
the so-called one-way functions, and those are functions that are easy to com-
pute, but difficult to invert. I will talk more about actually the mathematics
behind this, which is interesting, in the IN394 class.

3.13. LECTURE 13 327

(This is a blank page)

328 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 13

Autumn 1999 5 of 9

Example
The RSA (Rivest, Shamir, Adleman)
cryptosystem (1978)

encoding: y = xe mod pq, p and q large
primes
decoding: x = yd mod pq

Note: The scheme can be broken (and x
computed from (y, pq, e) if pq can be factored
(i.e. if p and q can be computed from their
product).

I will now just mention one cryptosystem which is based on this scheme,
and in fact it is the most famous and probably most widely used. It is called RSA
by the people who designed it: Rivest, Shamir and Adleman. Here is roughly
what this encoding function looks like: x is the message, y is the encoded text.
Encoding is done by raising x to the power e, and then computing modulo pq
of that, where pq is a large number which is a product of two primes. This e is
actually an integer which is relatively prime to φ(pq) = pq− p− q+ 1, where φ is
something called the Euler function.

The encoding key is made public, so e and the product pq are public infor-
mation. The encoded message y can also be regarded as public information
because it is mailed using a non-secure channel. But the number d, which is
some kind of reverse of e (in the ring modulo φ(pq)), and the prime numbers p
and q, they are secret. The point is that if you have the prime numbers p and
q and the encoded message y then you can use e to compute the secret d, and
then decode the original message x from the encoded message y.

So the whole point here of this story, of which we don’t specify the details, is
that if p and q are given explicitly, then d – the secret number – can be computed
and the whole code can be broken. So all this banking and national security
business actually depends on our inability to figure out p and q, given this public
available product p times q. If we can factor p and q out of pq, then we have
broken the code.

So now we understand the implications of Shor’s polynomial-time quantum
computer algorithm for FACTORING. Because FACTORING is believed to be diffi-

3.13. LECTURE 13 329

cult to solve on a classical computer, but if somebody builds a quantum com-
puter, then that machine can break the codes because it can factor numbers
efficiently.

You might say: "Wait a minute. You just said that up to now the biggest
quantum computer actually build works on only two bits. So that is no threat to
cryptosystems." And you are of course right, but the interesting question is: "If
somebody actually managed to build such a computer, would he announce this
publically or not?" And this is no joke, because cryptography is an area which is
completely full of secrets.

I have been in a conference where an Israelian guy called Shamir was sup-
posed to present a research paper. Shamir is one of those guys who made the
PKC, and also many other things. Well, Shamir couldn’t, present his paper be-
cause the Israelian government forbade him to present his result. It was about
probabilistic computation, cryptography and things, so they thought it was an
issue of national security. So in instead of presenting the result, he was actually
giving a 20 minutes presentation of this absurd situation where he was running
back and forth to this building and that building, trying to get the approval for
his results to be published. The outcome was ’No’. So he couldn’t say anything
except tell these anecdotes about the rigidity of those people.

330 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 13

Autumn 1999 6 of 9

Cryptographic protocols
Example: Secret letters with digital
signatures.

• Two persons Alice and Bob with their
public (eA, eB) and secret (dA, dB) keys.

• Alice computes the letter consisting of
message x (in plain text) and signature
D(dA, x) (using her secret key), and
encodes the whole thing using Bob’s public
key.

• Bob decodes the letter using his secret key
(the message x is then readable to him)
and then computes (encodes) the
signature E (eA,D(dA, x)) using Alice’s
public key.

• If the result is equal to x, he knows that
Alice is the sender.

Now I am going to finish this very brief introduction into cryptography by
showing you how this PKC can be used to implement a digital signature. The
meaning of this is: I can not only send an encrypted message, but I can also
sign it so that you, who reads it, know that I have send the message. This is of
course based on the assumption that this whole thing works, that nobody can
break the code.

I will show you how a cryptographic protocol for digital signatures works.
What is a cryptographic protocol? It is a kind of a procedure that two persons
or two programs can use over an insecure communication channel in order to
communicate safely and accomplish certain tasks. And those tasks they are of
all kinds, and for each task there are certain protocols. This gives rise to all sorts
of interesting problems. We have now a whole domain of problems which are
solved by protocols.

One of the problems is the problem of creating a safe digital signature so that
when I send you a message, I can sign it. The message is then secretly encoded
so that only you can decode and read it, but somehow you must also be able to
see that only I – and nobody else – sent that message.

How do we do that? In all of these schemes both Alice and Bob have two keys
each. They have one encoding key each, eA and eB , which are public, and one
decoding key each, dA and dB , which are secret. The encoding key is used in the
encoding function and the decoding key is used in the decoding function – the
two being the inverses of each other. And also the two functions commuting –
meaning that you can apply them in any order.

3.13. LECTURE 13 331

So Alice is sending a message x, and she computes the function D(dA, x),
where D is the decoding function and this dA is her secret key. This looks kind
of stupid to decode a message which is not encoded, but it is allowed because
the encoding and decoding function commute. So She computes the decoding
function of x and sends it together with a plain copy of x. So we now have a
message SA(x) which consists of two strings – one is the message x and the
other is the decoded version of the message x. This decoded version of message
x is going to be her digital signature.

Alice then of course encodes this composite message SA(x) by using Bob’s
public key, and sends the whole thing to Bob. Bob can now use his secret key
and decode this message SA(x) which consists of two parts. So he can read the
message x, and then he can look at the digital signature that Alice sent, which is
this partD(dA, x) here.

How can he check that this is Alice’s signature? He applies Alice’s encoding
key eA – which is public available. So he encodes D(dA, x) by using Alice’s pub-
lic key. In effect he computes E(eA,D(dA, x)) using Alice’s public key. And if
the result of this inversion is now equal to x, he knows that Alice is the sender.
Nobody else could be the sender.

Why could nobody else be the sender? Because nobody else can do the Alice
kind of decoding. Because the Alice kind of decoding requires the person having
her secret key dA, which is a large integer with certain properties.

332 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 13

Autumn 1999 7 of 9

• PKCs are based on one-way functions
which are easy to compute, but difficult to
invert.

• RSA uses essentially PRIMALITY as the
easy function and FACTORING as the
supposedly difficult function.

• PRIMALITY can be shown to belong to
NP ∩ Co-NP .

• It is also proven that PRIMALITY belongs
to ZPP, meaning that it can be solved by a
Las Vegas algorithm.

• There exists no polynomial-time algorithm
for FACTORING on a classical TM, but
FACTORING can be solved efficiently on a
quantum TM.

Note: If P=NP then any public key
cryptosystem can be broken.

Co NP

P

NP
PRIMALITY

I will now just sort of summarize some of the issues we have talked about to-
day – to see how this whole fits together. What do we know about the complexity
of this whole PKC thing? I have said that PKCs depends on one-way functions,
functions that are easy to compute, but difficult to invert. So it must be easy to
encode the message, but difficult to decode it without knowing the secret key.

We have seen that in RSA the important part of the public key is this large
number pq, which is a product of two large prime numbers p and q. p and q typ-
ically have 150 binary digits or more. Making this key must be easy, so we need
to be able to find large primes efficiently. On the other hand, this scheme can
be broken if somebody can figure out the primes p and q given their product pq.
So factoring a large number must be difficult – FACTORING being the problem
of finding the prime factors which a non-prime number is made up of.

FACTORING seems to be a hard problem on a classical computer – no effi-
cient algorithm is found yet. But then again, Shor’s polynomial-time FACTOR-
ING algorithm on a quantum computer indicates that this PKC is broken the
day the first quantum computer is built. But up to now no quantum computer
is built (we believe!), so PKC is safe for the moment being.

What about constructing the keys – how difficult is that? To make the keys
we definitely need to be able to test efficiently whether a number is prime or
not. The problem to decide if a number is a prime is called PRIMALITY.

PRIMALITY has been proven to be in the intersection between NP and Co-
NP, meaning that both NON-PRIMALITY and PRIMALITY have short ID’s. A good
witness for a number being non-prime is of course the factors which the com-

3.13. LECTURE 13 333

posite number is made up of. So non-prime is obviously inNP . It is less obvi-
ously that there exists a short certificate to the fact that a number is prime. How
do we verify that a number n is prime? We can of course check for all numbers
from 2 to

√
n that those numbers are not factors of n, but that would require ex-

ponential time in the length of n. It is not obvious that a short certificate exist,
but people have shown that there indeed exists such a short witness.

PRIMALITY being in the intersection betweenNP and Co-NP is good news.
Although no polynomial-time worst-case & best-solution algorithm has been
found for PRIMALITY, we do have fast randomized algorithms. PRIMALITY can
actually be solved by a Las Vegas algorithm – this kind of miracle probabilistic
algorithm which with an exponentially (in the number of trials) large proba-
bility either answers, "Yes, the number is prime" or "No, the number is not a
prime".

So given a large number, we can use a Las Vegas algorithm to test efficiently
whether a number is prime or not. But how many primes are there out in the
world of integers? If I am a user of RSA then I say: "Here I am. Give me a secret
code." and then you need an algorithm that actually produces lots of these keys,
which are large prime numbers.

By using a little bit of computation you can find out that in any first n num-
bers, about n/ loge n of them are prime, where e = 2.71828 This implies that
the density of primes around any number n is 1 loge n. What does this mean?
Well, suppose that you want to find a prime which has m decimal digits. This
prime-density result means that if you test loge 10m = O (m) random decimal
numbers of length m, then you are expected to find one which is prime! So it
turns out to be sufficiently many of these prime numbers so that if you have a
Las Vegas algorithm for testing PRIMALITY, then with a large probability you can
actually find one of primes numbers in polynomial time – because there are lots
of them.

The situation with the algorithm theory at this point is such that we can
create these cryptosystems because we have the tools for creating large primes,
but not for breaking them (factoring them).

However, nothing is really proven. Because it turns out that if P=NP , then
this RSA scheme can be broken, meaning we can decode the secret message x
in polynomial time. How? By using our old friend, the non-deterministic Turing
machine. Given the public key p, q and e and the encoded message y, the NTM
can then just guess the right message x and verify in polynomial time that x is
indeed the secret message by computing xe mod pq and check that this equals
y.

Most people believe that P is different from NP, but nobody has been able
to prove it. So suppose I sit down today, it is my lucky day, and I solve HAMIL-
TONICITY in polynomial time. You can say: "Who cares about HAMILTONICITY?"
But the way this theory is structured, you know immediately that the conse-
quence of this is that I can also do FACTORING in polynomial time because all
these things are reducible to one another. If I solve HAMILTONICITY in polyno-
mial time, then I break all these codes in polynomial time – no problem! So the
consequences are in fact tremendous, even though HAMILTONICITY may not
seem like such an interesting problem – who cares whether you can go around
the graph in this way or not? That is food for thought – the consequences of
complexity.

So this gives us an interesting view on complexity, where complexity is ac-
tually completely crucial in this world. A lot of important things in this world
actually depend on certain problems, certain functions, being complex. That
concludes the second part of today’s lecture.

334 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 13

Autumn 1999 8 of 9

Expressive/computational
power of machines & languages
or expressing complexity

Sample results
•Modeling (Mc Culloh, Pitts, ca. 1950): Neural

networks are Turing equivalent.

...

yk ∑n
1 xi ≥ t?

tk

Neuron k

x3

xnx2

x1

• Logic (Expressive power of first-order logic):
First-order graph properties are inP .

— First-order logic: ∀x∃y(¬x ∧ F ∨ y)⇒ T

problems algorithms properties,
theoriesFLs TMs
logic

I will now introduce a very large theme which we can call "the expressive
power of machines and languages". This theme studied quite a bit in IN394. I
will just touch it briefly here – I will mention issues and results. This issue has
to do with studying all sorts of things simply by using the tools and results of
complexity theory – by using our map and by using some of the insights from
the map and maybe some of the techniques that we have seen.

And the first thing I mention here is a result which was made about 1950,
which was a kind of a very interesting result with all sorts of consequences. The
result was made by two people. One was a neurologist, another one was a kind
of a computer scientist, as much as anybody could be a computer scientist in
1950. That was like just the beginning the field. The field did not really exist at
that point. And the first computers were just about being made.

But these two people came together, and they were interested in studying
how the human brain functions: Can we understand our thinking? Can we
really understand, in some scientific way, how our brain functions? How our
thinking functions?

And if we can then all kinds of things are possible. You can imagine creating
a kind of a computer which functions in a similar way as our mind. And one
thing is obvious again, and that is that we – the humans – we solve all sorts of
unbelievably hard problems almost without even thinking. For example recog-
nizing scenes, recognizing things. When you come into this room, you imme-
diately know what is far and what is close. And to do computation with these
problems are extremely difficult.

3.13. LECTURE 13 335

So there are all kinds of things that our brain does that are computationally
difficult. On this most primitive level we can learn how to solve problems just
by studying the brain, but the brain is obviously an interesting kind of thing to
study in itself, because there are more than computational problems that are in
it. So how these things actually functions is a most interesting question.

One of these two guys, the neural scientist, was quoted saying: "In neurol-
ogy the problems are usually so complex that we cannot even formulate them".
What does this mean? It is the basic problem of turning something into science.
And in this case that "something" is a domain which is extremely important,
namely understanding our neural system, understanding our brain.

So what these two characters did, they actually created a model of the neural
system, based on a model of the neuron – the basic cell. And the issue there is
taking something which is biochemically, physically and in every possible way
unbelievably complex, and turn it into an manageable abstract model which
captures the reality in a good way.

So they created an abstract model of the brain. They said that the essence
of a neuron is this little figure on the foil. It has an associated threshold with
it, and then there are these inputs, which are basically 0 or 1. These inputs are
nerves. And a bunch of nerves come into a certain place, from other cells, and
each of these nerves they can be either excited or non-excited, they can either
have the value 0 or 1. And if sufficiently many of these are excited, then this
neuron will also get excited and produce a 1 here as the result yk. So if more
than the threshold number of inputs is in state 1, then this neuron becomes set
and produces a 1. And this 1 is carried further to the other neurons, to which
this yk is an input. So you can imagine a neural network as being a kind of a
mesh of these neurons, one being input to another.

This is both a model of computation and a model of our brain or of our neu-
ral system. The first thing the two scientists did was that they proved that these
neural networks can simulate a Turing machine. What is the meaning of that?
We know that a TM is actually as powerful as any computer. So there is a very,
very basic thing involved in proving that something is Turing equivalent, mean-
ing that is as powerful as a Turing machine.

We know that we – the human beings – we are Turing equivalent. We can
run any program, we can compute any algorithm by using our mind. So if a
model of a neural system is not as powerful as a Turing machine, that means
immediately that it is not a good model, because we know that we, humans,
are at least as powerful as Turing machines. Conversely, if one can prove that
a model of the brain can solve any problem that a Turing machine can, that
means that any solvable problem is solvable by the model, and in a way that the
model is powerful enough.

A very interesting question is of course whether our brain is more powerful
than the Turing machine. Can we solve problems which are unsolvable? That
we don’t know. But we now that a TM can simulate a neural network, so if the
answer is ’Yes’, then the neural network is not a powerful enough model of the
brain.

The point that I am making here is that by using the standard complexity
tools like the Turing machine, you can study models of things – not only pro-
grams, not only solutions to processing problems, but even modeling situations
– which are completely outside anything which looks like computer science.
Actually these neural networks have been used to design algorithms. They have
been used to solve intractable problems efficiently, but in a certain approximate
sense. It is a whole area of research.

This interaction between computer science and neurology goes both ways.
Neurology has learned something from computer science – this result here.

336 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

And people have learned from neurology how to make efficient algorithms for
solving certain kind of problems, for example learning algorithms and pattern
recognition.

We turn the page and look at another issue, which is the expressive power
of logic. The issue is roughly this: In this world of theory, in addition to two big
things which we have studied – problems and algorithms – there is a third thing
which has to do with stating properties or stating theories. And if the first world
of problems has been modeled by formal languages, and the second world of
algorithms by Turing machines, then this third world of properties and theories
has been modeled by formal logic.

And the most widely used logic that people study, is the first-order logic. It
has quantifiers and then expressions of the Boolean kind, involving connectors
AND, OR, NEGATION and the constants ’TRUE’ and ’FALSE’. So these kinds of
things are called expressions in the first-order logic. They express properties so
that if, say, the Boolean variables x and y happens to be vertices in a graph, then
we can use first-order logic to specify properties of graphs. So that first-order
logic becomes a language for expressing properties of things.

The question is: How powerful is this language? What sort of properties can
we express in that language? And then one result is that the first-order graph
properties are in P. What are graphs? Graphs are relationships. People being
brothers or sisters, people knowing each other. In databases people use rela-
tional databases for storing all sorts of information about how tings are related.
A company and the employees of a company, they are graphs. Graphs are kind
of binary relations. So you can think of graphs being models for relations in this
world.

So the first-order logic is a way of specifying properties of relations in this
world. It is a formal model of those basic things. Then it becomes a very ba-
sic issue to understand how powerful is this language for expressing properties.
What kinds of properties can it express? The answer is that the graph proper-
ties that are expressible in first-order logic are properly contained in P, ’prop-
erly’ meaning that you cannot even specify all the polynomial-time computable
properties in the first-order logic.

Again it has all sorts of consequences. One of the consequences is that if
you can specify some property in first-order logic, then that property can be
computed in polynomial time.

3.13. LECTURE 13 337

(This is a blank page)

338 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

IN210 − lecture 13

Autumn 1999 9 of 9

• PL design (Expressive power of programming
languages):

— Simula is Turing equivalent (applicative PL)

— Prolog? (declarative PL)

• Query language design (Expressive power of
database query languages):

— Datalog queries are polynomial-time
computabel

• Grammars, compiler design, etc.

• Relationship between logic & complexity,
(query) language design

Fagin (1976):

NP =
graph

existential second-order logic

(∃R φ(G,R))

P =
graph

first-order + while + successor

= first-order + fixpoint + successor
= Horn existential second-order + succ.

A related issue is programming language (PL) design where we have a cer-
tain programming language and we are interested in understanding what sort
of computations, what sort of algorithms, can be expressed in programming
language. And the most basic kind of result there is proving that a PL is Turing
equivalent. And what this means is that it can express all algorithms.

And we know that all existing reasonable general-purpose PL, such as Sim-
ula, Pascal, C, Java and so on, are easily proven Turing equivalent – meaning
that they are equivalent to each other, or that they are as powerful as a language
can be. They are proven Turing equivalent by simply showing that they can sim-
ulate a Turing machine. That is infinitely easier than proving that Simula can do
everything that Pascal can do and everything that C++ can do, and so on and so
forth. So all you have to do is to simulate a TM. A TM is such a simple thing that
you are finished in 15 minutes of time proving that the PL that you have just
designed and want to publish, can simulate the TM. You have proven that it is
as powerful in principle as it can be.

A more interesting set of issues is this: Given so-called declarative PLs, how
powerful are they? A declarative PL doesn’t really tell you how to compute things.
It only tells you: "This is what I want." So those languages allow us to specify
properties without saying how those properties are to be computed.

Prolog is such a language. Artificial intelligence uses those languages quite
a bit. The Japanese, when they started their 5th generation computing hype,
they based it on Prolog and things like Prolog. Their main concern was that
these days most people are using computers, but it is not natural for people
to actually program those computers. Instead of saying "This is how I want this
computed.", it is more natural to just say: "These are the properties I want, these
are my questions." Such declarative questions are naturally defined using logic.

3.13. LECTURE 13 339

So I define my questions using logic and you, the computer, should give me the
result. I don’t care how you do it.

The main problem is that if I have such a declarative PL or declarative query
language, then I can possibly ask questions which are in principal computable,
but intractable. Then we are in deep trouble, because how can a computer pro-
vide answers to such intractable questions? So one would like to have declar-
ative languages which have limited power. They should not really be Turing
equivalent. They should allow us to specify queries which can be solved effi-
ciently, but not those other ones which cannot.

So this is a big issue in the query language design, and the issue is not small,
because a database can be a very huge thing. Using time which is exponen-
tial in the size of the database, is just an unbelievably large time. Nobody has
that kind of time. So it is important to design query languages whose questions
can be solved in time which is polynomial in the size of the database. And you
have results like that the queries expressible in Datalog – a well-known query
language based on limited kind of prolog – are polynomial-time computable.

The final issue is the relationship between logic and complexity, which is a
very fruitful domain of research. It allows one to understand not only certain
issues in logic, but also to have a new way of thinking about complexity.

There we want to define kinds of logic which capture exactly complexity
classes. So the first result of that kind is due to Fagin around 1976. He proved
that in the domain of graphs,NP is equal to existential second-order logic. The
meaning this is that allNP graph properties, and exactly does, can be specified
by using this special kind of logic which is called existential second-order.

The details are in class IN394, here I will just give you an idea what it is about.
Existential second-order logic is a second-order logic which has a single exis-
tential second-order quantifier and a first-order sentence φ. This second-order
relation R can be something like a Hamiltonian path. So ∃Rφ(G,R) is saying:
There exists a Hamiltonian path such that φ is true. And φ is a first-order sen-
tence relating the graph G and the path R.

So this is a very natural way of expressingNP-properties. Fagin has proven
that all NP [graph] properties, and exactly those, can be expressed in this way.
Such results give us a possibility to design query languages which correspond
exactly to complexity classes. And that has been done for class P. That is obvi-
ously of practical interest, becauseP is what is efficiently computable.

We understand now how to design database query languages by extending
the first-order logic with successor function and certain loop constructs like
while or fixpoint, or by restricting the existential second-order logic to only
Horn-clauses instead arbitrarily first-order sentences and adding a successor
function. In either way one obtain a logic which captures P – which allows us
to ask questions that are polynomial-time computable, and only those.

So this is one set of issues. Another set of issues is that this allows us actually
embed the entire complexity theory into logic. Because if a logician can prove to
you that Horn existential second-order plus successor, which is a kind of logic,
can define all properties which the existential second-order logic can do, then
I have proven to you that P=NP ! And vice versa. If I prove to you that these
two logics are distinct, I have proven that P and NP are distinct. As you can
guess, this has not yet been proven. But the interesting point is that this is now
completely a problem in logic, but it captures the P=NP? question from the
theory of computing.

This has been sketchy and sort of just introducing the issues, but I hope
that you get a sense that these issues, they are very broad and interesting, both
intellectually and practically. And the techniques that are used here are shown
in IN394. So I am not leaving you without any hope.

340 CHAPTER 3. FORELESNINGSLYSARK OG -NOTATER

Kapittel 4

Oppgaver, ledetråder og
løsninger

Dette kapittelet er delt inn i tre deler: oppgaver, ledetråder (hint) og løsnings-
forslag. Anbefalt framgangsmåte er at du først leser oppgaveteksten og prøver å
løse oppgaven på egenhånd. Hvis du mot formodning skulle stå helt fast, kikk-
er du på ledetråden til oppgaven. Når du har løst oppgaven/gitt opp (stryk det
som ikke passer), kan du slå opp i løsningsforslaget. Alt dette foregår sjølsagt i
god tid før gruppetimen slik at du kan bruke denne til å sette gruppelærer fast
med ekle spørsmål :-)

Oppgaver med engelsk tekst er lagd av Dino Karabeg, mens “norske” opp-
gaver er forfattet av Stein Krogdahl og Ellen Munthe-Kaas i 1989 og 1990. Løs-
ningsforslagene til de norske oppgavene ble i sin tid skrevet av Stein Krogdahl.

Dette kapittelet bærer dessverre preg av fortsatt å være under konstruksjon.
Det mangler en del ledetråder og løsningsforslag, og en del av de gamle opp-
gavene er ikke helt oppdatert mhp. terminologi. Utover høsten kommer vi til å
legge ut (nye) løsningsforslag til en del oppgaver på kursets nettsider:
http://www.ifi.uio.no/~in210/

Gamle eksamensoppgaver finnes på nettet, se peker fra IN210-kursiden.

4.1 Problems

Problem 1 (Diagonalization)
Show that there are more real numbers than natural numbers. (Important no-
tions: Proof by contradiction, diagonalization.)

Problem 2 (Big-O notation)
Is 10n + 16n3 = O(n2)? (Important notions: Approximation, big-O notation.)

Problem 3 (Coding of instances)
Numbers can be written in a variety of alphabets. Compare the approximate
(big-O) lengths of natural number codes in decimal, binary and unary alphabet.
(Important notions: Coding, string lengths, exponential vs. linear difference.)

Problem 4 (Hamiltonicity)
Show how HAMILTONICITY can be represented as a formal language over the
alphabet {0, 1}. Discuss the relationship between the length of the representa-
tion and the number of nodes and edges in the input graph. (Important notions:
strings as a formalization of problem instances, formal languages as a formal-
ization of problems. Relationship between the code lengths and the number of
elements in the input.)

341

http://www.ifi.uio.no/~in210/

342 CHAPTER 4. OPPGAVER, LEDETRÅDER OG LØSNINGER

Problem 5 (Turing machines)
a) Construct a Turing machine which recognizes the language over the alphabet
{0, 1} which consists of the strings of one or more 0’s only. What is the time
complexity of your Turing machine? (Important notions: Turing machine as
a formalization of "algorithm" and "solution". The language recognized by a
Turing machine. The complexity of a Turing machine.)

b) Show how the above construction can be modified into a machine which
recognizes the language L = {1k0k|k = 0, 1, 2, ...} (words in L consist of k zeros
followed by k ones). How has the time complexity of the machine changed?

Problem 6 (Universal TM)
There is an obvious difference between a Turing machine and an ordinary com-
puter: A Turing machine executes a single algorithm, while an ordinary com-
puter takes in both an algorithm (program) and input data and runs the pro-
gram on the input data. Show that there is a Turing machine called Universal
Turing machine (UTM) which takes a TM code M and a string I as input and
then does the same as the machine M would when started on input I. (Impor-
tant notion: UTM)

Problem 7 (Reductions)
The proof that every decidable language is acceptable involves a reduction. Ex-
plain in detail what that reduction consists of. Can the reduction itself be com-
puted by an algorithm? Describe how to do such a reduction by using a Univer-
sal Turing machine, and without using a UTM. (Important notions: Reduction)

Problem 8 (Xerox TM)
Describe the XTM (a Xerox TM) which, on input w, outputs w#w. Notice that
XTM computes a function. What is the complexity of XTM? (Important notions:
TMs that compute functions and the related complexity.)

Problem 9 (Proving undecidability)
Let

L1 = {M |Mwrites a $ for every input}

L2 = {M |Mwrites a $ for input ’010’}

L3 = {M |There is no input y such that M writes a $ for input y}

Show that L1, L2 and L3 are undecidable.

Problem 10 (TM as a bunch of templates)
Construct the templates for the Turing machineM given in class, which accepts
only the string ’010’, and show how to construct the corresponding computation
matrix for input ’010’.

Problem 11 (Tiling problem)
Show how to modify the above construction into an instance of the tiling prob-
lem. Argue that the tiling problem is not solvable by showing a reduction from
the HALTING problem.

4.1. PROBLEMS 343

Problem 12 (TM as a general grammar)
Show how to modify the construction from problem 10 into a general grammar.
Show how the grammar generates the string corresponding to the halting con-
figuration of the Turing machine. Argue that the question of whether a general
grammar generates a given string w is undecidable. Explain why general gram-
mars are not suitable for defining programming languages.

Problem 13 (Theorem-proving)
How would you show that theoremhood in first-order logic is undecidable? Use
the undecidability of first-order logic theoremhood to reflect about the question
"Can machines think?". If no algorithm can decide whether something is a first-
order logic theorem, then no algorithm can prove theorems in first-order logic.
Why is this so?

Problem 14 (Hamiltonicity)
Describe an algorithm for HAMILTONICITY. What is the complexity of your al-
gorithm? (Important concept: Exponential-time algorithms.)

Problem 15 (ClassNP)
Prove that HAMILTONICITY is in NP by showing a non-deterministic algorithm
for HAMILTONICITY. What is the complexity of that algorithm? (Important con-
cept: NP .)

Problem 16 (Shortest path in a graph)
Prove that the problem of finding the shortest path in a graph is inP. (Important
concept: Polynomial-time algorithms.)

Problem 17 (Reductions)
Prove that if the problem of finding the longest simple path in a graph can be
solved in polynomial time, then so can HAMILTONICITY. (Important concept:
Studying complexity of problems by using reductions.)

Problem 18 (Non-Hamiltonicity)
We do not know whether NON-HAMILTONICITY is in classNP . What is the dif-
ficulty? (Important insight: What do problems that are beyondNPlook like?)

Problem 19 (Traveling Salesperson’s problem)
Prove that the TSP (TRAVELING SALESPERSON’S PROBLEM) optimization prob-
lem is at least as difficult as HAMILTONICITY in the following sense: If the TSP
can be solved in polynomial time so can HAMILTONICITY. (Important concepts:
Reduction. Representing optimization problems by decision problems.)

Problem 20 (Cook-Levin’s Theorem)
Show how to make the SAT-instance which corresponds to (encodes) the TM
from problem 5a.

Problem 21
Det å gå fra et optimaliseringsproblem til det tilsvarede desisjons-problemet
kan i utgangspunktet synes å være en dramatisk forenkling av problemstilling-
en. Som eksempel kan man tenke på Handelsreisendes problem (TSP, der vi i
stedet for å spørre etter den minimale turen spør om det finnes en tur kortere
enn et oppgitt tall.

344 CHAPTER 4. OPPGAVER, LEDETRÅDER OG LØSNINGER

Vi skal overbevise oss om at forenklingen likevel ikke er så drastisk. Anta at
alle avstandene i Handelsreisendes problem er heltall, og vis at dersom vi har
en prosedyre for å løse desisjonsproblemet, så kan vi også finne lengden av den
korteste turen ved et polynomisk antall kall på denne prosedyren. (Noe liknende
gjelder det å finne selve den korteste turen, men dette er litt mer tuklete.

Problem 22
På slutten av diskusjonen omkring Hamiltonian Path problemet (Appendiks,
side 199 i G&J) står det at for rettede grafer kan dette problemet løses i poyno-
misk tid, dersom grafen ikke har (rettede) løkker. Skisser en slik algoritme, og gi
en grov øvre grense for tidsbruk.

Problem 23
Overbevis dere om at Lemma 3.1 (side 54 i G&J) er riktig og at hver av problem-
ene VERTEX COVER (side 46 og 190 i G&J), INDEPENDENT SET (side 194 i G&J) og
CLIQUE (side 47 og 194 i G&J) erNP-komplette hvis og bare hvis de to andre er
det. Forsøk å finne ‘dagligdagse’ problemer som naturlig kan formuleres som en
av disse (eller som deres optimaliseringsvarianter).

Problem 24
Vis at SUBGRAPH ISOMORPHISM (side 64 i G&J) erNP-komplett dersom CLIQUE

er det (altså CLIQUE ∝ SUB.ISOM.). Kan du finne andre problemer som her kun-
ne ha erstattet CLIQUE?

Problem 25
Omarbeid følgende instans av SAT (her skrevet ut som logiske uttrykk) til en
instans av 3SAT etter skjemaene gitt på forelesning og på side 48 og 49 i G&J:

(a ∨ ¬b), (¬a), (¬a ∨ b ∨ ¬c ∨ d ∨ e ∨ ¬f)

Problem 26
Omarbeid følgende instanser av 3SAT til instanser av VERTEX COVER, og sjekk
at ja/nei-egenskapen bevares:

(a ∨ ¬b ∨ c), (¬a ∨ b ∨ ¬d), (b ∨ ¬c ∨ d)

og

(a ∨ ¬b ∨ c), (¬a ∨ b ∨ ¬c

Problem 27
Se på problemene PARTITION og SUBSET SUM (G&J, side 223). Vis PARTITION ∝
SUBSET SUM. Sjekk at du med den restriksjonen du bruker kan få fram enhver
instans av PARTITION.

Vis også SUBSET SUM ∝ PARTITION. For det siste tilfellet: Vis hvordan SUB-
SET SUM med size-verdiene (12, 25, 17, 5, 22) ogB = 37 (ønsket subset-sum) blir
omarbeidet til en instans av PARTITION.

4.1. PROBLEMS 345

Problem 28
a) Under problemet VERTEX COVER (side 190 i G&J) står det at det tilsvarende
EDGE COVER problemet (plukk kanter slik at for hver node er minst én av kante-
ne plukket) kan løses i polynomisk tid. Algoritmen bygger på at vi har en algorit-
me for MAXIMUM MATCHING, som finner det maksimale antall kanter man kan
velge dersom bare én kant kan velges mot hver node. (Dette er en morsom al-
goritme som har vist seg å løse mange problematiskeP-problemer (se f.eks. på
‘matching’ i indeksen bak i G&J). Vis at om vi har en polynomisk algoritme for
MAXIMUM MATCHING så kan vi lett løse EDGE COVER problemet i polynomisk
tid.

b) Se på fargeleggingsproblemet (GRAPH K-COLORABILITY, side 191 i G&J), og
vis at for K = 2 er det i P.

c) Konstater at EXACT COVER BY 2-SETS er svært nært beslektet med MAXIMUM

MATCHING nevnt i (a).

Problem 29
Oppgave 3, 4 og 5 på side 75 i G&J. Disse skulle nå kunne taes forholdsvis raskt.

Problem 30
Vi skal se på oppgave 11 på side 76 i G&J, som omhandler SET SPLITTING prob-
lemet.

a) Kan du tenke deg en praktisk situasjon der dette problemet oppstår?

b) Problemet er opplagt i NP , og vår første oppgave er å vise at det er NP-
komplett. Dette kan lettest gjøres ved å transformere fra problemet NOT-ALL-
EQUAL 3SAT (NAE3SAT)(side 259 i G&J), som vi altså antar er NP-komplett.
Beskriv denne transformasjonen, og begrunn at den oppfyller de nødvendige
krav.

c) Vi ser at hintet i oppgaveteksten i G&J går på å transformere fra 3SAT. Vis og
begrunn en slik transformasjon.

d) Begrens SET SPLITTING til de instanser der mengdene i kolleksjonenC mak-
simalt har 2 elementer. Vis at dette problemet er i P.

e) Bruk et av punktene over til å begrunne at om vi begrenser oss til de instanser
av SET SPLITTING der mengdene har maksimalt 3 elementer, så er dette proble-
metNP-komplett.

Problem 31
Vi har tre mengder W = {a1, a2, a3}, X = {b1, b2, b3} og Y = {c1, c2, c3}. Vi
har gitt 100 tripler fra W × X × Y , hvorav de 4 første er: (a1, b2, c3), (a1, b3, c2),
(a2, b2, c1) og (a3, b1, c3).

Dette er en instans av 3DM. Vis hvordan den vil bli transformert til en instans
av SUBSET SUM, etter metoden forklart på forelesningen, som er den samme
som er forklart i G&J på side 60 - 62 (fram til ‘The final step ...’, der man trans-
formerer videre til PARTITION). Vi kan passelig bruke ti-tall-systemet i stedet for
to-tall systemet som er brukt i G&J.

346 CHAPTER 4. OPPGAVER, LEDETRÅDER OG LØSNINGER

Problem 32
De mest typiske ‘tallproblemer’ er de der instansen rett og slett består av ett (el-
ler et par) heltall, med et passelig spørsmål til. Det ‘tradisjonelle’ størrelsesmålet
for instanser av slike problemer er å bruke antall siffer i tallet (tallene), og vi kan
da spørre om det finnes polynomiske algoritmer i forhold til dette målet. Alter-
nativt kan vi si at størrelsen av instansen er selve tallverdien av tallet (tallene), og
algoritmer som er polynomiske i forhold til dette målet kalles ‘pseudopolyno-
miske’ (se G&J, kap 4.2 og forelesningen uke 10). Tenk på noen algoritmer for
følgende problemer, og avgjør om de er polynomiske eller pseudopolynomiske
(eller ingen av delene).

a) Ett tall: Avgjør om tallet er et primtall.

b) To tall: Summer de to tallene.

c) To tall: Avgjør om det første tallet går opp i det andre.

d) To tall: Finn største felles divisor for de to tallene. Her kan man bl.a. tenke
på Euklids algoritme, og det er ikke uten videre klart hvor fort den går(!?).

e) Ett tall T : Finn det største heltallet x slik at x5/7 + x3 ikke overstiger T .

f) Ett tall T : Finn det største heltallet x slik at log2 x ikke overstiger T .

Problem 33
Vi skal se litt nærmere på RYGGSEKK-problemet (KNAPSACK, side 65 og 247 i
G&J). Vi angir n instans av problemet ved B,K, ((s1, v1), (s2, v2), . . . , (sn, vn)),
der B er en øvre grense for s-summen, og K er en nedre grense for v-summen i
en løsning.

a) Utred kort sammenhengen mellom dette problemet, og det å pakke påske-
sekken.

b) Se på hver av de nedenfor gitte restriksjoner av problemet, og se om du kan
finne polynomiske algoritmer som løser dem (slik at de restrikterte problemene
altså er i P). Noen av punktene kan ha sammenheng med senere spørsmål.
– Alle s-verdiene er like.

– Alle v-verdiene er like.
– Alle v-verdiene er enten 1 eller 2.
– Alle v-verdiene og s-verdiene er (heltall) mellom 1 og 10.

På side 65 i G&J står det forklart hvordan man viser at RYGGSEKK-problemet
er NP-komplett ved å restriktere det til PARTITION. Dermed er det ikke mye
håp om å finne en polynomisk algoritme, men det kan være håp om å finne en
‘pseudopolynomisk algoritme’ (altså en som er polynomisk dersom vi i ‘prob-
lemstørrelsen’ lar tallene i problemet inngå med sin tallverdi, i stedet for med
sitt antall siffer, som er det tradisjonelle).

Vi skal vise at en slik pseudopolynomisk algoritme finnes, og som inspira-
sjon skal vi bruke metoden angitt på side 90 i G&J, med ‘dynamisk programme-
ring’. Vi skal bruke en tre-dimensjonal tabell der t(i, j, k) angir (ved TRUE/FALSE)
om man fra mengden ((s1, v1), (s2, v2), . . . , (si, vi)) kan gjøre et utplukk der s-
summen er nøyaktig lik j og v-summen er nøyaktig lik k.

c) Over hvilke intervaller for i, j og k vil du forsøke å fylle ut denne tabellen?

4.1. PROBLEMS 347

Hvordan må tabellen ende opp for at svaret skal være ‘ja’?

d) Hvordan vil du fylle ut det første laget i tabellen, for i = 1?

e) Vis hvordan du kan fylle ut lag i + 1 i tabellen når lag i er fylt ut, og skriv det
hele ut som en programskisse.

f) Påvis at algoritmen er pseudo-polynomisk, ved å angi en øvre grense for
tidsforbruket vedO-notasjon.

Problem 34
Vi skal se på forskjellige varianter av SUBSET SUM, og oppgaven er å forsøke å
bestemme hvilke av variantene som kan løses i polynomisk tid, hvilke som er
NP-komplette men kan løses i pseudopolynomisk tid, og hvilke som er NP-
komplette i sterk forstand (NPC i sterk forstand betyr at problemet ikke kan
løses av en pseudo-polynomisk algoritme hvis P 6= NP). Vi tenker oss i ut-
gangspunktet at vi har gitt en sekvens av heltall (s1, s2, . . . , sn) samt et tall B.

a) Vi spør om det finnes et utplukk av s-verdier som gir sum B, og der avstan-
den mellom laveste og høyeste indeks på s-ene i utplukket ikke er større enn
n/2.

b) Tallene s1, . . . , sn utgjør også nodene i en oppgitt graf, og vi spør om det
finnes et utplukk av tallene som gir sumB og som utgjør en nodeoverdekning i
den gitte grafen.

c) Vi spør om det finnes et utplukk som har sum B og som utgjør en sam-
menhengende subsekvens i den oppgitte sekvens av s-verdier. (Hva skjer om vi
her tillater at de utplukkede tallene kan få utgjøre opp til tre sammenhengende
subsekvenser?)

Problem 35
Bruk den generelle metoden som er eksempelifisert ved Traveling Salesman på
side 116 og 117 i G&J og som er gjennomgått på forelesning til å vise at problem-
ene gitt under erNP-lette. Man kan kanskje bruke (b) til å repetere hele gangen
i beviset, og ellers bare skissere det essensielle. Problem (d) er litt spesielt.

a) Gitt en graf G. Finn en Hamiltonsk løkke om en slik finnes.

b) Gitt en grafG. Finn en ‘klikk’ med så mange noder som mulig.

c) Gitt en KNAPSACK-instans, men se bort fra verdien K (nedre grensen på
verdi-summen). Finn et ‘lovlig’ utplukk (der s-summen altså ikke overgår B)
som har maksimal v-sum.

d) Gitt en graf G, med positive heltallige vekter på nodene. Finn en uavhengig
nodemengde som har så mange noder som mulig, men som innenfor dette har
så liten vekt-sum som mulig.

Problem 36
Vurder følgende uttalelser (Noen, men ikke alle, er greie):

(A): “Jeg har løst SAT i polynomisk tid, og derfor kan jeg løse ethvert NP-
hardt problem i polynomisk tid.”

(B): “Mitt problem X, som jeg har vist er NP-hardt, har jeg klart å løse i
polynomisk tid. Derfor er P=NP .”

348 CHAPTER 4. OPPGAVER, LEDETRÅDER OG LØSNINGER

(C): “Jeg kan vise at mitt problem X er iNP , og at SAT∝TX. Derfor er XNP-
komplett.”

(D): “Det er mange desisjonsproblemer som kan løses i polynomisk tid, men
der et løsningsforslag ikke kan bevitnes i polynomisk tid (og de ligger dermed
utenforNP)”.

(E): “Et problem kan ikke samtidig være bådeNP-hardt ogNP-lett”.
(F): “Alle desisjonsproblemer som erNP-lette ligger iNP”.

Problem 37
Vi skal se litt på tilnærmelsesalgoritmen for VERTEX COVER som omtales øverst
på side 134 i G&J og som i praksis er identisk med algoritme VC-H2 angitt i fore-
lesningen i uke 10. Den bygger på først å velge en “matching” (altså et utplukk
av kanter som ikke har noen felles endenode), og denne skal velges ved å starte
med en tilfeldig kant, og så legge på nye kanter inntil det ikke er mulig å legge
på fler. En slik matching kaller boka en “maximal matching”, som vi kan over-
sette med en “ikke-utvidbar matching” (dette i motsetning til en “maximum
matching”, som er en matching med så mange kanter som mulig).

a) Vis at alle endenodene av en ikke-utvidbar matching må utgjøre en node-
overdekning (et “Vertex Cover”).

b) Vis at ingen nodeoverdekning kan ha færre noder enn antall kanter i en
(vilkårlig) matching.

c) Som en tilnærmelsesalgoritme A for å finne et Vertex Cover med så få noder
som mulig bruker vi følgende: (1) Velg en eller annen ikke-utvidbar matching.
(2) Bruk endenodene på denne som nodeoverdekning.

Vis at dette er en ε-tilnærmingsalgoritme med ε = 2 (G&J sin notasjon: RA =
2). Gi også et eksempel på at algoritmen “treffer” akkurat denne epsilonverdien
– med andre ord skal du angi en instans der denne algoritmen gir en løsning
som er akkurat dobbelt så stor som den optimale (OPT). Vis også at uansett
hvor stor OPT-verdi grafen har, så kan du angi en slik instanse der A finner en
løsning som er akkurat det dobbelt av OPT. (G&J sin notasjon: R∞A = 2).

d) Vi legger til et “strykesteg” i algoritmen angitt i (c): (3) Let etter en “overflø-
dig” node (altså en node som er slik at dersom den fjernes, utgjør de gjenvær-
ende nodene fremdeles er en nodeoverdekning), og fjern denne. Gjenta dette til
prosessen stopper av seg selv. Kan du si noe omRA ogR∞A for denne varianten?

e) For å få denne algoritmen så god som mulig er det fint om vi kan klare å
velge en ikke-utvidbar matching med så få kanter som mulig. Forsøk å avgjøre
om det er mulig i polynomisk tid å finne en slik matching i en generell graf.

Problem 38
Vi skal se på et eksempel på “skalering” (truncating/rounding off), altså den
teknikken som er benyttet for Ryggsekk-problemet på side 136 i G&J og på fore-
lesningen i uke 10. Problemet vi skal arbeide med er Multiprocessor Scheduling
(side 65 og 238 i G&J), og vi skal begrense oss til m = 2, (to prosessorer) og se på
det som et minimaliseringsproblem: Gitt n prosesser med (positive heltallige)
tider (t1, t2, . . . , tn), minimaliser den tid det tar før alle prosessene er er utført.

Dette kan sees som en variant av PARTITION, der vi skal minimalisere størrel-
sen av “den største delen”. Dette problemet kan løses med standard dynamisk
programmering (som på side 91 i G&J) i antall steg O(nT), der T er summen av
alle ti-ene (det klarer seg med tabell opp til T/2).

4.1. PROBLEMS 349

Vi skal se på en tilnærmingsalgoritme AK , der vi først skalerer ned ti med
en faktor K, slik at vi får et nytt problem I ′ med t′i = bti/Kc. Dette skal vi så
løse nøyaktig med dynamisk programmering, og benytte den oppdelingen (vi
kan kalle de to prosess-mengdene for U ′1 og U ′2) som kommer ut av dette som
en tilnærmelse til den best mulige oppdelingen for det opprinnelige problemet
I (den beste oppdelingen kan vi si er U1 og U2).

Vi kan anta at nummereringen er gjort slik at t(U1) ≤ t(U2) og t(U ′1) ≤ t(U ′2)
(der t(U) angir t-summen over prosessene i U).

a) Forklar at t(U2) ≤ t(U ′2).

b) Sett opp et uttrykk for RAK (I), der AK er algoritmen angitt over.

c) Anta at vi klarer å vise at t(U ′2)−t(U2) ≤ a·n·K, for en passelig konstant a. Vis
hvordan vi da, for enhver ønsket nøyaktighet 1/k kan velge K slik at denne blir
oppnådd (altsåRA ≤ 1+1/k), og slik at det hele utgjør et fullstendig polynomisk
tilnærmingsskjema.

Problem 39
Consider the problem of collecting all of the n existing coupons and the "stan-
dard algorithm" which consists of buying chocolates (each containing one cou-
pon, chosen at random) until the goal is accomplished.

a) Calculate the expected running time of your algorithm.

b) Turn your algorithm into an algorithm which makes a pre-defined number
of attemptsM(n) (i.e. one buys a pre-defined number of chocolates) so that the
probability of success is at least 1/2. How large does M(n) have to be? Prove
your answer.

Problem 40
Describe an algorithm for finding a triangle subgraph in a given input graph
with n nodes.

a) What is the worst-case complexity of your algorithm?

b) What is the average-case complexity of your algorithm (assume that for each
pair of vertices the probability that the pair is an edge is equal to 1/2)? How
would you change your algorithm so that its average-case performance is im-
proved?

Problem 41
A skeptic would say that everything in life is uncertain. In the probabilistic lan-
guage we would say that every event has a certain "finite" probability of oc-
curing (probability greater than zero and smaller than one). Fortunately (for
optimists) it turns out that the probabilities of events tend to be either very
large (close to one) or very small (close to zero). In the probabilistic language
statements of this kind are called zero-one laws. Zero-one laws mean that we
can very often in practice safely disregard the probabilistic nature of things and
make claims or promises with relative certainty. The following is an illustration
of that point.

Think of tossing a coin one hundred times and getting one hundred heads
in a row. It is immediately obvious that this is very little probable. Getting one
hundred heads is a low-probability event, as anyone will agree. But if I tell you
that you have your entire life-time to toss the coin – would you count on geting

350 CHAPTER 4. OPPGAVER, LEDETRÅDER OG LØSNINGER

one hundred heads (or tails) in a row at least once? Well, the intuition at this
point betrays us. Let us therefore resort to calculation. Estimate (roughly) the
probability of getting one hundre heads or tails in a row if all of the human kind
were tossing coins once every second since the beginning of known history (say,
for 10 000 years). Conclude the following: Who knows what sorts of possibilities
are hidden in nature as low-probability events!

Problem 42 (Monte Carlo algorithms)
Evaluate the following algorithm for COMPOSITENESS:

Input: natural number N
Guess a natural number K,

(
1 ≤ K ≤

√
N
)

by
using a random number generator.

if N is divisible by K then answer ’Yes’
else answer ‘probably No’.

Is this a Monte Carlo algorithm? Justify your answer.

Problem 43 (Heuristics)
Heuristics are a common way of dealing with optimization problems in prac-
tice. They differ from algorithms in that they have no performance guarantees
(they don’t always find the best solution). Construct a greedy heuristic for find-
ing the shortest path between two nodes in a network. (A network is a graph
whose edges have positive integer ‘lengths’.) Show that your heuristic is not
an algorithm. Is your heuristic a polynomial-time approximation algorithm?
(By our definition, a poly-time approx. alg. must always give solutions that are
within epsilon from the optimum, for a fixed constant epsilon.)

Problem 44
Show a dynamic programming algorithm for the shortest path between two
nodes in a network (cf. Dijkstra’s algorithm). Show a dynamic prog. alg. for the
longest path between two given nodes in a network. What are the time com-
plexities of your algorithms? What are the storage requirements?

Problem 45
Sketch a branch-and-bound algorithm for the TSP. What is the time complexity
of your algorithm? What are the storage requirements?

4.2 Hints

Hint to problem 1
Try to use a counting argument: Towards a contradiction assume that there are
as many integers as real numbers. Then there must be possible to make some
kind of 1-1 mapping from integers to real numbers. Try to make such a map-
ping by constructing a big, infinite matrix with integers as row labels and real
numbers as rows (meaning that all entries in a row taken together represents a
real number). Use the diagonalization technique shown in class to prove that
there exists at least one real number which is not in the matrix. This is a contra-
diction, so you can then conclude that there is more reals than integers in this
world.

Hint to problem 2
What does t(n) = O

(
n2
)

mean? Informally it means that t(n) doesn’t grow faster
than n2-polynomials when n is “large enough”. Formally it means that there

4.2. HINTS 351

exists positive constants c and n0 such that t(n) ≤ cn2 for all n ≥ n0. You must
either come up with constants c and n0 such that 10n+16n3 ≤ cn2 for all n ≥ n0,
or show that such constants cannot possibly exist.

Hint to problem 3
Code some numbers in decimal,{0, 1, . . . , 9}, binary, {0, 1}, and unary, {1}, al-
phabet. Try to see a pattern – a relationship between the length of the codings
in the three alphabets.

Hint to problem 4
What does it mean "To represent HAMILTONICITY as a language over the alpha-
bet {0, 1}?" It means to encode each possible instance of HAMILTONICITY as a
string of zeros and ones. The codes which encode Hamiltonian graphs are the
words in the formal language which corresponds to the HAMILTONICITY prob-
lem.

What are the possible instances of HAMILTONICITY? They are graphs. We
need to represent graphs as strings of zeros and ones.

What is a graph? A graph consists of two sets, V (vertices) and E (edges),
where E consists of pairs of elements from V .

How does one represet a set by using zeros and ones? The natural way is to
use binary numbers from 1 to n to represent each element in the set (where n
is the number of elements in the set). But what about separators such as com-
mas? Obviously, one needs more than two symbols (if the code should be "rea-
sonable" i.e. not have an exponential length). But one could easily construct
the additional symbols by using multiple (two) characters for each symbol.

Notice that the encoding rules are not part of the input. It is assumed that
the Turing machine understands how the graph is encoded.

Variations: How can one represent the TSP (TRAVELING SALESPERSON’S PROB-
LEM, see the textbook for definition) or SORTING or MATCHING?

Hint to problem 5
a) What is a Turing machine? A TM is by definition a quadruple: an input
alphabet Σ, a tape alphabet Γ, a set of states Q and a transistion function δ. We
need to come up with those four things, then.

Those four things are what we end up with, but not what we begin with.
It is better to begin with high-level ideas, as in structured programming. How
should the machine behave? It should halt writing a ’Y ’ on the tape if and only
if the input is a string of zeros, otherwise it should halt writing a ’N ’. Here is a
possible pseudocode solution:

Scan the first character;
if the character is a ’0’ then erase the ’0’ by a blank and move the head to the right
else <blank out the rest of the input, write a ’N ’ and halt>;
while the scanned character is non-blank do
begin

if the character is a ’0’ then remain in the same state, erase the ’0’
by a blank and move the head to the right

else if the character is a ’1’ then <erase the rest
of the input, write a ’N ’ and halt>;

end
Write a ’Y ’ and enter state h;

352 CHAPTER 4. OPPGAVER, LEDETRÅDER OG LØSNINGER

The input alphabet is {0, 1}, while the tape alpabet could be {0, 1, b, Y,N}.
Spell out the remaining details of the machine.

b) The machine has to move its head back and forth, eliminating one ’1’ for
each ’0’. Notice that, although the back-and-forth movement is extensive (which
is characteristic for a Turing machine), the back-and-forth movement increases
the complexity of an algorithm "only" by a polynomial factor. That is why a
polynomial algorithm on an ordinary machine translates into a polynomial al-
gorithm on a TM.

To make the machine simpler, you don’t have to code the cleaning-up part
where the machine blanks out the tape before writing a ’Y ’ or a ’N ’. You can just
write a ’Y ’ or ’N ’ and halt.

Variation: Construct a TM which recognizes palindromes (words which read
the same left-to-right as right-to-left such as "abracacarba") and answer the
same questions.

Hint to problem 6
Assume that the UTM has three tapes, one for the input and output, another
one for storing the input machine codeM (its rules), and the third one for book
keeping, i.e. for keeping track of the state of the simulated machine etc. . The
UTM computes each step of the machineM by looking at the input scanned by
M and the state ofM , and then finding the corresponding entry of the transition
function on tape 2. Note 1: A TM machine with three tapes can be simulated by
a machine that has only one tape. Note 2: The UTM must exist according to the
Church-Turing Thesis. But since a thesis is itself not proven or provable, we can
not use it in formal proofs.

Hint to problem 7
Assume thatL is decidable and prove thatL is also acceptable. The assumption
means, by definition, that there is a TM M which decides L. What needs to
be proven is, by definition, that there is a TM M ′ which accepts L. Thus the
reduction amounts to a proof that M ′ exists provided that M exists. One may
prove that by showing how M can be modified to obtain M ′, or by simulating
M by using the UTM and then doing some obvious additional work.

Hint to problem 8
Copy character by character. Use "marking" (by a special character) to denote
the last copied character. Notice once again that moving the head back and
forth has only a polynomial cost.

Hint to problem 9
The proof given in class works with small modifications. It is important to work
through the details carefully, but at the same time see the larger picture—what
is the physiognomy of the undecidable problems?

Assume towards a contradiction that L1 is decidable by a machine ML1 .
Show that we can then solve LH by using ML1 as a kind of subroutine. Con-
clude that this is a contradiction since LH is unsolvable, which means that your
assumption about L1 being decidable, must be wrong.

Hint to problem 10
See lecture 4.

4.2. HINTS 353

Hint to problem 11
See lecture 4.

Hint to problem 12
See lecture 4.

Hint to problem 13
See lecture 4.

Hint to problem 14
Use exhaustive search. The complexity should be exponential.

Hint to problem 15
Guess a cycle in linear time by using non-determinism. Verify in deterministic
polynomial time that the guessed path is indeed Hamiltonian.

Hint to problem 16
It is important here to feel the nature of polynomial and "exponential" prob-
lems. You may use the standard algorithm (“Dijkstra”)or develop one on your
own.

Hint to problem 17
Construct a reduction from HAMILTONICITY (“Is there a simple path that visits
all the vertices exactly once?”) to LONGEST SIMPLE PATH (“Show me the longest
simple path”). Intuitively this means that you solve HAMILTONICITY by using
the algorithm for finding the longest simple path as a subroutine. Argue that
the reduction can be computed in polynomial time. Conclude that if LONGEST

SIMPLE PATH is solvable in polynomial time, so is HAMILTONICITY by virtue of
the reduction.

Hint to problem 18
Observe that NON-HAMILTONICITY doesn’t seem to have any short "certificate"
of membership.

Hint to problem 19
Show a reduction from HAMILTONICTY to TSP.

Hint to problem 20
Look at lecture 6 or section 2.6 in G&J.

Hint to problem 21
Use binary search.

Hint to problem 22
Bruk en modifisert versjon av standardalgoritmen for topologisk sortering.

Hint to problem 23
N/A

354 CHAPTER 4. OPPGAVER, LEDETRÅDER OG LØSNINGER

Hint to problem 24
Hint på side 64 i G&J.

Hint to problem 25
Oversett klausulene hver for seg. Sjekk hvor mange literaler klausulen har: 1, 2, 3
eller mer enn 3. Innfør hjelpevariable etter mønster i læreboka eller forelesning
uke 6.

Hint to problem 26
Lag først en “truth-setting” komponent for hver enkelt logiske variabel i 3SAT-
instansen. Lag deretter en triangel-subgraf for hver klausul. Koble komponen-
tene sammen etter mønster angitt i læreboka eller forelesning uke 7. Angi til
slutt riktig antall vakter i VC-instansen som en funksjon av antall variabler og
klausuler i 3SAT-instansen, og vis at ja/nei-egenskapene bevares.

Hint to problem 27
For SUBSET SUM∝PARTITION: Se side 62 i G&J eller forelesningen uke 7.

Hint to problem 28
b) Forsøk med en enkel traverseringsalgoritme.

Hint to problem 29
N/A

Hint to problem 30
c) Denne reduksjonen blir litt mer komplisert enn i (b), men prøv med et ekstra
‘false-element’ i mengden.

d) Vis at det da kan sees som (eller ‘reduseres til’) et problem iP som vi har vært
borte i tidligere.

Hint to problem 31
N/A

Hint to problem 32
N/A

Hint to problem 33
N/A

Hint to problem 34
N/A

Hint to problem 35
N/A

Hint to problem 36
Påstand (C): Les G&J side 158,litt under midten.

4.2. HINTS 355

Hint to problem 37
N/A

Hint to problem 38
N/A

Hint to problem 39
a) Break the problem into subproblems. First try to calculate the expected
number of buys before getting the i’th coupon, given that you already have i− 1
out of the n different coupons. Call this random variable for Xi(n). To calculate
this sum you can essentially use the same approach as shown in lecture 11 (3-
COLORABILITY).

The expected running time of the algorithm is then
∑n

i=1Xi(n) because we
first need to get the first coupon, then the second, and so on. To calculate this
sum, remember that the expectation of a sum of random variables is equal to
the sum of the expectations of the individual variables. You might also want
to know that the sum of the harmonic series

∑n
i=1

1
i is approximately O (lnn)

where ln is the natural logarithm.

b) Use the Markov Bound which says that Pr[X ≥ kE(X)] ≤ 1/k, where X is
any random variable and E(X) its expectation.

Let X be the number of chocolates we have to buy in order to get all n
coupons, and letE(X) be the expected value ofX found in a). We want to have
the probability of success≥ 1/2, so k = 2 is a natural choice. Then the Markov
Bound says that the probability that we have to buy more than 2×E(X) choco-
lates is less than 1/2.

Hint to problem 40
The natural algorithm draws 3 vertices at random and checks whether they
form a triangle subgraph. If they do, then everything is fine. If they don’t, the
algorithm tries another 3-vertex set.

a) Assume that there are no triangle subgraphs in the input graph. How many
3-vertex sets must the algorihtm check before it can say “No, there are no trian-
gle subgraphs in this input graph”?

b) Average-case analysis: What is the probability that three vertices picked at
random form a triangle subgraph? Then continue as in the example in lecture
11 (3-COLORABILITY).

A smarter algorithm: How can you pick three vertices so that you know that
there are at least two edges among them? If you can do that, then you that there
is a probability of 1/2 for the last pair of vertices being an edge.

Hint to problem 41
Estimate the total number of coin tosses in the human history and divide this
number by the probability of getting 100 head in a row.

Hint to problem 42
Argue that COMPOSITENESS is inNP, but that the number of “naive” certificates
is small. What is needed is some way to come up with many certificates. The
actual Monte Carlo algorithm for COMPOSITENESS involves some very advanced
mathematics.

356 CHAPTER 4. OPPGAVER, LEDETRÅDER OG LØSNINGER

Hint to problem 43
A greedy algorithm does what looks best at each step, without any global con-
siderations. Given a node s in a network. If s has three outgoing edges with
weights 2, 5 and 3 respectively, which of them will a greedy algorithm choose?
Give a counter-example which shows that the greedy approach doesn’t find the
optimal solution. How far from the optimal solution can the “greedy solution”
be? Is the relaitve error limited by a constant or does it grow as function of the
input size?

Hint to problem 44
N/A

Hint to problem 45
N/A

4.3 Solutions

Solution to problem 1
Let N and R be the set of natural and real numbers, respectively. We want to
prove |N| < |R|. We use “proof by contradiction”:

Assume that |N| ≥ |R|. Then |N| = |R|, since every natural number is also
a real number. It must then be possible to create an (infinite) mapping from
elements in N to every element in R. The table below illustrates one possible
mapping, using binary representation for the real numbers. The table is infi-
nite in both directions. Without loss of generality we can put the real numbers
between zero an one at the top.

Int. Real numbers
1 0. 1 0 1 0 1 0 0 1
2 0. 1 0 0 1 0 1 0 0
3 0. 0 1 1 0 1 1 0 1
4 0. 1 0 1 0 0 1 0 0
5 0. 1 1 0 1 0 0 1 0
...

...
. . .

If we invert the bits in the diagonal, we will in the above example get the real
number 0.01011 . . . which is different from every real number in the table (it’s
different from the n’th number in the n’th digit of the decimal fraction). This
diagonalization shows that the table cannot contain all real numbers, and the
assumption |N| ≥ |R| cannot be true. We conclude that |N| < |R|.

Solution to problem 2
The answer is no. If 10n+16n3 = O(n2) then there exists positive constants c and
n0 such that 10n+16n3 ≤ cn2 for all n ≥ n0. To prove that such constants cannot
be found, we have to find a value m such that m > n0 and 10m + 16m3 > cm2,
no matter what n0 and c are. We can chose m = cn0 (assuming c > 1) because
10cn0 + 16(cn0)3 > (cn0)3.

Solution to problem 3
Let D, B and U be the decimal, binary and unary encoding of of the same
number. If the encoded number is e.g. 14 then D = 14, B = 1110 and U =
11111111111111.

4.3. SOLUTIONS 357

1 2

4 3

Figure 4.1: A graph

Let |D| = n. What is then the length of B and U?

|B|=n log2 10=O(n)
|U |=10n =O(10n)

It does not matter if we encode numbers in any radix greater than 1. The
length will be roughly the same. Unary encoding, on the other hand, is not a
sensible encoding because we get an exponential increase in length.

Solution to problem 4
Let G = (V,E) be a directed graph. V is the the set of vertices, and E is the
set of edges. The graph is Hamiltonian if it has a Hamiltonian cycle i.e. a sim-
ple cycle that includes all the vertices of G. To show that Hamiltonicity can be
represented as a formal language over the alphabet {0, 1}, we must show that
every graph can be encoded as a string in the alphabet Σ = {0, 1}. Then

LH = {x : The graph represented by x has a Hamiltonian cycle}

Take the graph in figure 4.1 as an example. (The graph is Hamiltonian, but
that is not important.) How can we represent that graph?

Idea 1 The simplest way to represent a graph is to list it’s nodes and edges. The
above graph would then be written like:

〈1, 2, 3, 4〉, 〈(1, 2), (2, 3), (3, 4), (4, 1), (1, 3)〉

We don’t have to represent the parenthesizes directly, but we have to sep-
arate the list of nodes from the list of edges, say by a ’;’. If we use a binary
representation of numbers, then we need four symbols: ’0’,’1’, ’,’ and ’;’.
These can be represented by 00, 01, 10 and 11 respectively using our two-
symbol alphabet.

If there are n edges, every number takes at most 2 log2 n symbols to rep-
resent. There are at most n2 edges. The length of the representation will
then be at most:

2n(log2 n+ 1) + 2n2(log2 n+ 1) = O(n2 log n) = O(n3) = O(p(n))

The important point is that the length of the representation is polynomial
in n. (Question: Could we have used unary representation here and still
had a polynomial length?)

358 CHAPTER 4. OPPGAVER, LEDETRÅDER OG LØSNINGER

Σ = {0, 1}, Γ = {0, 1, b, Y,N}, Q = {s, q1, qe, h}

state 0 1 b

s (q1, b,R) (qe, b,R) (h,N,−)

q1 (q1, b,R) (qe, b,R) (h, Y,−)

qe (qe, b,R) (qe, b,R) (h,N,−)

Figure 4.2: L = {x|x ∈ 0+}

Idea 2 A graph can be represented as a 2-dimensional matrix. The graph in the
example above will then look like:

1 2 3 4

1 F F F T

2 T F F F

3 T T F F

4 F F T F

This is easily represented as a string in 0, 1 by putting one row after the
other and using one bit to represent a boolean value. The length of the
representation will be n2 = O(n2) = O(p(n)).

Solution to problem 5
a) A TM that recognizes all strings in the alphabet Σ = {0, 1} which consists of
the strings of one or more 0’s only is presented in figure 4.2. A dash (’-’) means
that the read/write head doesn’t move (if the defintition of the TM doesn’t allow
it, then it can be simulated in two steps by first moving right and then moving
left). The time complexity isO(n) where n is the length of the input string.

b) Let Γ = {0, 1, $,#, b}. We can now mark out the first “1” with a $, then the
first “0” with a #. We then go back and forth, marking the same number of 1’s
and 0’s. The TM in figure 4.3 does this. The time complexity function is O(n2).

Solution to problem 6
We use three tapes for the Universal Turing Machine (UTM), one for the input
and output, another one for storing the input machine code M, and the third
one for book keeping, i.e. for keeping track of the state of the simulated machine
(see figure 4.4). This is OK because a machine with three tapes can be simulated
by a machine that has only one tape.

To encode the input TM, we need a way to represent the transition function.
One simple way is to represent it as a list of 5-tuples on the form (state,read-
symbol,new-state, print-symbol,direction). We must also have special encod-
ings of the special states (s and h).

The UTM starts with the encoding of s on tape 3 and the input on tape 1.
Each computational step consists of:

4.3. SOLUTIONS 359

Σ = {0, 1}, Γ = {0, 1, $,#, b}, Q = {s, q1, q2, q3, h}

state 0 1 $ # b

s (q1, $, R) (h,N,−) − (q3,#, R) (h, Y,−)

q1 (q1, 0, R) (q2,#, L) − (q1,#, R) (h,N,−)

q2 (q2, 0, L) − (s, $, R) (q2,#, L) −
q3 (h,N,−) (h,N,−) − (q3,#, R) (h, Y,−)

Figure 4.3: L = {x|x ∈ 0k1k, k = 0, 1, 2, 3...}

↓
TM tape: · · ·

↓
Code: STATE $ SYMB. STATE $ SYMB DIR $ · · ·

↓
Bookkeeping: STATE $ · · ·

Figure 4.4: The Universal Turing machine

360 CHAPTER 4. OPPGAVER, LEDETRÅDER OG LØSNINGER

M
input Y

N

h

M ′

Figure 4.5: Reduction

1. Search on tape 2 for the tuple containing the state of tape 3 and the input
symbol of tape 1 as the two first elements,

2. copying the new state to tape 3.

3. copying the print symbol to tape 1 and

4. moving the head of tape 1 according to the encoded direction of tape 2.

The UTM halts when the new state is one of the halt states.

Solution to problem 7
Prove: L is decidable⇒ L is acceptable.

Assume that L is decidable. Then there exists a TM M which decides L. If
there is a TM M ′ which accepts L, then L is acceptable. So we try to construct
M ′, usingM as a “subroutine”. This is called a reduction. If we succeed,M ′must
exist when M exists.

In figure 4.5 we can see that the TMM ′ is constructed by modifying the halt-
ing behaviour of M : If M writes a ’Y’ and halts, then M ′ just halts. If M writes a
’N’ and halts, then M enters an infinite and never halts.

This reduction can be preformed automatically in (at least) two ways.

ModifyingM Assume that M has m states. We can make a TM that takes M
as input, and modifies the transition function by replacing entries of the
form (h,N,−) by (qm+1, b,R where qm+1 is a new state simulating a loop
(for example by always moving to the right, staying in state qm+1, whatever
the scanned symbol looks like).

Using the UTM We can use a variant of the UTM called UTM ′. UTM ′ can be
constructed by modifying the UTM as described above. UTM ′ will then
behave as M ′ givenM as input.

Solution to problem 8
The TM in figure 4.6 will produce $w#w$ on input w. The time complexity
finction is O(n2). For simplicity the input alphabet is set to {0, 1}.

Solution to problem 9
N/A

Solution to problem 10
N/A

4.3. SOLUTIONS 361

Σ = {0, 1}, Γ = {0, 1, $,#, b}, Q = {s, ..., q8, h}

state 0 1 $ # b

s (s, 0,+1) (s, 1,+1) (q1,#,−1) − −
q1 (q1, 0,−1) (q1, 1,−1) (q2, $,+1) − −
q2 (q3, $,+1) (q5, $,+1) − (q7,#,+1) −
q3 (q3, 0,+1) (q3, 1,+1) − (q3,#,+1) (q4, 1,−1)

q4 (q4, 0,−1) (q4, 1,−1) (q2, 0,+1 (q4,#,−1) −
q5 (q5, 0,+1) (q5, 1,+1) − (q5,#,+1) (q6, 1,−1)

q6 (q6, 0,−1) (q6, 1,−1) (q2, 0,+1 (q6,#,−1) −
q7 (q7, 0,+1) (q7, 1,+1) − − (q8, $,−1)

q8 (q8, 0,−1) (q8, 1,−1) (h, $, 0) (q8,#,−1) −

Figure 4.6: TM that produces $ω#ω$ on input $ω$

Solution to problem 11
N/A

Solution to problem 12
N/A

Solution to problem 13
N/A

Solution to problem 14
N/A

Solution to problem 15
N/A

Solution to problem 16
N/A

Solution to problem 17
Given an instance to HAMILTONICITY, we use the same instance as input to
LONGEST SIMPLE PATH. The HAM question “Is there a Hamiltonian path?” is
translated to “Show me the longest simple path”. All we need to do is to check
whether the longest simple path found has exactly n − 1 edges where n is the
number of vertices in the graph. If this is so, then we know that the graph is
Hamiltonian, otherwise it isn’t.

Why do we know it? Because a Hamiltonian path is a simple
path of length n − 1, and vice versa. All this work can obviously be done in
polynomial time, so that if we get the longest simple path in polynomial time,
then we can answer in polynomial time whether the graph is Hamiltonian.

362 CHAPTER 4. OPPGAVER, LEDETRÅDER OG LØSNINGER

Solution to problem 18
N/A

Solution to problem 19
N/A

Solution to problem 20
N/A

Solution to problem 21
La oss konkret snakke om Handelsreisendes problem, men likevel forsøke å ten-
ke på et generelt minimaliseringsproblem. Løsningen for å finne lengden av
korteste reisevei har to faser: (1) Finn et intervall å søke i, og (2) gjør selve bi-
nærsøkingen.

(1) Vi vil her finne et tall MAX som (a) er minst like stort som den kortest mu-
lige tur (generelt: er i ja-området for det tilsvarende desisjonsproblemet) og (b)
Har et antall siffer som er begrenset av et polynom i forhold til input-størrelsen.
I vårt tilfelle kan MAX velges som lengden av en tilfeldig valgt tur, ved å ta sum-
men av de n lengste avstander eller (aller grovest, men helt OK) ved å ta lengste
avstand ganger antall noder.

(2) Vi vet nå at lengden av den korteste turen må være et heltall mellom null
og MAX. Vi kan så suksessivt innsnevre dette området, ved stadig å velge midt-
punktet i det gjenværende området, og kalle desisjonsprosedyren med dette
som ‘spørsmålsverdi’. Vi velger så øvre eller nedre halvdel, ut fra svaret. Etter
log2 MAX steg (som er ca 3 ganger antall desimale siffre i MAX) vil vi ha bestemt
det nøyaktige minimum.

Solution to problem 22
Om vi bare er ute etter å sjekke om det finnes en Ham. Path. i en løkkefri rettet
graf, så kan det gjøres ved å lage en ‘topologisk sortering’, altså en rekkefølge på
nodene slik at alle kantene peker fra venstre mot høyre. Dersom det finnes en
Ham. Path. i grafen, så kan det bare finnes én slik rekkefølge, og i denne må det
da gå kanter fra venstre mot høyre mellom alle nabonoder i rekkefølgen. Man
kan godt sjekke dette underveis mens man lager den topologiske sorteringa, og
det hele koker da ned til følgende (husk at løkkefrie rettede grafer alltid må ha
en node uten inngående kanter):

Vi fjerner én og én node fra grafen, men hele tiden slik at den vi velger for
fjerning ikke har inngående kanter (fra gjenværende noder). Så langt er dette
bare en standard algoritme for å lage en topologisk sortering, men hver gang
før vi fjerner en node sjekker vi i tillegg at det er nøyaktig én node som ikke har
inngående kanter (slik at vi bare har ett valg). Om det noen gang er flere, så fin-
nes ingen Ham. Path (Hvorfor ikke?). Dersom vi har en teller over gjenværende
inngående kanter i nodene, så kan dette gjøres i tidO (antall kanter).

Skal vi finne lengste (rettede) vei, enten mellom to gitte noder eller i grafen
totalt, så kan vi tenke oss at kantene er ‘aktiviteter’ med varighet lik lengden, og
følge opplegget for å finne korteste gjennomføringstid etc. fra ‘IN115-oblig-2’.
Om vi frigjør oss fra denne IN115-oppgaven kan det være greiest å tenke i ‘biler
langs kantene’ (som bruker tid lik lengden av kanten), bare med den vri at vi nå
sender ut en bil fra en node når alle bilene er ankommet noden. Vi simulerer så
forløpet i tid, og får da behov for en prioriteskø som inneholder de nodene som
er ute og kjører i øyeblikket.

Om vi vil ha den totalt lengste veien setter vi i gang biler fra alle noder som
ikke har innkommende kanter, og lengden blir da tidspunktet når alle biler er

4.3. SOLUTIONS 363

kommet til alle noder. Dersom vi har oppgitt ‘fra’ og ‘til’ node må vi først skrelle
bort alle noder som ikke kan nås fra ‘fra’-noden, og deretter sende ut biler fra
denne noden. Vi måler så tidspunktet når alle biler er kommet til ‘til’-noden.

På grunn av tiden det tar å administrere prioritetskøen, blir tiden herO(|E| ·
log(|E|)), der |E| er antall kanter (som også er det maksimale antall biler som
kan være i gang).

Denne bilutsendelsen er selvfølgelig kritisk avhengig av at det ikke er løkker
i grafen, for da blir det aldri spørsmål om bilene har vært to ganger innom sam-
me node eller ikke. Dersom det er løkker, så ser det altså ut til å bli håpløst å
kontrollere dette problemet (på ‘polynomisk’ måte).

Solution to problem 23
Selve det å studere forståelsen av og begrunnelsen for Lemma 3.1 overlates til
gruppene eller selvstudium. Som forslag til ‘dagligdagse’ problemer kan vi jo
foreslå følgende:

VERTEX COVER: Vi har et gatenettverk, med rette gater mellom kryss. Man
skal sette ut vaktposter i kryssene slik at alle gater kan sees, og vi vil klare oss
med så få vaktposter som mulig.

INDEPENDENT SET: En bedrift vil bygge et stort nytt lager, men det er en del
typer varer som ikke kan stå i samme lager av sikkerhetsgrunner. For å få samlet
mest mulig i det store lageret ønsker man å finne den største varemengden der
det ikke er noen konflikter. Grafen har her kanter mellom de varer som ikke kan
stå i samme lager.

CLIQUE: Det skal settes sammen en hurtigarbeidende komite med k med-
lemmer, og disse må kjenne hverandre på forhånd for at arbeidet skal komme
fort i gang. Grafen blir her ‘bekjentskapsgrafen’.

Solution to problem 24
(3) på side 64 i G&J:
Det er her bare å la grafen H være en komplett graf med J (= min. antall noder
i klikken) noder. Angående tilleggsspørsmålet så går svaret fram av kommen-
taren til Sub.Isom. på side 202 i G&J: Vi kunne f.eks. brukt Ham.Circuit i stedet,
ved å la H være en ‘ring med n noder’. Merk her at Sub.Isom. ikke forlanger at
kantene i grafen H nøyaktig skal tilsvare kantene som går mellom den utvalgte
del V av G, men at det skal finnes et subsett av kantene mellom V-nodene, slik at
vi får en graf som er lik H.

Solution to problem 25
Vi bruker skjemaene direkte, og får:

(a ∨ ¬b ∨ y1) ∧ (a ∨ ¬b ∨ ¬y1)∧
(¬a ∨ y1

2 ∨ y
2
2) ∧ (¬a ∨ y1

2 ∨ ¬y
2
2) ∧ (¬a ∨ ¬y1

2 ∨ y
2
2) ∧ (¬a ∨ ¬y1

2 ∨ ¬y
2
2)∧

(¬a ∨ b ∨ y1
3) ∧ (¬y1

3 ∨ ¬c ∨ y
2
3) ∧ (¬y2

3 ∨ d ∨ y
3
3) ∧ (¬y3

3 ∨ e ∨ ¬f)

Merk her at man må ta nye ferske hjelpevariable hele tiden, også når vi går
over til å omskrive en ny klausul.

Solution to problem 26
Selve grafbeskrivelsene overlates til tavletegning, etter mønster av figuren på
side 55 i G&J eller figurene i forelesningsfoilene fra uke 7.

Kommentar 1: Det må innrømmes at oppgavestilleren i et svakt øyeblikk
mente at SAT-instansen til høyre ikke var tilfredstillbar. Det er den selvfølge-
lig, og hvertfall så lenge man forlanger tre forskjellige variable i hver klausul,
så må ikke-tilfredstillbare instanser av 3SAT ha en del klausuler. Som en liten

364 CHAPTER 4. OPPGAVER, LEDETRÅDER OG LØSNINGER

tilleggsnøtt kan man se på spørsmålet om hvor mange klausuler en slik 3SAT-
instans minst må ha for å kunne være ikke-tilfredsrillbar. Svaret står lenger ned.

Kommentar 2: Spørsmålet om man i en 3SAT-instans forlanger at det er tre
forskjellige variable i hver klausul er litt uavklart i G&J. Det er klart at den inten-
se behandlingen av “case 1” og “case 2” nederst på side 48 nettopp er gjort for å
sikre at man får tre forskjellige variable i alle klausulene. Om man ikke forlang-
er dette kunne man f.eks. rett og slett transformere klausulen (a) til (a ∨ a ∨ a).
Grunnen til at man på side 48 er så nøye med å vise at man kan lage klausuler
med tre forskjellige variable er antakeligvis at det i enkelte transformasjoner fra
3SAT kan være behagelig eller nødvendig å forutsette at det er tre forskjellige va-
riable. Som nok en liten tilleggsnøtt kan man forsøke å avgjøre om dette gjelder
transformasjonen 3SAT ∝ VC beskrevet på side 55. Forsøk f.eks. å transformere
(a ∨ a ∨ a) ∧ (¬a ∨ ¬a ∨ ¬a). Svar nedenfor.

Svar på smånøttene angitt over:
Hvor mange klausuler må en instans av 3SAT (med tre forskjellige variab-

le i hver klausul) ha for å kunne være ikke-tilfredstillbar? Svaret er 8, og om vi
begrenser oss til det tilfellet der det totalt bare er tre variable i instansen er det
lett å se: Det går da nemlig an å lage 8 forskjellige klausuler, ved å variere nege-
ringen. Om vi har en instans som består av akkurat disse 8 klausulene ser vi lett
at den ikke er tilfredstillbar. Har vi derimot færre enn 8 klausuler må det være
én av de 8 kombinasjonene som “mangler”, og vi kan da velge verdier slik at al-
le literalene i denne er FALSE. Da vil minst én av literalene i alle de andre være
TRUE.

At det bare blir verre om instansen har flere enn tre variable overlater vi til
leseren å verifisere.

Ellers går transformasjonen i boka fra 3SAT til VC bra også om vi tillater
samme variabel flere ganger i hver klausul.

Solution to problem 27
PARTITION ∝ SUBSET SUM:

Denne går med restriksjon, ved å restriktere SUBSET SUM (senere SS) til de
instansene der B = 1/2

∑
a∈A s(A).

Når vi nå eksplisitt blir bedt om å sjekke at vi kan få fram alle instanser av
PARTITION på denne måten (generelt er jo dette viktig), så kan vi observere at
om man er helt formell så er dette faktisk ikke riktig (og det samme gjelder (6)
og (7) på side 65). F.eks. skulle jo PARTITION-instansen (2, 3, 4) komme fra “SS-
instansen” (2, 3, 4) medB = 4.5, men i SS-forlanges atB er et heltall.

Nå er det jo bare opplagt gale instanser av PARTITION som på denne måten
ikke kommer fra noen legal SS-instans, og for å sjekke at dette forholdet ikke
skaper noen dypere problemer, kan man gå tilbake til grunnfjellet og sjekke at
vi kan lage en transformasjon fra PARTITION til SS. Denne bør først summere
‘size’-verdiene, og om dette blir et par-tall kan vi rett fram lage en SS instans
medB lik halve summen.

Dersom summen er et odde tall vet vi jo at denne PARTITION-instansen skal
ha svar nei, og da kan vi egentlig avbilde denne på en vilkårlig nei-instans av SS,
ved f.eks. å la alle slike avbildes til SS-instansen (1, 3), med B = 2. Et alternativ
er å først multiplisere alle ‘size’-verdiene i PARTITION med 2. Dette bevarer ja/
nei, og nå kan vi alltid lett finne en ekte SS-instans etter den vanlige reglen.

Legg merke til at dette ville fungere like bra dersom det var noen opplagte
ja-instanser av PARTITION som ikke framkom ved restriksjonen. Ser vi på det
som transformasjon kunne vi da bare ha avbildet disse på en fast ja-instans av
SS. Merk at uttrykket ‘opplagt nei-instans (eller ja-instans)’ generelt skal tolk-
es som ‘instanser som kan gjenkjennes og besvares i polynomisk tid’. Arbeidet

4.3. SOLUTIONS 365

med å kjenne dem igjen og besvare dem må jo kunne gjøres som en del av den
polynomiske transformasjonen.

SUBSET SUM ∝ PARTITION:
Vi angir (som over) size-verdiene som ingår i en instans av PARTITION eller

SS rett og slett ved å liste dem opp i en parentes. En instans av SS har dessuten
en B-verdi. Anta at vi har gitt SS-instansen (s1,, sn) med en gitt B. Studerer
man side 62 ser man at man der legger til to nye elementer med velvalgte size-
verdier. Vi lar derfor S = s1 + · · · + sn, og transformerer denne SS-instansen til
følgende PARTITION-instans: (s1, . . . , sn, S +B, 2S −B)

At dette kan gjøres i polynomisk tid anses opplagt. Vi må så bevise at ja og
nei bevares. Dette kan generelt vises på to hårfint forskjellige måter:

(a) vise at en ja-instans avbildes på en ja-instans og at en nei-instans avbil-
des på en nei-instans, eller:

(b) vise at en ja-instans avbildes på en ja-instans og at alt som blir avbildet
på en ja-instans selv er en ja-instans.

Disse er jo logisk ekvivalente. Vi velger her den siste varianten (og det er vel
det vanligste).

Anta at SS-instansen er ja-instans, altså at vi kan gjøre et utplukk U med
sum B av verdiene (s1,, sn). Resten av verdiene har da sum S − B. Vi ser at
instansen (s1, . . . , sn, S+B, 2S−B) av PARTITION er nå en ja-instans, for vi kan
plukke U og elementet 2S −B og vise at disse har samme sum som resten. U og
2S+B har summen 2S, og resten har summen 2S−B+(S−B) = 2S. Altså OK.

Anta så at PARTITION-instansen (s1, . . . , sn, S + B, 2S − B) er en ja-instans.
Vi kan da først observere at S +B og 2S −B må ligge i hver sin ‘partisjon’, siden
allerede de har sum 3S, mens resten bare har sum S. I samme partisjon som
2S − B, må det være et visst utplukk av s-verdier, og vi kaller dette U , og lar
summen over dette være x. Summen av de resterende s-verdiene er da S − x.
Siden summen over de to partisjonene er like må vi ha: 2S − B + x = S + B +
(S − x) Dette gir umiddelbart x = B, og den opprinnelige SS-instansen må
derfor være en ja-instans.

Transformasjon av den gitte SS-instansen gir PARTITION-instansen:
(12, 25, 17, 5, 22, 118, 125)

Solution to problem 28
a) Anta at vi har en algoritme som finner en maksimal matching (i betydningen:
‘med så mange kanter som mulig’) i en generell urettet graf. Vi kan da finne
et ‘edge cover’ (kantoverdekning) med så få kanter som mulig som følger: Velg
først en maksimal matching for den aktuelle grafen. Her vil hver kant dekke to
noder, og ingen dekkes dobbelt. Bedre kan vi altså ikke gjøre det så langt. Man
ser så at for å dekke resten av nodene må man bruke en kant på hver, for om
man klarte å dekke to nye noder med én kant, så måtte dette representere en
utvidelse av den maksimale matchingen, som er umulig. Vi kan lette sjekke at
denne algoritmen blir polynomisk, dersom max. matching algoritmen er det.

Det er også slik at enhver mindre kantoverdekning måtte innholdt en større
matching. Dette kan man se slik: La “overskuddet” til en kantoverdekning være
det antall ekstra overdekningskanter (ut over én) som går inn mot hver node,
summert over alle noder. (Dette kan også angis som: 2 ∗ |E| − |V |, der |E|=antall
kanter i overdekningen og |V |=antall noder). Dersom den maksimale matchin-
gen vi fant over hadde m kanter, og vi la på k kanter til slutt, så er overskuddet
her lik k.

Anta så at vi fant en overdekning med én kant mindre, altså med m + k −
1 kanter. Siden vi da har fjernet to kantender, må overskuddet til denne være
k − 2. Dette overskuddet kunne helt sikkert fjernes ved å ta bort k − 2 kanter fra

366 CHAPTER 4. OPPGAVER, LEDETRÅDER OG LØSNINGER

overdekningen, og da ville vi stå igjen med en matching medm+ 1 noder. Dette
er mot forutsetningen, altså finnes ingen mindre kantoverdekning.

Som eksempel å se på kan man f.eks. bruke en stjernegraf med tre armer, og
en trekant i enden av hver arm (altså 10 noder).

NB: Vi må forutsette at den grafen vi arbeider med ikke har ‘enslige noder’.
For slike kan ingen kantoverdekning finnes.

Og til slutt: Når vi på denne måten kan finne en minimal kantoverdekning,
kan vi også avgjøre ethvert spørsmål av typen “finnes en kantoverdekning med
færre enn K kanter?”.

b) Dette gjøres enkelt ved f.eks. et vanlig dybde først søk, og vi starter med en
tilfeldig farge i startnoden. Når vi går langs en kant fra en node A til en node
B, så er det alltid bestemt hvilken farge vi må ha i B, nemlig den motsatte av
den iA. DersomB allerede er behandlet (og derved fargelagt) sjekker vi at dette
stemmer, og trekker oss tilbake. Ellers fargelegger vi den nå med den riktige far-
gen, og fortsetter søket. Et vanlig dybde først søk tar tidO (antall kanter), altså
polynomisk.

2-fargbare grafer kalles også ofte ‘bipartite’ grafer, og de kan også karakteri-
seres ved at de ikke inneholder løkker med et odde antall noder.

Litt løs filosofering: Det som gjør at vi her klarer å kontrollere 2-fargbarhet
synes å være at med bare to farger så er det å vite hvilken farge det ikke skal
være, også nok til å bestemme hvilken farge det skal være. Dette gjelder jo ikke
om vi har tre eller flere farger, og dette er altså så alvorlig at problemet da faller
over iNPC. Det er også mange andre problemer der steget fra 2 til 3 gjør at det
går fra Ptil NPC, f.eks. Exact Cover By 2-sets (X2C), og Exact Cover By 3-sets
(X3C). Man må dog ikke tro at dette er noen generell regel.

c) Exact Cover By 2-sets er identisk med å spørre om det i en gitt graf går an
å plukke en matching som dekker alle nodene (en såkalt “perfekt matching”).
Man tolker da den totale mengden i X2C som en nodemengde, og lar hvert 2-
set være en kant mellom noder.

Solution to problem 29
Nr. 3: Vi restrikterer til de instanser der K = 1, og får (alle instanser av) HC.

Nr. 4: Vi kunne også her restriktert til HC, men siden det er mulig kan vi her,
som en variasjon, bruke Clique: Vi legger først merke til at spørsmålet er stilt
slik at G1 og G2 må ha like mange noder for at det skal være en ja-instans. Vi
restrikterer derfor for det første til bare slike instanser, og videre til de instanser
der G2 inneholder en komplett graf med J ≤| V2 | noder (og ellers bare har
kantløse noder), og der K = J(J − 1)/2 = antall kanter i G2. Da får vi Clique-
problemet, med spørsmål omG1 inneholder en klikk av (minst) størrelse J .

Nr. 5: Vi restrikterer til de instanser der K = 2 og J = 2(1
2

∑
a∈A s(a))2, og

får dermed PARTITION-problemet. Denne er litt mer fiklete, så la oss se på den
som en transformasjon. Vi kaller vår restriksjon av MIN-SUM-OF-SQUARES-
problemet for RESTR. Vi observerer først at om vi har en ja-instans av PARTI-
TION, så er det opplagt at vi får en ja-instans av RESTR, ut fra den samme opp-
delingen.

Anta så at vi har en ja-instans av RESTR. For å kunne konkludere med at dis-
se size-verdiene også er en ja-instrans av PARTITION, er det et viktig poeng at
når man skal dele et tall (her ‘size-summen’) i to deler og ta kvadratsummen av
delene, så blir denne minst mulig når man deler i nøyaktig to like deler, og alle
andre oppdelinger gir større kvadratsum (se under). Dermed vet vi at den opp-
delingen som gjør at RESTR-instansen er en ja-instans, må dele size-summen i
to like deler, ellers ville kvadratsummen vært større enn J-verdien i RESTR. Altså
har vi også en ja-instans av PARTITION.

4.3. SOLUTIONS 367

Begrunnelse for påstanden over: Anta at tallet vi skal dele er 2n. Deler vi det
i to like deler og tar kvadratsummen får vi 2n2. Bruker vi en annen oppdeling får
vi (n+m)2 + (n−m)2 = 2n2 + 2m2, altså større.

Solution to problem 30
a) Vi kan f.eks. tenke oss at en større ekspedisjon må dele seg i to grupper for
en periode, f.eks. for å få undersøkt et større område. Hver av gruppene må da
ha en viss kompetanse, så som botanisk kunnskap, zoologisk, medisinsk, utsyr-
steknisk, lokal terrengkunnskap, kokekunst, etc, etc. Mengdene i kolleksjonen
C er da mengdene av de personer som har de forskjellige kunnskaper og kom-
petanser. For å få noe skikkelig problem ut av det, må vi tenke oss at hver person
(eller hvertfall en del av personene) har kompetanse på flere områder. (Om det
ikke er tilfelle vil problemet lett kunne løses i polynomisk tid. Hvordan??).

b) Som i boka (side 38, linje 6 nedenfra) definerer vi en literal til å være en
logisk variabel eller en negert logisk variabel. Om vi har n logiske variable kan vi
altså lage 2n forskjellige literaler over disse, og det er nøyaktig 3 literaler i hver
klausul av en (NAE)3SAT-instans.

Transformasjonen fra NAE3SAT til Set Splitting (SS) går som følger: Mengd-
en S i den SS-instansen vi lager lar vi bestå av alle literaler over variablene som
forkommer i NAE3SAT-instansen. Kolleksjonen C i SS lar vi bestå av:

(i) Alle 2-literal-mengder av formen {u,¬u}, der u er en variabel i NAE3SAT-
instansen.

(ii) De 3-literal-mengder som tilsvarer klausulene i NAE3SAT-instansen.
Vi aksepterer her at denne transformasjonen kan gjøres i polynomisk tid

(men skal eventuelt i et eksempel senere se på hva som er et rimelig svar om det
eksplisitt er spørsmål etter argumentasjon for at en transformasjon er polyno-
misk)

Vi antar så at vi har en ja-instans av NAE3SAT, og vil vise at den produserte
SS-instans er en ja-instans. I mengden S lar da de literaler som har verdien TRUE

være den ene mengden S1, mens de som er FALSE utgjør mengden S2. Vi ser da
umiddelbart at i mengdene (i) må ett elemet være i S1 og ett i S2. Siden hver
klausul har minst en variabel lik TRUE og en lik FALSE (ut fra def. av NAE3SAT),
ser vi også uten videre at hver av mengdene i (ii) er splittet slik at minst ett ele-
ment er i S1 og minst ett er i S2.

Anta så at transformasjonen gir en ja-instans for SS. Dermed finnes lovlig
splitting av denne, og vi kan velge en tilfeldig av mengdene (f.eks. S1) og la lite-
ralene i denne være TRUE, og resten være FALSE. Vi ser da (fra at (i)-mengdene
er lovlig splittet) at dette er en konsistent verdi-setting av variablene, og da (ii)-
mengdene er lovlig splittet må også alle klausulene i NAE3SAT-instansen vi
kom fra ha tilfredstilt kravet i NAE3SAT.

c) Transformasjonen fra 3SAT til SS går som følger: Mengden S i SS lar vi be-
stå av alle literaler over variablene i 3SAT-instansen, samt ett ekstra element vi
kaller ‘F’. Kolleksjonen C i SS lar vi nå bestå av:

(i) Alle mengder av formen {u,¬u}, der u er en variabel i 3SAT-instansen
(altså som over).

(ii) For hver av klausulene i 3SAT-instansen, en mengde på 4 elementer,
nemlig elementet F, samt de tre literalene fra klausulen.

Anta så at vi har en ja-instans av 3SAT. I mengden S lar vi da de literalene
som har verdien TRUE være den ene mengden S1, mens elementet F, sammen
med de literalene som er FALSE lar vi være mengdenS2. Vi ser som over at meng-
dene (i) er splittet riktig. Siden hver av mengdene i (ii) har minst en literal som

368 CHAPTER 4. OPPGAVER, LEDETRÅDER OG LØSNINGER

er TRUE (og derved ligger i S1) og helt sikkert inneholder elementet F (som ligger
i S2), så er også disse riktig splittet.

Anta så at transformasjonen gir en ja-instans for SS. Dermed finnes lovlig
splitting, og vi kaller den delen som inneholder F for S2, og den andre S1. Vi lar
så literalene i S1 være TRUE, og literalene i S2 være FALSE. Vi ser da (fra at (i)-
mengdene er riktig splittet, som over) at dette er en konsistent verdi-setting av
variablene, og da hver av (ii)-mengdene må ha minst ett element i S1 må også
alle klausulene i 3SAT-instansen vi kom fra ha minst en literal som er TRUE.
Dermed er 3SAT-instansen vi kom fra en ja-instans.

d) En algoritme for å løse problemet kan først undersøke om det finnes mengd-
er i kolleksjonen C med ett element. I så fall er svaret opplagt ‘nei’ (!?). Om dette
ikke er tilfelle (alle mengder har to elementer) lager man en graf der elementene
i mengden S utgjør nodene, og der hver mengde i kolleksjonen C representeres
som en kant. SS-spørsmålet kan da omformes til spørsmålet om denne grafen
er 2-fargbar (altså om vi kan dele nodene i to grupper S1 = de røde og S2 =
de blå, slik hver kant har en rød og en blå ende). Dette problemet har vi løst
tidligere ved enkel graf-traversering.

e) Under (b) transformerte vi et kjent NP-komplett problem til en instans av
SS der alle mengdene i kolleksjonen C var av størrelse 2 eller 3. Om det restrik-
terte problem oppgaveteksten beskriver kalles 3SS, har vi altså rett og slett vist
NAE3SAT ∝ 3SS.

Solution to problem 31
Vi henviser til beskrivelse og figur i G&J, side 61. I vårt problem er altså q = 3,
og antallet p av (desimale) sifre som må til for å lagre tall opp til 100 er 3 (altså
p = dlog10(100 + 1)e = 3). Tallene vi skal angi som ‘size’-verdier til SUBSET SUM

instansen må altså ha 3pq = 3 · 3 · 3 = 27 siffer.
Hvert trippel skal dermed omarbeides til en slik size-verdi med 27 siffer

(inklusive innledende nuller), og SUBSET SUM instansen for den gitte 3DM-
instansen blir:

(a1, b2, c3): 001 000 000 000 001 000 000 000 001
(a1, b3, c2): 001 000 000 000 000 001 000 001 000
(a2, b2, c1): 000 001 000 000 001 000 001 000 000
(a3, b1, c3): 000 000 001 001 000 000 000 000 001
.... ...

Verdien av B: 001 001 001 001 001 001 001 001 001

Solution to problem 32
a) Anta at tallets verdi er n. Her vil selv de mest naive algoritmer være pseudo-
polynomiske. F.eks. kan vi gå gjennom hvert av tallene 2, 3, . . . , n− 1, og sjekke
om de går opp i n. Dette blir O(n) sjekker, og hver av disse kan gjøres i o(log n)
tid (se pkt. (c)).

Faktisk er det slik at selv om man utfører testen på om ‘x går opp i n’ ved
suksessivt å trekke fra x, og se om man ‘treffer null’, så vil den fremdeles være
pseudopolynomisk. Hver slik test vil jo ikke ta mer enn n subtraksjoner, og to-
talt vil det hele da bruke ikke mer enn O(n2) subtraksjoner (som hver går i tid
O(log n)).

Det er ingen kjent algoritme som løser dette problemet i beviselig polynom-
isk tid, men det finnes algoritmer som klarer tall på noen hundre desimale sifre

4.3. SOLUTIONS 369

uten store problemer.

b) Det å summere tall tar bare tid proporsjonalt med antall siffer, så denne blir
(ekte) polynomisk.

c) Om vi bruker vår vanlig hånd-divisjons-algoritme (og tester om resten er
null) går dette i (ekte) polynomisk tid.

For interesserte: Ser vi litt nøyere på det å utføre “n : m”, der n > m (eller er
resten gitt), og tallene har hhv. sn og sm siffer, så vil vi få omtrent sn − sm ho-
vedsteg, og hver av disse vil innebære det å finne neste siffer (maksimalt forsøke
med 9 ·m, 8 ·m, . . . , 1 ·m), samt en subtraksjon. Maksimalt blir dette omtrent
(sn − sm) · 10 · sm enkeltskritt, som er O(sn · sm). Tidsforbruket til divisjon er
altså grovt regnet kvadrartisk i tallengden.

d) La de to tallene være a og b, a ≥ b. Nesten enhver tenkelig algoritme vil være
pseudopolynomisk, f.eks. å se på b, b − 1, . . . , 2, og sjekke om de går opp i både
a og b. Ser vi på Euklids algoritme så går den slik (vi tenker oss a = c1 og b = c2):

a mod b = c3, b mod c3 = c4, c3 mod c4 = c5, . . .

Her stopper man når tallene ikke lenger forandrer seg, og har da det ønskede
tall. Det viser seg her at ci alltid er mindre enn halvparten av ci−2, og lengden av
sekvensen blir derved ikke større enn omtrent 2 · log a. Dermed er algoritmen
(ekte) polynomisk.

For interesserte: Beviset for halverings-setningen over er ikke vanskelig. Vi
vet at a mod b ≤ b− 1 og a mod b ≤ a− b. Man skiller så mellom de to tilfellene
a − b ≤ b − 1 og a − b > b − 1, og i begge tilfellene følger det greit at a mod b ≤
(a− 1)/2. Forsøk selv!

e) Det var her ment T ≥ 0. Vi ser at for x hel og x ≥ 0, så er x5/7 + x3 ≥ x, og
dermed må den ønskede verdi ligge mellom 0 og T (inklusive). Siden funksjonen
er monotont voksende kan verdien finnes ved binærsøking, og en slik algoritme
blir (ekte) polynomisk.

f) (Også her antas T ≥ 0). Svaret her er jo rett og slett x = 2T , og problem-
et her blir at dette tallet i to-tall-systemet har T + 1 siffer, og i ti-tall-systemet
omtrent tredjeparten så mange. Det har altså O(T) siffer, og hvertfall i to-tall-
systemet lar dette tallet seg lett skrive ut i tid O(T) (det er jo bare en 1-er med
T nuller etter). Dermed kan problemet løses lett i pseudopolynomisk tid, og om
vi forlanger at tallet skal skrives ut i med siffer i et passelig tallsystem så kan det
opplagt ikke løses i polynomisk tid. Om vi derimot aksepterer en utskrift av typ-
en “svaret er en ener med ‘T’ nuller etter”, så kan det jo typisk løses i polynomisk
tid. Problemet må vel dermed klassifiseres sammen med de omtalt i nest siste
avsnitt på side 11 i G&J.

Solution to problem 33
a) Man kan tenke seg at hvert element (si, vi) er ting man kunne ønske å ha
med seg i sekken, der si er vekten og vi er “verdien” (altså, hvor viktig det er
å ha det med). Tallet B vil da representere den maksimale vekten sekken kan
ha, mensK er den verdi-sum man minst må ha med. Om man går ut over desi-
sjonsproblemer ville vel dette naturlig være et optimaliseringsproblem der man
vil maksimereK.

b) Alle si = s:
Da er B-kravet rett og slett at vi kan ha medB/s stykker, uten hensyn til hvilke.

370 CHAPTER 4. OPPGAVER, LEDETRÅDER OG LØSNINGER

Vi plukker så deB/s elementene med størst v-verdi. Om v-summen for disse er
minst K er svaret ‘ja’, ellers er det ‘nei’. Dette kan gjøres i polynomisk tid.

Alle vi = v:
Nokså tilsvarende forrige punkt. K-kravet blir da rett og slett at vi må ha med
minst dK/ve stykker, uten hensyn til hvilke. Vi tar med de dK/ve elementer med
minst s-verdier, og om summen av disse ikke overgår B er svaret ‘ja’, ellers er
svaret ‘nei’. Dette kan gjøres i polynomisk tid.

Alle vi = 1 eller 2:
Det ser ut til at denne kan løses i polynomisk tid, ved å først sortere elementene
stigende på ‘verdi per størrelse’ (‘verditetthet’), og så ta med de med størst ver-
ditetthet (minst ‘størrelse per verdi’) inntil vi når verdienK± 1. Man kan så, om
nødvendig, foreta en lokal enkel justering, og dermed vite at vi har oppnådd den
ønskede verdi K med så liten total størrelses-sum som mulig. Det er da bare å
sammenlikne denne s-summen medB.

Alle si og vi = 1, 2, . . . , 10:
(Denne oppgaven ble litt mer komplisert enn oppgavestilleren i utgangspunktet
hadde tenkt seg da vi ikke har noen begrensniger på B og K. Oppgaven ble
imidlertid desto mer interessant!
). Vi observerer først at dersomK > 10n så må svaret være ‘nei’, og videre at om
B > 10n så vil B-grensen aldri komme inn i bildet, og svaret vil bare avhenge av
om v-summen overgår K. Altså, ved først å teste på disse betingelsene kan vi i
polynomisk tid besvare spørsmålet dersom vi har et av disse tilfellene.

For de resterende tilfellene er jo B og K begrenset av 10n, og ut fra svaret
på punkt (f) under ser vi at tiden vil være O(n · 10n · 10n), som er O(n3). Dette
er (ekte) polynomisk, da ethvert fornuftig Length-mål må vokse minst lineært
med n.

Vi kan imidlertid også se dette siste som et tilfelle av det som er diskutert på
side 95 i G&J, mellom ‘Observation 4.1’ og ‘Observation 4.2’. Anta at Max(I) er
definert som den største tallverdien i instansen (G&J’s standard-definisjon for
Max). Vi ser da at i vårt tilfelle har vi (etter at de to lette tilfellene er skilt ut)
restriktert alle tall som inngår i instansen slik atMax(I) ≤ 10n ≤ 10 ·Length(I).
Altså erMax(I) polynomisk begrenset i forhold tilLength(I), og da gjelder uten
videre at det som er pseudopolynomisk også er polynomisk.

Til slutt nok en variant man kan lure på:
Hva skjer om vi begrenser n oppad med en fast grense (f.eks. 100), men tillater
at tallene vokser så mye de vil. Kan problemet da løses i polynomisk tid? (Svar
står på slutten av denne oppgaven)

c) For å ta det siste først: Svaret er ‘ja’ om det finnes en TRUE i området: i =
n, j = 0, . . . , B og k = K, . . . , V , der V = v1 + . . .+ vn. Dette dekker jo nettopp
alle mulige s-summer og v-summer vi kan få fra lovlige utplukk blant alle n ele-
mentene.

Så til det første: Selv om vi bare er interessert i området angitt over, må vi
(ut fra det som er gjort på side 90 i G&J) være forberedt på måtte beregne oss
gjennom alle indekseringer fra 1 for i og fra 0 både for j og k. Dermed må vi
totalt regne med å måtte fylle ut tabellen for i = 1, . . . , n, j = 0, . . . , B og k =
0, . . . , V .

d) Vi antar alle si ≤ B, ellers kan de ‘kastes’ (kan aldri komme med i noe lovlig
utvalg)!

TRUE for j = k = 0
t(1,j,k) = TRUE for j = s1, k = v1

FALSE ellers

4.3. SOLUTIONS 371

e)

TRUE dersom t(i-1,j,k) = TRUE
t(i,j,k)= TRUE dersom j-si }= 0, k-vi }= 0 og

t(i-1,j-si,k-vi) = TRUE
FALSE ellers

Enten kunne vi gjøre slik utplukk før (si, vi) ble lagt til, eller vi kan gjøre det
ved på inkludere det nye elementet. Andre muligheter finnes ikke.

Vi kaller operasjonene D(1, j, k) og E(i, j, k), og kan skrive det som følgende
programskisse:

for j:= 0 to B do
for k:= 0 to V do D(1,j,k);

for i:= 2 to n do
for j:= 1 to B do

for k:= 1 to V do E(i,j,k);

for j:= 1 to B do
for k:= K to V do

if t(n,j,k) then {svaret er ‘ja’};
{ellers er svaret ‘nei’};

Testingen kan også (for noen tilfeller mer effektivt) gjøres ved at vi på slutten
av operasjonene D(1, j, k) og E(i, j, k) legger setningen:

if k <= K and t(i,j,k) = TRUE then {svaret er ‘ja’};

f) Operasjonene ‘D’ og ‘E’ tar tid O(1). Max tid blir derfor O(nBV). Dette er
pseudopolynomisk. (Om man vil se det i forhold til en Max(I)-variant som an-
gir det maksimale tallet i instansen, kan man bare sette inn atV ≤ n ·Max(I).)

Svar til ekstraoppgave gitt under pkt b over
(Hva om antall (s, v)-par n er begrenset av en fast øvre grense?):

Vi skal her merke oss at instansene kan bli så store de bare vil, ved at tall-
ene blir store. Denne er løsbar i polynomisk tid. Vi konstaterer rett og slett at
antall utplukk fra mengden er begrenset av det faste tallet 2n, og at det er en
opplagt polynomisk operasjon å sjekke for hver av disse om de oppfyller krave-
ne til s-sum og v-sum. For n = 100 må vel imidlertid denne algoritmen sies å ha
fortrinnsvis akademisk interesse.

Solution to problem 34
a) Dette erNP-komplett, men kan løses i pseudopolynomisk tid. Det erNP-
komplett fordi vi kan transformere det rene SUBSET SUM: (r1, r2, . . . , rk), B

′ til
dette ved å transformere til (r1, r2, . . . , rk, B

′ + 1, . . . , B′ + 1), B′ (med f.eks. k
elementer med verdiB′+ 1 lagt til. Disse vil aldri kunne være med i noe utplukk
med sumB′).

Videre kan det løses i pseudopolynomisk tid ved å se hver for seg på utplukk
fra de ca. n/2 forskjellige mulige intervaller av lengde ca.n/2. (Mer nøyaktig: Om
n er partall skal man man se på nøyaktig n/2 forskjellige intervaller, hver med
lengde n/2 + 1. Om n er odde blir det (n+ 1)/2 intervaller av lengde (n+ 1)/2.)

b) Dette er NP-komplett i sterk forstand, for om vi begrenser alle s-verdiene
til bare verdien 1 så er problemet fremdeles NP-komplett. Da har vi nemlig
VERTEX COVER medK = B.

372 CHAPTER 4. OPPGAVER, LEDETRÅDER OG LØSNINGER

PS: Dette problemet kan sees som en ‘veiet’ variant av et ‘allerede’ NP-
komplett problem, og slike problemer blir stort sett NP-komplette i sterk for-
stand.

c) Dette kan løses i polynomisk tid, da det bare er et polynomisk antall forskjel-
lige intervaller vi kan velge, nærmere bestemt n(n−1)/2 stykker (altså begrenset
avn2). Det å sjekke for hver av disse om summen er likB er opplagt polynomisk.
(En gruppelærer foreslo at det måtte finnes en morsom ‘slange-algoritme’ for å
løse dette. Det kan man jo filosofere over.)

Dersom vi tillater inntil tre intervaller, kan problemet fremdeles løses i poly-
nomisk tid. Antall forskjellige måter vi kan velge 3 intervaller vil nemlig opplagt
ikke overstige n6, i og med at intervallene er gitt ved sine 6 endepunkter. Vi ser
derved at om vi forlanger, for en fast M , at tallene skal velges slik at de danner
inntil M sammenhengende intervaller fra den gitte sekvensen, så kan problemet
løses i polynomisk tid.

Solution to problem 35
Den "generelle" metoden i boka for å vise at et søkeproblem X er NP-lett (selv
om de ikke innfører denne betegnelsen før etter at metoden er vist) går ut på
først å velge et fornuftig “mellomproblem” XE (“extension”-problem), som på
en passelig måte spør om en et forslag til “halvferdig løsning” kan utvides til
en fullverdig løsning. For å kunne vise NP-letthet må dette problemet være i
NP, og det er som regel svært enkelt å få til. Man må imidlertid passe seg for
varianter der ja-svar ikke uten videre kan bevitnes, som f.eks. “Kan denne by-
sekvensen utvides til en minimal tur?”. (Hvordan bevitne at en tur er minimal?)
I stedet kan man bruke “Kan denne by-sekvensen utvides til en tur som ikke er
lengere ennB?”. Her kan jo et ja-svar klart bevitnes.

For å kunne bruke denne metoden til å “løse” optimaliseringsproblemer må
man derfor først skaffe f.eks. lengden av korteste tur, og får derfor to faser (som
begge bruker en tenkt ‘orakelprosedyre’ som løser XE i polynomisk tid): (1) Finn
den optimale verdi som kan oppnås (ved binærsøkning) (2) Bygg opp en løsning
som har denne verdien. For Traveling Salesman blir dette i boka gjennomgått
ved at skrittene gjøres i rekkefølgen (1) og deretter (2), mens vi på forelesningen
tok (2) først. Vi har også sett på fase (1) i oppgave 2.1 tidligere.

Merk altså at om vi har vist at X ∝T XE og at XE er i NP , så vet vi at X er
NP-lett. Det er f.eks. ikke nødvendig å vise at XE erNP-komplett.

a) Dette problemet (HCS) er ikke et optimaliserings-problem, og vi trenger
derfor bare én fase. Spørsmålet i ‘HCE’ vil være “kan vi utvide den gitte node-
sekvensen S til en Hamitonsk løkke (i den gitte grafen)?”.

For å vise HCS ∝T HCE kan man starte prosedyren for HCS med et kall på
HCE, med en sekvens med en tilfeldig node (eller med tom nodesekvens), og
derved få svar på om det finnes en Hamiltonsk løkke. Om slik finnes kan man
bygge den opp ved gjentatte kall, nøyaktig som for Trav. Salesm.

b) Her kan vi bruke CLE = “Kan jeg utvide den gitte nodemengden C til en klikk
med minst J noder (i den gitte grafen?)". Her har vi et optimaliseringsproblem,
og får da to faser: (1) Bruk binærsøkning i området fra 1 til n = antall noder til
å finne størrelsen J∗ på en maksimal klikk. Vi må under dette søket kalle CLE-
prosedyren med tom C". (2) Bygg opp en klikk med nøyaktig J∗ noder ved i hvert
skritt å foreslå alle mulige en-node-utvidelser av C for prosedyren CLE, og velge
en som gir positivt svar.

Man kan her merke seg at vi i (1) egentlig ikke behøvede å bruke binærsøk-
ing, da det å gjøre noe n ganger ikke ville gjøre algoritmen eksponensiell. Det

4.3. SOLUTIONS 373

kommer altså av at vi her kjenner en så lag øvre grense for J∗. Ofte (f.eks. i (c)
under) vil vi oppleve at denne øvre grensen er eksponensiell i forhold til instans-
lengden, og da blir det viktig å bruke binærsøking.

c) Her kan vi bruke KSE med spørsmålet: “Kan jeg utvide et gitt utplukk U til
et ‘lovlig’ utplukk med v-sum minst K?". Her får vi også to faser, og i fase (1)
må vi binærsøke etter maksimal K i området opp til summen av alle v-verdier.
Denne summen er eksponensiell i forhold til instanslengden, så vi må bruke
binærsøking. Fase (2) blir helt rett etter nesa.

d) Dette er en slags dobbelt-optimering: Først skal vi maksimalisere antall no-
der, og siden minimalisere vektsum. Slike problemer kan vanligvis gjøres til “en-
keltoptimeringer" ved å lage en ny vekting som inneholder begge de gamle, og
der det mest signifikante kriteriet er gitt en så stor faktor at dette altid får første-
prioritet, og der alle ønsker trekker i samme retning. Dette kan f.eks. gjøres ved
at vi legger nye vekterui på nodene, definert ved: ui = (V +1)−vi, der V =

∑
vi,

der summen er tatt over alle noder (ui = V − vi gir tull om G har én node).
Da må alltid k noder ha større vektsum enn k − 1 noder:
- min ny vektsum av k noder er: (V + 1)k − V = V (k − 1) + k

- max ny vektsum av k − 1 noder er: ((V + 1)− 1)(k − 1) = V (k − 1)

Med de nye vektene ui kan vi løse dette "tradisjonelt": E-spørsmålet vil da
være: “Kan jeg utvide dette node-utplukket til et uavhengig utplukk med u-
vektsum minst K?". Den innledende binær-søkninga må her søke i området opp
til U =

∑
ui =

∑
((V + 1) − vi) ≤

∑
V = n

∑
vi (alle summer tatt over alle no-

der).
Antall søkesteg er derfor begrenset av: log(n

∑
vi) = logn+ log(

∑
vi))

Et passelig lengdemål for instanser kan være: Length(I) = n + log(
∑
vi),

og antall søkesteg er jo faktisk allerede mindre enn dette. Søkefasen blir derfor
polynomisk i tid, også med den nye definisjonen av node-vektene.

Solution to problem 36
(A) Tøv!NP-hard betyr “minst like vanskelig som de iNPC, men gjerne vanske-
ligere”. Så selv omNP-komplette problemer kan løses i pol. tid så kan det finnes
enda vanskeligere problemer i NPH.

(B) Perfekt uttalelse!
(C) Ja, som det framgår av side 158 i G&J, så er dette ikke avklart. Generelt er

det forskjell på A ∝ B og A ∝T B, men det er ikke kjent om dette også gjelder
om man holder seg innenfor NP. Muligheten er altså til stede for at de NP-
harde problemene innenforNPer en større klasse enn deNP-komplette.

(D) Tøv! Det at det kan løses i polynomisk tid betyr jo også at det kan bevitnes
i polynomisk tid, med tomt vitne.

(E) Tøv! F.eks. tilfredstiller alleNP-komplette problemer dette.
(F) Igjen er dette svært så uavklart! For det første vil utsagnet være sant der-

som det viser seg at P=NP , men anta nå at det ikke er tilfelle. Vi har defin-
ert NPsom de desisjonsproblemer der et ja-svar kan ‘bevitnes i polynomisk
tid’. For de NP-komplette problemene tror man at et nei-svar ikke kan bevit-
nes i polynomisk tid, men heller ikke dette er avklart (men om det gjelder for
ett i NPC, så gjelder det for alle). Om vi antar at slike nei-svar ikke kan bevit-
nes i polynomisk tid, kan vi snakke om de ‘co-NP-komplette’, nemlig de NP-
komplette problemer der spørsmålet er negert, og rent formelt vil disse da ligge
utenforNP . Problemene i co-NPCer imidlertid opplagtNP-lette, og vil i så fall
gjøre utsagn (F) galt.

Forskjellen mellom NPog co-NPer imidlertid av svært formalistisk art, og
det interessante spørsmål er kanskje om det finnes NP-lette desisjonsproble-

374 CHAPTER 4. OPPGAVER, LEDETRÅDER OG LØSNINGER

mer som hverken ligger iNPeller i co-NP . Dette problemet har jeg ikke funnet
ut noe om, og kanskje har heller ikke dette noe kjent svar.

Solution to problem 37
Denne algoritmen står altså omtalt i boka side 134 i G&J. For tydelighets skyld
er det engelske “maximal" oversatt med “ikke-utvidbar".

a) La M (en kantmengde) være en ikke-utvidbar matching, og la V være dens
mengde av endenoder. Anta at det finnes kant k som ikke er “dekket" av V. Da er
ingen av endenodene av k “berørt" av noen kant i M, og M må dermed kunne
utvides med kanten k. Dette er mot forutsetningen om at M er ikke-utvidbar.
Altså dekker nodemengden V alle kanter i grafen.

b) La M være en matching, og la V være en nodeoverdekning. For hver kant i
M må minst en av endenodene være med i V, og siden hver kant i M har sitt helt
separate sett med endenoder, må en nodeoverdekning ha minst |M | noder.

c) Viser først RA ≤ 2 og R∞A ≤ 2:
Vi antar at vi har en graf G, og har laget en ikke-utvidbar matching M . Vi har da
ut fra (a) og (b):

|M | ≤ opt(G) ≤ A(G) = 2|M |
- Den første ulikheten tilsvarer (b).

- Den andre ulikheten sier at det optimale ikke er større en det som algoritmen
gir (vi har et minimaliseringsproblem).
- Likheten til venstre stammer fra definisjonen av algoritmen.

Den første ulikheten gir 2·|M | ≤ 2·opt(G), og sammen med den siste likheten
gir dette A(G) ≤ 2opt(G). Dette gjelder for alle G, og viser dermed atRA ≤ 2 og
R∞A ≤ 2.

For å vise RA ≥ 2, holder det å finne et tilfelle G der A(G) ≥ 2opt(G). Om vi
klarer å finne tilfeller med så stor opt(G) vi bare vil med denne egenskapen, har
vi også vist R∞A ≥ 2 (Dette er imidlertid ikke nødvendige betingelser, se pkt (d)
under).

Det første er greit, da vi kan velge G som grafen med to noder med en kant
mellom. Vi ser her atA(G) = 2, mens opt(G) = 1.

For å lage en så stor graf vi bare vil med denne egenskapen. er det bare å opp-
multiplisere denne grafen. Altså: G er en graf med m kanter som ikke har noen
felles endenoder, og dermed 2m noder. Dette gir A(G) = 2m, mens opt(G) = m.

Her vil noen kanskje innvende at dette er “juks” siden grafen ikke er sam-
menhengende. Det er det imidlertid ikke, siden VC-problemet ikke sier noe om
at grafen skal være sammenhengende. Det er imidlertid ikke noe problem å la-
ge et eksempel der det samme gjelder i en sammenhengende graf. Se f.eks. på
grafen med 2m noder, som er bundet sammen til en lineær struktur ved 2m− 1
kanter. I “worst case” vil her M bli valgt som annenhver kant, og da vil alle de
2n nodene bli valgt av algoritmen. Vi kan imidlertid lett dekke alle kantene med
bare å ta annenhver node, altså med m noder.

d) Vi skal vise at selv om vi legger inn et “styrkesteg", så kan vi fremdeles få
A(G) = K ·opt(G), medK så nær 2 man bare måtte ønske og med så stor opt(G)
man måtte ønske. Til dette bruker vi en graf som ser ut som følger:

I midten har den en “liggende stige”, med 2m trinn. Denne inneholder 4m
noder, og 6m − 2 kanter. I tillegg har vi to “ekstranoder”, en over og en under
stigen. Disse har kanter til alle “trinnender” på sin side av stigen, altså 2m kanter
fra hver. I alt er det altså 4m+ 2 noder. TEGN!

I verste fall velges alle matchingkantene “langs stigen”, mellom trinn 1 og 2,
mellom trinn 3 og 4 osv., på begge sider av stigen. Dette gir 2m kanter i matchin-

4.3. SOLUTIONS 375

gen. På grunn av kantene til ekstranodene vil vi her ikke få strøket noen noder i
strykesteget. Dermed får viA(G) = 4m.

Vi kan imidlertid her dekke alle kantene ved 2m+2 noder, nemlig med begge
ekstranodene, samt en kant fra hvert trinn, annenhver oppe og nede (Dette er
antageligvis også det optimale, uten at dette er viktig). For stor nokm blir derfor
RA(G) = A(G)/opt(G) ≥ 2− 2/(m + 1), og dette kan vi for stor nok m få så nær
2 vi bare vil (og vi kan også få det til med så stor opt(G) vi bare vil).

e) Dette vil altså være et forsøk på å sikre seg “heldigste tilfelle" når matchingen
velges i algoritmen over, men forsøk på å sikre dette i polynomisk tid vil (anta-
geligvis ?) slå feil. Dette problemet er nemlig (i en desisjonsvariant) å finne helt
direkte i listen over NP-komplette problemer, side 192: “Minimum Maximal
Matching”.

Solution to problem 38
a) Oppdelingen i U1 og U2 er jo nettopp valgt slik at t(U2) er så liten som mulig,
under den begrensning at t(U1) ≤ t(U2). Oppdelingen U ′1 og U ′2 er en annen
oppdeling som tilfredstiller t(U ′1) ≤ t(U ′2), og da må jo t(U2) ≤ t(U ′2).

Ser vi på vårt optimaliseringsproblem så er jo også opt(I) = t(U2) ogAK(I) =
t(U ′2), og siden det er et minimaliseringsproblem er det jo betryggende at opt(I) ≤
AK(I).

b) RAK = AK(I)/opt(I). Dette kan også skrives på følgende måter:

RAK = AK(I)
opt(I) = 1 + AK(I)−opt(I)

opt(I) = 1 +
t(U ′2)−t(U2)

t(U2) = 1 +
t(U1)−t(U ′1)

t(U2)

c) Vi vet at opt(I) = t(U2) ≥ T/2. Med den oppgitte ulikheten her vi derfor:

RAK = 1 + (t(U ′2)− t(U2))/t(U2) ≤ 1 + 2anK/T

Vi kan derfor oppnå RAK ≤ 1 + 1/k ved å sette K = T/(2ank).
Tiden (regnet i antall “steg” i den dynamiske programmering) blir for full-

stendig løsning av problemet O(nT). Når vi har skalert ned alle T -verdiene med
K blir dette O(nT/K) = O(n · 2ank), og da a er en konstant er dette O(n2k).
Denne er polynomisk både i Length (som hvertfall vokser polynomisk med n)
og k. Altså har vi et fullstendig polynomisk tilnærmingsskjema.

Solution to problem 39
N/A

Solution to problem 40
The algorithm picks three and three vertices at random until a triangle subgraph
is found or all possible 3-vertex sets are tried. If the worst-case behaviour is
important, then the algorithm can keep track of previously tried 3-vertex sets,
so that it doesn’t try the same set many times.

a) In the worst case we have to go through all 3-vertex sets before concluding
that there are no triangle subgraphs. The number of 3-vertex sets on a graph
with n nodes is

(
n
3

)
= n(n− 1)(n− 2)/2 = O

(
n3
)
.

b) We assume a random graph model with the edge probability p = 1/2. The
probability that a random 3-vertex set is a triangle subgraph is then (1/2)3 =
1/8. The expected number of 3-vertex sets examined before a triangle sub-
graph is found, is

∑∞
i=1 i(1 − 2−3)i−12−3. A calculation along the lines of the

376 CHAPTER 4. OPPGAVER, LEDETRÅDER OG LØSNINGER

3-COLORABILITY example given in lecture 11, should give the answer 1/8. So we
need to check only 8 3-vertex sets on average before finding a triangle subgraph.

This average-case performance can be improved even further by the follow-
ing little trick: We start by picking a random vertex v. Then we pick two of it
neighbours s and t and check whether (s, t) is an edge. If (s, t) is an edge, then
we have found a triangle subgraph. Otherwise we repeat the procedure.

The expected number of trials is now 2, since the probability of the 3-vertex
set being a triangle subgraph is depending only on (s, t) being an edge or not,
which is a 1/2 probability. We already know that (v, t) and (v, t) are edges.

Solution to problem 41
As a rough estimate we say that the number of people on earth is 5 · 109 ≤ 1010,
and that the number of seconds in a year is 60×60×24×365 ≤ 102+2+2+3 = 109.
For sake of simplicity we can assume that one expermiment (ranging from 1 to
100 coin tosses, depending on the number of successive heads) takes 1 second.

This gives a total of 1010+5+9 = 1024 trials. The probability of getting 100
heads in a row is 2−100 which is approximately 10−30 since 210 = 1024 ≈ 103.

The probability of somebody getting 100 heads in a row in the 10 000 years
history of human kind is then roughly 1024

1030 = 10−6 = 1/1.000.000, which is not a
very high probability.

Solution to problem 42
N/A

Solution to problem 43
Heuristic H1 for finding the shortest path between two nodes s and t in a net-
work:

Start in node s;
Until you reach t do:

At each step extend the path by
choosing the lowest-weigthed edge.

Imagine that there are two possible paths from s to t, with weights: 1 + 10
and 2 + 2. The greedy algorithm will choose the 1 + 10 path because it has a
cheaper first edge. But 1 + 10 is obviously longer than 2 + 2. So H1 is no proper
algorithm. In fact it is easy to see that doesn’t always find a solution, even if
there is one.

What is even worse is that the solution returned can be infinitly large com-
pared to the optimal solution, because 10 is just a random number. It could be
1 + 1000000000 and H1 would still return this path as its approximate solution.
The error grows as a function of |n|, where |n| is the length of the input. Because
of the binary coding, the relative error can be as big asO

(
2|n|
)

. This is certainty
not a constant.

Solution to problem 44
N/A

Solution to problem 45
N/A

Kapittel 5

Kommentarer til læreboka G&J

5.1 Innledning

Dette er en serie notater som ble skrevet av Stein Krogdahl til kurset IN210 våren
1990. De er forsøk på å utdype og understøtte stoffet, i forhold til framstilling-
en i læreboka: Garey and Johnson: Computers and Intractability (senere angitt
som ‘G&J’). Stoffet er delt opp som kommentarer til de forskjellige kapitlene i
læreboka, men det vil ikke si at kommentarene strengt holder seg til stoff bare
om dette kapittelet.

Det må understrekes at disse notatene her utgis i nokså rå form, mer el-
ler mindre direkte slik de ble skrevet våren 1990. Pensum og terminologi har
forandret seg en del etter den tid, men kommentarene er forhåpentligvis fort-
satt til hjelp for de som syns at G&J er litt tung å få tak på. Den største for-
andringen i pensum siden 1990 er at kurset nå omhandler flere emner, slik
som uavgjørbarhet og tilfeldighetsbaserte algoritmer. Dermed har vi ikke tid
til å gå så mye i dybden i stoffet om NP-kompletthet – og da spesielt NP-
kompletthetsbevisene.

5.2 Kommentarer til Kapittel 1

G&J: Kapittel 1.1

Kapittel 1.1 er jo bare ment som litt innledende motivasjon til boka, og skulle
være grei lesing. Den siste figuren understreker altså

dette at det avgjørende bevis i den teorien vi skal se på mangler, men at vi
likevel kan ha god nytte av denne teorien.

Begrepet ‘(inherently) intractable’ brukes altså allerede her, og vi skal ikke
ha noen standard oversettelse av dette, men kanskje ‘umedgjørlig’ eller ‘vrangt’
kunne passe. Ordet presiseres siden (side 8) til å beskrive problemer som ikke
kan løses ved noen “polynomisk tid algoritme”, altså ikke ved noen algoritme
som kan garanteres å løpe i polynomisk tid for alle lovlige data.

G&J: Kapittel 1.2

Her beskrives altså hva som menes med et problem, og hvordan boka typisk
vil beskrive disse (ved en ‘instansbeskrivelse’ og et spørsmål). Foreløpig er det
snakk om generelle problemer, der en løsning kan være hva som helst. Siden blir
det ofte (men ikke alltid!) snakk om problemer der de aktuelle løsninger bare er
‘ja’ eller ‘nei’. Disse kalles ‘desisjonsproblemer’ eller ‘ja/nei-problemer’.

Et problem består altså av mange ‘instanser’, som er fullt spesifiserte spørs-
mål. Selv om det ikke presiseres her, blir det siden avgjørende at et problem

377

378 KAPITTEL 5. KOMMENTARER TIL LÆREBOKA G&J

har uendelig mange (og derved ‘uendelig store’) instanser. Dette stikker i at O-
notasjon (og derved begrepet ‘polynomisk tid’) bare har mening når vi kan la
problemstørrelsen vokse mot uendelig.

Merk at en ‘algoritme som løser et problem’ her er definert slik at den alltid
finner en løsning etter endelig tid. For desisjonsproblemer skal vi i spesielle til-
feller (i forbindelse med ikke-deterministiske turing-maskiner) løse litt på dette.

Ellers er altså ‘størrelsen av en instans’ et avgjørende begrep for teorien vi-
dere, og den er ment å være et mål for den informasjonsmengde som skal til for å
angi en spesiell instans, til forskjell fra alle de andre instanser. Merk alstå at selve
problemstillingen, samt hvordan man har blitt enig om å kode dataene som an-
gir en spesiell instans, da skal anses som ‘kjent’. Når man skal måle størrelsen
av en instans, er det dermed bare de rene ‘rådata’ som skal telles med.

Informasjonsmengden, og derved problemstørrelsen, regnes som antall tegn
(i et passelig alfabet) som går med når vi gjør en ‘fornuftig’ koding. Det nøyakti-
ge størrelsesbegrepet vil derfor avhenge av akkurat hvilken slik koding som bru-
kes. Men merk her at størrelsen på alfabetet bare vil forandre antall tegn med en
konstant faktor. Skal vi f.eks. bruke bit (to tegns alfabet) i stedet for ASCII-tegn
(128 tegns alfabet) så vil vi bruke opp til 7 ganger så mange tegn. Dette vil derfor
ikke ha noen betydning om vi måler algoritmens effektivitet med ‘O-mål’, der
konstane faktorer jo blir abstrahert bort.

Oftest vil også andre typer forskjeller i kodingsmåte bare forandre størrels-
en med (grovt sett) en konstant faktor, men vi kan også oppleve kraftigere for-
skjeller. Vi kan f.eks. representere en graf som (1): Listen av kanter, eller (2): En
nabomatrise lagt ut linje for linje. Her kan størrelsen av den andre vokse opp til
kvadratisk i forhold til den første (om det er få kanter). Dette kunne derfor få
betydning om vi måler effektiviteten av en algoritme med O-mål (den kan virke
mer effektiv om vi bruker det siste som problemstørrelse).

I den videre teori skal vi imidlertid bruke et enda ‘grovere’ mål enn O-mål,
nemlig at vi regner algoritmer som like effektive dersom de ‘ikke skiller seg mer
enn polynomisk fra hverandre’, og da får heller ikke de kvadratiske forskjeller i
størrelse som vi så over, noen betydning. I forbindelse med koding av instanser
er det spesielt viktige å huske på at man ikke regner størrelsen av et tall som
selve tallet, men som antall siffer tallet behøver (og grovt regnet er dette 10-
logaritmen til tallet, om det er desimalt kodet). Tenker man tilbake på IN-110
(sukk) så ble der vanligvis ikke størrelsen på tallene regnet med i det hele tatt.
Derfor ble størrelsen på et sorteringsproblem der bare regnet som antall tall,
mens vi her vil si at problemstørrelsen er summen av antall siffer for alle tallene.
Se forøvrig videre filosofier om størrelsesbegrepet på side 9 og side 21.

G&J: Kapittel 1.3

Her innføres altså både O-notasjon og ‘polynomisk tid algoritme’ (som vi van-
ligvis skal forkorte til ‘polynomisk algoritme’) i et par håndgrep. Dette at vi bare
er interessert i “worst case”-tid (altså at vi for hver størrelsesklasse bare ser på
tidsforbruket for det problem som tar lengst tid) kommer litt dårlig fram. Dette
stikker hovedsakelig i definisjonen av ‘time complexity function’ i siste avsnitt
av kap. 1.2, der det står largest amount of time for hver størrelse.

Det stikker imidlertid også i at O-notasjonen i seg selv er å tolke som en øvre
beskrankning. Vil man angi andre typer beskrankniger finnes varianter av O-
notasjonen som har litt annen betydning. De som vanligvis brukes er følgende:

f(n) erO(g(n)) g(n) vokser minst like fort som f(n)

f(n) er Ω(g(n)) g(n) vokser ikke fortere enn f(n) (egentlig: enn ‘toppene’
av f(n))

f(n) er Θ(g(n)) g(n) vokser like fort som f(n)

5.2. KOMMENTARER TIL KAPITTEL 1 379

Legg ellers merke til at det å være O(p(n)) for et polynom p(n) like godt kan
angis som å være O(nk) for en konstant k.

Man skal også være klar over at det i mange sammenhenger kan være vel
så interessant å se på hvordan gjennomsnittlig tidsforbruk (for hver størrelses-
gruppe) vokser. Dette er imidlertid ofte mer grumsete å beregne, bl.a. fordi vi må
ha en sansynlighetsfordeling å gå ut fra for instansene i hver størrelsesgruppe.
Vil f.eks. alle rekkefølger være like sannsynlig input til vår sorteringsalgoritme,
eller vil den vanligvis få ‘nesten sorterte’ arrayer?

Ellers følger i kap. 1.3 de vanlige malende beskrivelser av hvor sørgelig fort
eksponensielle algoritmer (og det som verre er) kommer til kort, dog med litt
sunne motforstillinger. Videre kommer litt mer om størrelser, som nå skulle væ-
re greit å lese.

På slutten av kapittelet kommer et viktig poeng, og det gjelder forholdet mel-
lom vanlige “random access” maskiner (som bruker like lang tid på å hente noe
fra hvilkensomhelst celle i lageret), og de enkle ‘Turing-maskinene’ (som kom-
mer i diverse varianter) som har et lesehode som bare kan bevege seg ett hakk av
gangen. Om vi forsøker å programmere samme algoritme for en RAM-maskin
og en Turing-maskin så blir det selvfølgelig stor forskjell på tidsforbruket for dis-
se, også om vi beskriver det med O-notasjon. Tabellen i fig. 1.6 angir f.eks. at det
som kan gjøres i tid t på en RAM-maskin kan gjøres i tid O(t3) på en standard
(én-tapes) Turing-maskin.

Dersom vi imidlertid gjør den grovere oppdeling at vi plasserer alle polyno-
miske algoritmer i samme gruppe, så ser vi at det ikke spiller noen rolle hva slags
maskintype vi snakker om. Det som kan gjøres i polynomisk tid på de kraftigere
maskinmodeller, kan også gjøres i polynomisk tid på de aller enkleste maskiner
(dog med polynomer av høyere grad).

Heri ligger også mye av begrunnelsen for at ‘polynomiske algoritmer’ er et
behagelig og robust begrep å arbeide med. Sett fra en annen synsvinkel stikker
dette også i at om p(n) og q(n) er polynomer, så er også p(n) + q(n), p(n) ∗ q(n)
og p(q(n)) alle polynomer.

G&J: Kapittel 1.4

Her skiller boka først ut de problemer som av helt opplagte grunner ikke kan
løses i polynomisk tid, nemlig de som kanskje må ‘skrive ut’ en løsning som er
av eksponensiell størrelse. Dessuten finnes en del problemer der man beviselig
ikke kan lage noen løsningsalgoritme i det hele tatt, og disse kan selvfølgelig
heller ikke løses i polynomisk tid.

Men selv om man kutter ut disse tilfellene, har man altså for noen få proble-
mer klart å vise at de umulig kan løses i polynomisk tid. På slutten av kapittelet
forsøker boka å karakterisere hvor vanskelige alle disse problemene er (de er
“ikke i NP”), men dette er nok vanskelig å få tak i på dette stadium, så man be-
høver ikke fundere for mye over det.

G&J: Kapittel 1.5

Her diskuteres først begrepet ‘reduksjon’, og essensen av den type reduksjoner vi
skal gjøre står i 6. avsnitt: “First, he ...”. Lenger opp på siden (og de fleste andre
steder i boka) beskrives en ‘reduksjon av problemet P til problemet Q’ (siden
skrevet P ∝ Q) som en ‘transformasjon’ eller en ‘funksjon’ av en instans av P til
en instans av Q.

Dette kan virke veldig matematisk, og det kan være like greit å tenke seg at
en reduksjon av P til Q består i å angi en prosedyre som løser P, der man får lov
å kalle en (tenkt) prosedyre som løser Q. For at denne reduksjonen skal være

380 KAPITTEL 5. KOMMENTARER TIL LÆREBOKA G&J

en ‘polynomisk reduksjon’, må den angitte prosedyren løpe i polynomisk tid,
forutsatt at Q løper i polynomisk tid (og da kan man like godt tenke seg at Q
løper i konstant tid).

Ut fra denne framstillinger ligger også det også snublende nær å vurdere å
kalle Q-prosedyren flere (men bare et polynomisk antall) ganger. Og ut fra vårt
hovedanliggende, nemlig å vise at dersom Q kan løses i polynomisk tid så kan
P løses i polynomisk tid, er jo dette helt OK. I de første kapittelene (kap. 2, 3 og
4) er vi imidlertid i den spesielle situasjon at vi bare ser på desisjonsproblemer
(ja/nei-problemer), og at det er stor forskjell på det å gi et ja-svar og det å gi et
nei-svar.

Derved forlanges det også at alle reduksjonene ‘bevarer forholdet mellom ja
og nei’, og under disse betingelser er det greiest å forlange at prosedyren som
løser P bare gjør ett kall på Q-prosedyren, og at det alltid er slik at et ja-svar
fra Q-prosedyren tilsvarer et ja-svar for P, og omvendt. Det er for å få dette for-
holdet tydeligere fram at man sier at en reduksjon er en transformasjon av P,
nemlig rett og slett den transformasjon vår P-prosedyre må gjøre av den aktu-
elle P-instansen før den har en Q-instans som den kan be Q-prosedyren å løse.
Kravet blir dermed at denne transformasjonen kan gjøres i poynomisk tid.

Når vi senere, i kapittel 5, frigjør oss fra bare ja/nei-problemer, tar også boka
fram muligheten til å gjøre flere kall, og denne type reduksjon kalles da “Turing-
reduksjon”.

Man kan her også tenke over følgende lille poeng: Når man sier at P kan
reduseres til Q, kan det gi inntrykk av at Q må være et enklere problem enn P,
mens det faktisk er det omvendte som er tilfelle. Det som ligger i dette er jo at
en prosedyre som løser Q også har ‘kraft nok’ til å løse P, altså at Q er minst like
‘vanskelig å løse’ som P.

Videre beskrives uformelt problemklassen NP. Det man først og fremst skal
merke seg er altså at NP representerer en øvre beskrankning på vanskeligheten
av et problem (og at alle ‘lette’ problemer derved uten videre faller i NP). Denne
øvre beskrankningen sier for det første at det skal være et ja/nei-spørsmål, og for
det andre at selv om ikke problemet nødvendigvis kan løses i polynomisk tid, så
skal man i hvert fall ved et ja-svar kunne gi et slående argument (et ‘vitne’) for at
svaret faktisk er ja, og det å sjekke at dette argumentet er riktig skal kunne gjøres
i polynomisk tid.

Et slikt slående argument kan f.eks. være å eksplisitt angi en ‘Hamiltonsk
krets’ dersom spørsmålet er om en slik finnes. Dersom spørmålet er om et tall
er ‘sammensatt’ (altså ikke er et primtall), så kan et passelig ‘vitne’ være å angi
to tall som ganget sammen gir tallet. Begge disse spørsmålene er derfor i NP, og
det gjelder faktisk svært mange av de probleme vi kommer bort i til daglig (både
de lette og de vanskelige), forutsatt at vi (1) stiller dem som ja/nei spørsmål, og
(2) lar ja-svaret gjelde den varianten som lar seg ‘bevitne’.

Klassen NP kan også løslig beskrives som de desisjons-problemer som kan
løses ved rekursiv søking, der rekursjonsdybden er polynomisk begrenset. De pro-
blemer i NP som kan løses i polynomisk tid (uten noe vitne e.l. i det hele tatt)
kalles gjerne P. Merk altså at klassen P dermed bare inneholder desisjonsprob-
lemer.

Det er først når vi innfører de NP-komplette problemer at det snakk om en
nedre begrensning av vanskeligheten. De NP-komplette problemer er pr. def. de
‘vanskeligste’ problemene i NP, i den forstand at dersom vi finner en polynomisk
algoritme for et slikt problem, så vil den uten videre også være kraftig nok til
å løse alle problemer i NP i poynomisk tid. Det Cook gjorde var å vise at det
faktisk finnes slike NP-komplette problemer, og at ‘Tilfredstillbarhet’ (for visse
logiske uttrykk) faktisk er et slikt problem. Det er, som vi skal se, også svært
mange andre NP-komplette problemer.

5.3. KOMMENTARER TIL KAPITTEL 2 381

Og altså, til slutt i kapittelet, nevnes det store åpne spørsmål: Lar de NP-
komplette problemer seg løse i polynomisk tid? Om de gjør det vil jo alle prob-
lemer i NP la seg løse i polynomisk tid, og derved vil vi ha P = NP . I motsatt fall
er altså P ekte inneholdt i NP, og dette holder de fleste som mest sannsynlig.

En kommentar til desisjonsproblemer

Til slutt en liten kommentar til dette at vi (hvertfall i første omgang) begrenser
oss til bare desisjonsproblemer. Det kan jo umiddelbart virke som en meget grov
forenkling av f.eks. ‘Handelsreisendes problem’, når vi i stedet for å spørre etter
korteste reiserute, bare spør om det finnes en reiserute som er kortere enn en
oppgitt lengde.

Det er opplagt at om vi her kan løse optimaliseringsvarianten i polynomisk
tid, så kan vi også løse ja/nei-varianten i polynomisk tid. Men det interessante
er at også det omvente i en viss forstand gjelder: Om vi kan løse ja/nei-varianten
i polynomisk tid så kan vi også finne lengden av den korteste ruten i polynomisk
tid.

For å få vist dette skal vi anta at alle avstandene mellom byer er gitt som hel-
tall, og vi skal benytte en slags binærsøking. Detaljene i dette skal vi ta som en
oppgave, og boka kommer tilbake til liknende ting i kapittel 5, der man også tar
opp spørsmålet om å finne en kortest mulig tur, og ikke bare hvor lang en slik
tur må være. Konklusjonen er altså at det å begrense seg til bare desisjonsprob-
lemer ikke er en så dramatisk forenkling som det i første omgang kan synes.

5.3 Kommentarer til kapittel 2

Kapittel 2 i G&J presenterer altså det helt tekniske grunnlag for stoffet omkring
P og NP og NP-kompletthet. Sett fra vår synsvinkel er hovedsaken med dette
kapittelet: (1) Gi teorien et formelt grunnlag som man kan gå tilbake til om det er
noe i det uformelle bildet man lurer på hva ‘egentlig’ betyr. (2) Få utført beviset
for Cooks teorem, som er avhengig av at man har en forholdsvis enkel maskin.

G&J: Kapittel 2.1

Boka ser her først på den typiske måten de vil beskrive problemer på, og de ser
på hvordan max. og min. problemer naturlig kan lages om til desisjonsprob-
lemer. En del av filosofien her (og noe vi får mer av i kap. 5) behandles også i
oppgave 21.

Øverst på side 20 defineres sammenhengen mellom ja/nei-problemer og
språk over et visst alfabet. Legg her merke til at om vi har et problem og en
gitt koding for dette, så får vi naturlig tre typer strenger: De som er kodinger av
ja-instanser, de som er kodinger av nei-instanser, og de som ikke er kodinger av
noen problem-instans i det hele tatt (og den siste gruppen er gjerne den størs-
te). Poenget er nå at når man går ned på nivået med språk og Turing-maskiner,
så slår man gjerne de to siste gruppene sammen, og snakker bare om ja-strenger
og ‘de andre’.

Videre er det altså mer snakk om måter å kode instanser på. Dette ble også
kommentert noe i forrige notat, og skulle være grei lesing. Merk at man kan gjø-
re seg mer kodings-uavhengig ved å lage en funksjon ‘Length(I)’ som direkte fra
en instans angir et slags abstrakt lengdemål (uten tanke på noen spesiell kod-
ing). For at denne skal være fornuftig må lengden den gir være være ‘polynomisk
relatert’ til den lengden vi får ved enhver rimelig koding. Dessuten må tallverdi-
er som inngår i instansen påvirke Length-funksjonen med sitt antall siffer (som

382 KAPITTEL 5. KOMMENTARER TIL LÆREBOKA G&J

vil være logaritmisk i forhold til tallstørrelsen, slik som i eksempelet for Traveling
Salesman på side 20).

G&J: Kapittel 2.2

Her defineres altså en vanlig (én-tapes og deterministisk) Turing-maskin. Selve
programmet i en slik maskin blir ofte tegnet som en rettet tilstandsgraf, mens
den i boka er satt opp i en tabell. Dette er en smaksak. Det er en del ting som er
viktige å merke seg angående Turing-maskiner:

• Begrepene ‘tid’ og ‘input-lengde’ blir helt veldefinert.

• Det eneste som er ubegenset med en slik maskin er ‘tapen’. For en bestemt
DTM er både alfabetet og ‘programmet’ gitt og endelig.

• Da hodet til en DTM bare flytter seg ett hakk i hvert skritt, kan en DTM til
enhver tid bare ha ‘vært borte i’ en endelig del av tapen, og mer eksplisitt
har den etter tiden t bare vært i området fra −t til t + 1. Det vil også si
at den etter ‘polynomisk tid’ bare har vært borte i område av tapen hvis
totale lengde er begrenset av to ganger det samme polynom.

• Turing maskiner kan i prinsippet gjøre alle beregninger som en hver an-
nen ‘rimelig’ maskin kan gjøre, og hva mer er: Dersom det finnes en rime-
lig maskin som kan gjøre en beregning i polynomisk tid, så kan også en
DTM gjøre den samme beregningen i polynomisk tid.

Boka definerer begreper som ‘accept’ og ‘reconize’ (side 24), men disse er
egentlig ikke så viktige for oss, da alle DTM’er som interesserer oss skal stoppe
etter endelig tid. Vi kan like godt definere de begrepene vi trenger direkte, og
det viktige for oss (se nederst side 25) er at en DTM sies å løse et problem (med
en viss koding) dersom den stopper etter endelig tid for enhver input-streng,
og at den stopper i ja-tilstand (qY), nøyaktig for de strenger som er kodinger av
ja-instanser (og for alle andre stopper i qN).

Man kan selvfølgelig her frigjøre seg fullstendig fra noe problem, og bare
snakke om strenger og språk. Igjen ser vi da at “tulle-strenger” (ikke koding av
noen instans) og nei-strenger faller i samme gruppe, og at den også må stoppe
etter endelig tid for slike tulle-strenger.

Formelen for tidsbruk nederst på side 26 sier altså at for hver størrelsesgrup-
pe n skal vi regne TM (n) som den lengste tiden den bruker for noen input-streng
av lengden, altså ‘worst case’. Dette brukes så til å definere polynomiske DTM’er
og derigjennom klassen P (som formelt her består av språk).

G&J: Kapittel 2.3

Som innledning starter de her med en litt motivasjon, som skulle være greit å
lese. På norsk vil vi ofte bruke ordet “vitne” som betegnelse på en gjetning som
kan brukes til å verifisere (bevitne) et ja-svar.

Selve utvidelsen fra en deterministisk til en ikke-deterministisk TM er altså i
denne boka gjort meget enkelt, ved å bare å innføre et gjette-hode som gjør seg
ferdig før en vanlig DTM så overtar. I andre modeller av NDTM’er har man lagt
inn ikke-determinisme i selve programmet, omtrent som ved en ikke-determin-
istisk endelig automat. Alle slike varianter ville vært ekvivalente for vårt formål,
men den som er valgt er spesielt enkel å behandle teoretisk.

Man kan tenke på en NDTM, og hva det vil si at den godkjenner en input-
streng, på flere måter:

5.3. KOMMENTARER TIL KAPITTEL 2 383

• At den gjetter tilfeldig, og vil vi si at den godkjenner en input-streng der-
som det finnes en gjetting som gjør at den stopper i qY .

• Eller vi kan tenke oss at gjette-hodet er meget intelligent og alltid velger
den best mulige ‘gjetting’ (ut fra å skulle komme så raskt som mulig til qY
etterpå). Da vil vi si at den godkjenner en input-streng dersom den i det
hele tatt stopper i qY .

• Eller vi kan tenke på den som en maskin som hver gang den har flere valg
deler seg i et tilsvarende antall maskiner som forfølger hvert sitt alternativ.
Da vil vi si at den godkjenner en input-streng dersom en eller annen av alle
disse maskinene stopper i qY .

Med NDTM’er kommer det altså inn en kraftig usymmetri mellom ja og nei,
ved at en NDTM sies å “løse” et problem dersom den vil godkjenne (ende opp
i qY for en eller annen gjetning) enhver streng som er koding av en ja-instans,
og for øvrig gjøre hva som helst for kodinger av nei-instanser og for tull-strenger
som ikke svarer til noen instans.

Dette reflekterer seg også i definisjon av tidsforbruket (side 31), som er defi-
nert bare ut fra strenger som tilsvarer ja-instanser, og for hver ja-instans igjen ut
fra den gjettingen som gir færrest mulig skritt. Dersom det i en størrelsesklasse i
det hele tatt ikke er ja-instanser sies tidsforbruket for denne størrelsen n rett og
slett å være 1. Ut fra dette defineres så polynomiske algoritmer for NDTM’er og
klassen NP rett fram.

G&J: Kapittel 2.4 (feilaktig angitt som kap 2.1 i boka)

Det viktige her er Teorem 2.1, og det sier på en måte at selv om vi sågar tillot
NDTM’er å gå i evig løkke for nei- og tulle-instanser, så kan vi for polynomis-
ke begrensede NDTM’er gjenvinne ‘endelig kontroll’ for alle typer instanser. For
en gitt input(-lengde), og ut fra polynomet som begrenser antall steg for en ja-
beregning, kan vi nemlig lett beregne lengden av det lengste vitnet som maski-
nen kan komme borti i en mulig ja-beregning. Om vi så kjører maskinen P (n)
skritt for alle mulige vitner med denne lengden, og aldri ender i qY , ja så er svar-
et helt sikkert NEI!! Vi kan også lett sette opp en øvre grense for hvor lang tid en
slik beregning vil ta.

G&J: Kapittel 2.5

Her kommer altså den formelle definisjonen av begrepet transformasjon (som
er den viktigste typen reduksjon vi skal arbeide med). Legg merke til at vi her
bruker en DTM som en transformasjons-maskin, og at vi da egentlig bare be-
høver én stopp-tilstand, som rett og slett sier at transformasjonen er ferdig, og
ligger på tapen. Igjen er det viktig at om dette er en polynomisk DTM, så kan
lengden av output-strengen bare være av polynomisk lengde i forhold til leng-
den av input-strengen. Dette er viktig i beviset både av Lemma 2.1 og Lemma
2.2.

Rent formelt går altså en transformasjon fra et språk til et annet (slik at det
å ‘være med i språket’ er det som ‘bevares’), men i vår senere praksis går den fra
kodinger av instanser for ett problem til kodinger av instanser for et annet, slik
at ja-instanser avbildes på ja-instanser og nei-instanser på nei-instanser.

Kapittel 2.5 slutter så med definisjon av ‘polynomisk ekvivalente’ problemer,
samt den viktige definisjonen av hva det vil si at problem er ‘NP-komplett’.

384 KAPITTEL 5. KOMMENTARER TIL LÆREBOKA G&J

G&J: Kapittel 2.6

Selve Cook’s teorem er sentralt. Dette sier altså at dersom Pi er et problem i NP,
så gjelder alltid NP∝SAT. Angående beviset for dette teoremet, så var de viktigste
punkene i dette altså at:

• For en gitt instans av et tilfeldig problem Π i NP vil vi sette opp et et logisk
uttrykk (instans av SAT) som er tilfredstillbart hvis og bare hvis det finnes
et vitne slik at NDTM’en som løser problemet (slik finnes pr. def.) ville
ende opp i qY .

• Ut fra størrelsen av Π-instansen og polynomet som angir hvor lang tid
NDTM’en kan bruke på å gjette og sjekke vitner, kan vi beregne hvor man-
ge skritt en mulig ja-beregning kan ta, og derved hvor stor del av tapen
som kan berørers.

• Variablene i det logiske uttrykket beskriver tilsammen en fullstendig be-
regning på NDTM’en, innenfor disse beskrankninger i tid og rum, og det
er bare et polynomisk antall av dem.

• Selve det logiske uttrykket i SAT-instansen legger på begrensniger slik at de
tilstandene som variablene vil foreskrive for NDTM-utførelsen (a) på alle
måter er konsistenete, (b) er i overenstemmelse med programmet i den
aktuelle NDTM’en, (c) starter med den gitte Π-instans som input, og (d)
slutter i tilstand qy. Det logiske uttrykket blir langt, men det er dog polyno-
misk begrenset i forhold til lengden av den Π-instansen vi startet med.

• Det logiske uttrykket sier ikke noe om hva som initielt står i gjette-området,
og SAT-spørsmålet: “Finnes logiske verdier for variablene slik at uttrykket
er tilfredstilt”, blir da essensielt et spørsmål om “Finnes mulig initialiser-
ing av gjette-området slik at NDTM’en ender i qY i løpet av det antall skritt
vi ser på”. Og dette er jo nettopp det samme som å spørre om Π-instansen
er en ja-instans.

5.4 Kommentarer til kapittel 3

Innledningen: Hvordan vise at et problem er NP-komplett

Forrige kapittel sluttet altså med å vise at det fantes minst ett NP-komplett pro-
blem, nemlig SATESFIABILITY (senere kalt SAT). Dette problemet er altså slik at
for alle problemer Π i NP finnes en polynomisk ja/nei-bevarende transforma-
sjon fra Π til SAT. Dette vil igjen si at om vi klarte å løse SAT i polynomisk tid, så
ville alle problemer i NP kunne løses i polynomisk tid (og vi ville ha P=NP), men
dette holder altså de fleste for usannsynlig.

Vi snakker derfor i det videre som om P6=NP, og da er de NP-komplette pro-
blemer i en passelig forstand de vanskligste problemer i NP. At vi i klassen av
NP-komplette problemer først traff på SAT var imidlertid en ‘tilfeldighet’, klas-
sen inneholder også en rekke andre problemer og det er en grunnstamme av
slike problemer man bygger opp i kapittel 3.1.

Når vi nå først har ett problem vi vet er NP-komplett, er det svært mye greiere
å vise at vi har flere, og den vanlige metoden for å vise dette står summert opp i
fire punkter på side 45 i G&J. Vi skal kommentere hvert av punktene (1) – (4):

Angående (1):
For å vise at et problem Π er i NP kreves to ting:
(i) For hver ja-instans av Π må man vise at det finnes et ‘vitne’ som bekrefter

at dette er en ja-instans. Det finnes som regel mange valg m.h.t. hva slags form

5.4. KOMMENTARER TIL KAPITTEL 3 385

eller format et slikt vitne skal ha, og man har frihet til å velge dette så behage-
lig som mulig med tanke på å kunne vise punkt (ii) under så lett som mulig.
(For eksempel kan et Hamiltonian Circuit-vitne være en mengde kanter i til-
feldig rekkefølge, en sekvens av kanter i en eksplisitt syklisk rekkefølge eller en
sekvens av ‘byer’. Ofte er vel den siste greiest, mens den første formen gjør det
unødvendig tuklete å sjekke at vitnet er korrekt.)

(ii) Videre må man komme opp med en prosedyre som, for en gitt Π-instans
og et påstått vitne for at dette er en ja-instans, kan sjekke i polynomisk tid (i
forhold til størrelsen av Π-instansen!) om vitnet holder hva det lover. Merk her
at man bare behøver å vise at prosedyren løper i polynomisk tid for det tilfellet
at vitnet blir godkjent. Om det er et galt vitne (som f.eks. kan være alt for langt)
kan prosedyren godt bruke aldri så lang tid, eller kanskje til og med ende i evig
løkke.

Angående (2):
Her skal man altså velge et problem som man allerede vet er NP-komplett, og

som man skal transformere til problemet Π. Her er i prinsippet alle kjente NP-
komplette problemer like gode, men for å få til en rimelig enkel transformasjon
er gjerne noen bedre enn andre. Når man som forsker står med et nytt problem
Π er det her ingen regler som kan hjelpe en i dette valget ut over erfaring og god
nese. Når man sitter på eksamen er det imidlertid håp om at det ligger et hint et
sted.

Angående (3):
Her skal man finne en transformasjon fra instanser av problemet valgt under

(2), til instanser av Π. Hvordan dette skal gjøres er det også lite å si om, men
dersom problemet man skal transformeres fra er gitt har man hvertfall noe å
arbeide ut fra. Se forøvrig kommentarer lenger ned angående de tre ‘teknikkene’
i G&J kap. 3.2.

I tillegg til å vise at denne transformasjonen kan utføres i polynomisk tid
(punkt (4) under), må man vise at denne transformasjonen er ja/nei bevarende.
I G&J ligger dette kravet i definisjonen av en ‘transformasjon’ (nemlig i pkt. 2,
side 34: x er ja-instans hvis og bare hvis f(x) er ja-instans).

Om vi transformerer fra Π′, så gjøres dette vanligvis slik:
(i) Se på en tilfeldig ja-instans av Π′, og vis at den transformerer seg til en

ja-instans av Π.
(ii) Se på en tilfeldig instans (altså ikke nødvendigvis ja-instans) av Π′, og

anta at den avbilder seg på en ja-instans av Π. Vis ut fra dette at Π′-instansen vi
startet fra måtte være en ja-instans.

Punkt (ii) kan også gjøres ved å vise at alle nei-instanser blir transformert til
nei-instanser. Det er lett å vise at de to variantene av (ii) er logisk ekvivalenete,
da alle instanser er enten ja- eller nei-instanser. I første variant viser vi nemlig
‘(transform(A) er ja-inst)⇒ (A er ja-inst)’, som ved negering og snuing gir: ‘(A er
ikke ja-inst)⇒ (transform(A) er ikke ja-inst)’. Når det gjelder teknikken ‘restrik-
sjon’ kan dette ta seg litt annerledes ut.

Angående (4):
Man må her vise at transformasjonen valgt under (3) kan utføres i polynom-

isk tid.

Hva er en ‘reduksjon’

Ordet reduksjon dukker opp jevnlig i dette stoffet, og det er kommet et par
spørsmål om hva det egentlig betyr. Når vi sier at “problemet A kan reduser-
es til problemet B” så mener vi generelt at “jeg kan klare å løse A bare jeg kan
klare å løse B”. I vår setting har vi snevret dette noe inn, ved at vi lar det bety “jeg

386 KAPITTEL 5. KOMMENTARER TIL LÆREBOKA G&J

kan klare å løse A i polynomisk tid, bare jeg kan klare å løse B i polynomisk tid”.
Dette er diskutert på side 13 i boka.

Nå er det imidlertid også flere varianter av denne type polynomiske reduk-
sjoner, nemlig ‘transformasjon’ (som vi har sett på til nå, og som bare brukes på
desisjons-problemer), og Turing-reduksjon (som fungerer mer generelt, og som
dukker opp i kap. 5). På grunn av dette forsvinner plutselig begrepet ‘reduksjon’
etter kap. 1, og det blir i stedet bare snakk om (den spesielle reduksjonsform-
en) ‘transformasjon’. Spesielt forvirrende kan dette bli når en av teknikkene for
transformasjon heter ‘restriksjon’, og da med en ‘retning’ på problemstillingen
som er helt omvendt av den i ‘reduksjoner’.

Hvordan se på ‘teknikkene’ som er diskutert i kap 3.2

I kapittel 3.2 ser G&J på tre ‘teknikker’ for å lage transformasjoner, nemlig restrik-
sjon, lokal forandring og komponentvis design. Det at dette kalles teknikker må
imidlertid ikke forståes dithen at de på noen måte er konstruktive. Selv om vi
f.eks. får høre at beviset for ‘VC ∝ HC’ går ved ‘komponentvis design’ så ligger
det ikke deri noen som helst anvisning på hvordan dette beviset skal lages. Det
det stort sett sier er at dette beviset er ikke helt enkelt.

Det samme gjelder også de to andre teknikkene, selv om bevisene her stort
sett er enklere, og det derfor lett kan virke som om de faller mer ut av seg selv.
Som G&J selv understreker på side 63 så er denne grupperingen en typisk etterpå-
gruppering av bevisene, og den skal stort sett ikke betraktes som mer enn en
gruppering i ‘lett’, ’vanskeligere’ og ‘vanskeligst’.

Når det gjelder teknikken ‘restriksjon’ så er det her lett å tulle med retningen
man snakker i, siden den her blir snudd i forhold til det vanlige (nemlig den vei
transformasjonen går).

Vi ser på transformasjonene i kap. 3.1 som eksempler, og vi klassifiserte SAT
∝ 3SAT som en ‘lokal forandring’, mens både 3SAT ∝ VC og VC ∝ HC ble klasi-
fisert som ‘komponentvis design’. Klassifikasjonen av 3DM∝ PARTITION (Som
vi tok som 3DM ∝ SUBSET SUM, mens SUBSET SUM ∝ PARTITION gikk som
en øvelse) er vel litt usikker, men den er vel helst en ‘lokal forandring’. Hoved-
ideene ved denne grupperingen skulle forøvrig framgå av innledningene i kap.
3.2.1, 3.2.2 og 3.2.3.

G&J: Kapittel 3.1

De seks problemene det her innledes med vil vi i dette kurset gå gjennom på
kryss og tvers på forskjellige måter. Transformasjonene er formulert i boka med
en god del indeksering, mengder, funksjoner og knappe skrivemåter. Noen liker
dette og andre ikke, men for å skjønne hva som skjer bør man hele tiden støtte
seg på eksempler og skisser for å få det hele ned på jorda. Vi skal ikke her kom-
me med noen ny utlegning av de enkelte bevisene, men bare knytte noen korte
kommentarer til hver av dem.

• SAT∝ 3SAT:

Som eksempel på denne kan man se på oppgave 25. Man kan observere
at tilfellene 1 og 2 nederst på side 48 er behandlet så utførlig for å få fram
en instans av 3SAT der alle variablene som forekommer i en literal alltid er
forskjellige. En liten kommentar om dette står i oppgave 26 (kommentar
2).

• 3SAT∝ VERTEX COVER:

At problemet Vertex Cover svært lett kan transformeres til/fra Clique eller
Independent Set (Lemma 3.1, side 54) tok vi som en øvelse på gruppene.

5.4. KOMMENTARER TIL KAPITTEL 3 387

Dermed kan jo Vertex Cover i transformasjonen over uten videre erstattes
med en av de andre. Her er jo et godt eksempel i boka, og flere eksempler
ble diskutert i oppgave 26.

• VERTEX COVER∝HAMILTONIAN CIRCUIT:

Her kalte vi altså den grafstrukturen som er angitt i figur 3.4 for en “som-
merfugl”, og når vi skulle gjøre transformasjonen tenkte vi oss først at vi
plasserte en slik sommerfugl på tvers av hver opprinnelig VC-kant. Som-
merfuglene ble så koblet sammen i tilfeldig rekkefølge ‘rundt’ hver node
(de som lå på kanter som har denne noden som endepunkt). Til slutt ble
det hele koblet til de K nodene.

• 3-DIMENTIONAL MATCHING∝ PARTITION:

Denne transformasjonen er det greiest å se på som delt i to, nemlig først
som 3DM ∝ SUBSET SUM, og deretter som SUBSET SUM ∝ PARTITION.
Den siste av disse blir tatt opp i oppgave 27. Bokas forklaring fram til ‘The
final step...’ på side 62, er rett og slett en forklaring av transformasjonen
3DM∝ SUBSET SUM. Som praktisk eksempel på denne, se oppgave 31.

Når man jobber med eksempler på denne transformasjonen kan det være
like greit å bruke ti-tall-systemet i stedet for to-tall-systemet. Den eneste
forskjellen er da at man må bruke 10-logaritme i stedet for 2-logaritme når
man beregner feltbredden p (i figur 3.7, side 61).

Hvordan påvise at noe kan gjøres i ‘polynomisk tid’

I forbindelse med dette kurset er det en sentral ting å kunne påvise at noe kan
gjøres i polynomisk tid. I det vi har vært gjennom til nå er dette interssant spe-
sielt i to situasjoner:

(a) Når man vil påvise at et problem er i NP, ved å framvise vitner og vise at
de kan sjekkes i polynomisk tid.

(b) Når vi vil vise A ∝ B, ved å framvise en polynomisk transformasjon fra A
til B.

Begge disse punktene er diskutert nærmere i starten av dette notatet.
Det å vise at en skissert algoritme vil bli utført i polynomsik tid betyr altså at

vi skal kunne komme opp med ett bestemt polynom p(n) (felles for alle utfør-
inger) som er slik at om inputlengden til algoritmen er n, så vil ikke algoritmen
bruke mer enn p(n) elementæreskritt.] gjøre dette helt i detalj er svært fiklete,
og akkurat hvordan polynomet blir vil være ytterst avhengig av hva slags maskin
man har (f.eks. Turing-maskin eller RAM-maskin), og hvordan dataene er repre-
sentert i detalj.

Boka bygger generelt på en slags ‘følelse’ av at det man kan gjøre ved et pas-
selig antall systematiske gjennomløp av dataene uten rekursjon, det er polyno-
misk. Dette er greit nok om man har erfaring. Man bør imidlertid (også til ek-
samen!) kunne føre noe mer konkrete argumenter for at en skissert algoritme
bare vil ta polynomisk tid (og ut fra slike argumenter kanskje etter hvert skaffe
seg en rimelig sikker følelse for dette).

Telling av elementær-operasjoner

En vanlig måte å vise at en algoritme er polynomisk, er å velge visse grunnope-
rasjoner som man med rimelighet kan påstå går i tid O(1), eller hvertfall helt
sikkert i polynomisk tid. Man betrakter så programmet som satt sammen av sli-
ke operasjoner, og ut fra visse mål i utgangsdataene (antall noder e.l.) kan men

388 KAPITTEL 5. KOMMENTARER TIL LÆREBOKA G&J

beregne en øvre grense for antall slike operasjoner som blir utført, og man kan
så påvise at det totale antallet er poynomisk.

Dette er en helt legal måte, men ulempen er at det ofte blir for mye å ta med
alle operasjoner og at man derfor må operere med noen argumenter for hva
som er de ‘dominerende operasjoner’. Disse er det ikke alltid så lett å få helt ned
på bakken.

En mer syntaktisk tilnærmelse

Vi skal her se på en annen måte som ofte vil fungere bra, og som har den fordel-
en at man ikke behøver å arbeide med noe eksplisitt polynom. I stedet må man
formulere en programskisse etter visse syntaktiske regler, og dernest kunne på-
vise at de enkelte operasjoner som er brukt i programmet ‘opplagt’ kan utføres i
polynomisk tid.

Opplagt polynomiske operasjoner

Grunnenhetene i en slik programskisse må være basis-aksjoner som ‘opplagt’
kan gjøres i polynomisk tid (ofte i ‘konstant tid’, eller ved et enkelt gjennomløp
av input-dataene). Typisk ‘opplagt polynomiske operasjoner’ kan være:

- Lese av (lete fram?) verdier oppgitt i den opprinnelige instansen.
- Telle opp størrelser (så som antall noder, kanter eller elementer) i den opprin-
nelige instansen.
- Sjekke om det i en gitt graf finnes en kant mellom to oppgitte noder.
- Gjøre kjente polynomiske operasjoner, så som f.eks. å sortere en mengde på et
gitt (direkte tilgjengelig) kriterium.

Dessuten må vi ved transformasjoner kunne bygge opp en ny instans. I den
forbindelse kan det å generere og sette på plass avgrensede deler av den nye
instansen, så som f.eks. følgende operasjoner, betraktes som ‘opplagt polynom-
iske’:

- lage en ny node,
- lage en ny kant mellom to gitte noder,
- lage en ny klausul med tre bestemte literaler,
- skifte ut en gitt node med en eller annan fast graf-struktur,
- ta en kopi av hele eller deler av den opprinnelig instansen over i den vi vil
produsere.

Det er her en forutsetning at de dataene som skal til for å bygge opp den
angitte del av den nye instansen må være direkte for hånden ut fra det stedet vi
er på i programmet.

Ofte vil transformasjoner foregå ved at vi bare forandrer litt i den opprinne-
lige instansen, og det blir da et spørsmål om man direkte kan forandre på den
opprinnelige innstansen, eller om man først må ta en kopi. Svaret er at begge
deler er helt OK, men det er jo i alle tilfelle en opplagt polynomisk operasjon å
ta en kopi først.

For- og If-setninger

Videre skal ‘programmet’ være bygget opp av for-setninger og if-setninger. I
hver for-setningene må det antallet elementer for-løkka løper over være opp-
lagt polynomisk, og det må være en opplagt polynomisk prosess og finne fram
disse elementene ett for ett. F.eks:

for x:= <hver av nodene i grafen G1> do ...
for <alle kantene i grafen G1> do ...
for y:= <hver av kantene som går inn til noden y> do ...

5.4. KOMMENTARER TIL KAPITTEL 3 389

for <alle klausulene i SAT-instansen> do ...
for z:= <hver av variablene i SAT-instansen> do ...
for u:= <hver av elementene i A i PARTITION-instnsen> do ...
for i:= 1 to n do ... (der ‘n’ er opplagt polynomisk i

forhold til input-lengden)

Når det gjelder if-setninger, så må betingelsen i disse kunne avgjøres i opp-
lagt polynomisk tid, etter nøyaktig samme (uklare) prinsipper som for andre
‘opplagt polynomiske grunnoperasjoner’. Dette kan f.eks. være:

if <antall kanter i G er mindre enn K> then ...
if <antall literaler i klausulen er større enn 3> then ...
if <det går en kant mellom node i og node j> then ...

Endelig forlanger vi at den algoritmen vi påstår er polynomisk skal kunne
skisseres som et (fast) program satt sammen av slike elementer.

Hvorfor slike programmer er polynomiske

At et slikt program faktisk vil bli utført i polynomisk tid er forholdsvis lett å se.
Enhver angitt basisaksjon (eller betingelse i if-setning) vil tekstlig ligge inne i et
bestemt antall, si f.eks. d, nestede for-setninger, som hver bare vil bli utført et
polynomisk antall ganger. Om den også ligger inne i en eller flere if-setninger så
kan dette bare bevirke at operasjonen blir utført færre ganger enn løkketellingen
skulle tilsi.

La oss nå si at den polynomiske begrensnigen for antall ganger de enkelte
omkringliggende for-setninger vil bli utført er p1(n), p2(n), . . . pd(n), og at den
polynomiske begrensnigen for basisoperasjonen selv er q(n). Da vil den totale
tiden som går med i (alle utførelser av) denne operasjonen være begrenset av
p1(n) · p2(n) · · · pd(n) · q(n), som igjen er et polynom.

Rent tekstlig vil jo et program bare bestå av et endelig antall slike basisopera-
sjoner, og dermed vil summen av polynomene for alle disse operasjonene, som
igjen blir et polynom, være en øvre grense på den totale tiden for hele program-
met. Altså kan algoritmen utføres i polynomisk tid.

Merk altså at vi ikke tillater noe prosedyre-begrep, men dette er bare for å
forhindre rekursive kall. Man kan godt implisitt bruke ikkerekursive prosedyr-
er, ved at man i ‘hovedprogrammet’ bruker en større basis-operasjon, som man
så gir et eget argument for å påvise at den faktisk kan gjøres i polynomisk tid.
Argumentet for dette kan skrives som et eget lite program for denne operasjo-
nen, som bringer det hele ned på enda mer basale (og opplagt polynomiske)
operasjoner.

Programmet skal være polynomisk, ikke effektivt

Merk at når man lager en slik programskisse er ikke vitsen å lage et effektivt pro-
gram, men å gjøre det helt klart at det er mulig å utføre algoritmen i polynomisk
tid. Graden av polynomet kan man gjerne gjøre unødvendig høy dersom dette
kan forenkle argumentasjonen. Det burde sjelden bli nødvendig å skrive slike
program-skisser på mer enn 15 - 20 linjer.

Akkurat hva slags syntaks man bruker på if- og for-setningene er ikke så vik-
tig, bare nestingen går tydelig fram. I eksemplene under er det brukt tradisjon-
ell Simula-syntaks. Deklarasjon av variable etc. kan man stort sett heve seg over,
dersom deres type etc. går fram av andre ting.

390 KAPITTEL 5. KOMMENTARER TIL LÆREBOKA G&J

Eksempler:

For å vise at transformasjonen SAT∝ 3SAT (G&J, side 48) er polynomisk, kunne
man f.eks. skissere den ut slik:

for<alle klausuler i SAT-instansen> do
begin

j:= <antall literaler i klausulen>;
if j=1 then <lag 4 nye 3-klausuler etter oppskriften> else
if j=2 then <lag 2 nye 3-klausuler etter oppskriften> else
if j=3 then <kopier klausulen direkte> else
begin

<lag spesiell første klausul for de to første literalene>;
for <tredje til tredje-siste literal> do

<lag standard midt-klausul>;
<lag spesiell siste klausul for de to siste literalene>;

end;
end;

Legg merke til at vi her f.eks. forutsetter at det å framskaffe en ‘fersk’ (ubrukt)
variabel kan gjøres i poynomisk tid. Dette virker ikke urimelig.

Vi forsøker altså her ikke å beskrive hele algoritmen fullstendig, den vil van-
ligvis være beskrevet med andre midler på forhånd. Det viktige med å skissere
algoritmen på denne formen er å få konstatert at når vi setter alle operasjonene
sammen, så utgjør de en polynomisk algoritme.

Denne formen kan jo imidlertid også benyttes til å beskrive selve algoritm-
en, ved at man først skisserer den som en algoritme ved hjelp av skjemaene over,
og siden beskriver nærmere (gjerne ved andre teknikker) de enkelte operasjon-
ene som inngår. Om de enkelte operasjonene også er ‘opplagt polynomiske’, så
får man jo slått to fluer i ett smekk.

For å vise at transformasjonen 3SAT ∝ VERTEX COVER (G&J, side 55) er
polynomisk, kan transformasjonen skisseres slik:

for <alle variable i 3-SAT-instansen> do
<lag to ‘literal-noder’ for de to mulige literalene over

denne variablen, med en kant mellom>;

for <alle klausulene i 3-SAT-instansen> do
begin

<lag en node for hver av de tre literalene, hver med en
kant til den tilsvarende ‘literal-noden’>;

<lag de tre kantene som forbinder de tre nodene>;
end;

Om størrelsen på det som produseres

For at en algoritme skal kunne utføres i polynomisk tid, er det forutsetning at
output-dataene fra algoritmen ikke vokser mer enn polynomisk. Dette fordi
man i én grunnoperasjon bare kan produsere en avgrenset datamengde (tenk
på Turingmaskiner). Dette gir dermed en måte å vise at en algoritme ikke er
polynomisk: Om det ikke finnes noe polynom som begrenser den produserte
datamengde, så kan heller ikke algoritmen være polynomisk i tid.

Det omvendt gjelder imidlertid ikke uten videre. Man kan bruke aldri så mye
tid på bare å produsere ett bit output (f.eks. ja eller nei). Dette med lengden

5.5. KOMMENTARER TIL KAPITTEL 4 391

av output kan imidlertid også bygges ut til å bli et gyldig argument for at al-
goritmen går i polynomisk tid. Man må da grovt sett påvise at tid per output-
enhet (f.eks. node, kant osv) er polynomisk, og sammen med at outputlengden
er polynomisk vil dette gi den ønskede konklusjon. Boka synes ofte å operere
med underliggende argumenter av denne typen, men de kan være litt vonde å
få helt klart ned på papiret.

5.5 Kommentarer til kapittel 4

Dette kapittelet starter med en advarsel om hvor farlig det er å innbille seg at
dersom ett problem er i NPC, så vil også “liknende” problemer være i NPC. Fi-
guren på side 79 skulle vise dette med all tydelighet. Det kan også ligge andre
tilsvarende “fristelser” i farvannet, f.eks. det å tro at skillet mellom det som er i
P og det som er i NPC alltid går “mellom 2 og 3”. I tillegg til de to eksemplene
som er nevnt på dette øverst på side 78, kan også 2-fargbarhet (av grafer) i P
og 3-fargbarhet i NPC være med å underbygge en slik teori. Men dette må man
altså langt fra ta som noen generell regel.

Men hovedsaken i dette kapittelet er å bevisstgjøre seg at et problem alltid
har en indre struktur, og at det vanligvis er en rekke forskjellige “dimensjoner” i
denne strukturen som problemstørrelsen kan variere langs. I en graf har vi f.eks.
antall noder og antall kanter, og vi kan også f.eks. snakke om grafens grad (det
maksimale antall kanter mot en node) og om den er plan eller ikke. For SAT
har vi bl.a. dimensjonene antall variable, antall klausuler og størrelsen av den
største klausulen. For PARTITION har vi antall tall og størrelsen av tallene.

Og videre: Selv om vi har vist at et problem er NP-komplett når vi tillater
instansene å vokse fritt langs alle dimensjoner, så kan det fremdeles være mye å
si om hvordan problemet forholder seg til vekst langs de enkelete dimensjone-
ne, når de andre dimensjonene ‘holdes fast’. Dette kommer spesielt tydelig fram
når det gjelder tallproblemer, for her vil lineær vekst i det tradisjonelle lengde-
målet (antall siffer) tilsvare ekspoensiell vekst i tallstørrelsen.

I dette kapittelet gjøres grovt sett to typer analyser: (1) Blir problemet polyno-
misk løsbart dersom man begrenser en eller flere av dimensjonene på bestemte
måter? Og: (2) hvordan kan en øvre tidsgrense for en løsningsalgoritme se ut,
uttrykt som en formel der størrelsen langs de forskjellige dimensjonene inngår.
Dette siste blir spesielt studert i kapittel 4.3, mens kapittelet om tallproblemer
(4.2) kan sies å ha en flik av både (1) og (2).

Man skal her legge merke til at de transformasjonene vi har sett på i forbin-
delse med NPC-bevis vanligvis ikke “bevarer” disse dimensjonene (som jo også
kan ha helt forskjellige natur i de to problemene). Det eneste som blir bevart (re-
lativt til polynomiske forandringer) er den totale instanslengden. Dermed vil en
studie av hvordan ett problem forholder seg når dets forskjellige dimensjoner
forandres eller begrensens, si lite om hvordan dets “nærliggende” problemer (i
forhold til transformasjoner) vil oppføre seg. Hvert nytt problem må i stor grad
undersøkes ved en helt egen studie. (Det samme fenomenet vil vi forøvrig finne
igjen når det gjelder tilnærmingssalgoritmer i kap. 6, se side 134).

G&J: Kapittel 4.1

I kapittel 4.1 er PRECEDENCE CONSTRAINED SCHEDULING bare å se på som
et eksempel, og det er valgt her nettopp fordi det har flere interessante dimen-
sjoner man kan studere det langs, nemlig antall prosessorer og kompleksiteten
av rekkefølgekravene. Ellers skulle dette være forståelig ut fra kommentarene
over.

392 KAPITTEL 5. KOMMENTARER TIL LÆREBOKA G&J

G&J: Kapittel 4.2

Bakgrunnen for dette kapittelet er at det tradisjonelle lengdemålet for tall (nem-
lig antall siffer) ofte stemmer dårlig med våre behov og vår intuisjon når det
gjelder de deler av av instans-beskrivelsen som er tall. Vi gjorde følgende be-
trakning:

Dersom vi regner at ting blir “store” (i den forstand at de forårsaker ubehage-
lig lange løsningstider) for NP-komplette problemer ved størrelser omkring 10
så vil det indikere at tall i instansen ikke vil forårsake tidsproblemer før de får 10
siffer. Om vi tenker i 2-tall-systemet, vil dette si for tallverdier på omkring 1000.
Ofte vil imidlertid de tallene som inngår i våre instanser være vesentlig mindre
enn dette, f.eks. bare opp til 100 (om vi f.eks. regner med 1% nøyaktighet). Altså:
det som er “stort nok” sett fra brukeren, kan fremdeles være så lite (sett i forhold
til vårt tradisjonelle lengdemål) at det ikke behøver å lage alvorlige tidsproble-
mer for en løsningsalgoritme. Dette stikker selvfølgelig i at tallstørrelsen vokser
eksponensielt i forhold til antall siffer.

Dermed er det altså håp om at vi kan få til en praktisk brukbar algoritme, selv
om problemet i tradisjonell forstand er NP-komplett. Denne problemstillingen
kan formaliseres på flere måter. Den mest brukte er å tenke seg at man kod-
er tallene i instansen i 1-tall-systemet (altså ved det antall 1-siffer som tilsvarer
tallverdien) i stedet for f.eks. i 2-tall-systemet. Det tilsvarer at man i instans-
lengden regner tallene med sin verdi i stedet for med sitt antall siffer, og man
kan så spørre om løsningsalgoritmer fremdelses er eksponensielle i forhold til
dette nye lengdemålet.

Dersom det finnes algoritmer som er polynomiske i forhold til dette nye
lengdemålet, så sies disse å være pseudopolynomiske, og slike algoritmer finnes
altså for noen problemer, men ikke for alle.

Merk at denne type betrakninger bare er av interesse dersom tallstørrelsene
i instansen kan “vokse fritt” (og dermed eksponensielt) i forhold til det tradisjo-
nelle lengdemålet. Problemer der dette er tilfelle kalles altså (ekte) tallproblem-
er. Det finnes mange problemer der instansene inneholder tall, men der tallene
ikke kan vokse på denne måten. Dette gjelder i særdeleshet de tall som brukes
til navngiving av elementer i instansen (se G&J, side 94), men også tall som f.eks.
K-en i Vertex Cover.

Boka snakker ikke om koding av tall i 1-tall-systemet, men innfører i stedet et
et ekstra lengdemål Max, som skal representere tallstørelsene i instansen. Den-
ne kan for et gitt problem defineres på forskjellige måter (f.eks. som det maksi-
male tall, summen av tallene eller gjennomsnittet av tallene), bare med det krav
at de forskjellige variantene er polynomisk relatert til hverandre slik som angitt
på side 92 og 93.

Merk at for å få større frihet i valg av Max-funksjonen bruker boka denne
aldri alene i krav om polynomitet, men alltid sammen med det tradisjonelle
lengdemålet. Det er derfor vi kan bruke så forskjellige ting for Max som maksi-
malverdi og sum av tallen. (Når vi bruker metoden med å kode instansens tall
i 1-tall-systemet vil imidlertid det nye instans-lengdemålet alltid inneholde bå-
de en Length-komponent og en Max-komponenet, slik at vi kan klare oss med
dette ene målet når vi skal definere pseudopolynomitet.)

På side 95 motiverer og definerer boka begrepet “NP-kompletthet i sterk
forstand”. Dette begrepet har samme forhold til pseudopolynomiske algorit-
mer som vanlig NP-kompletthet har til polynomiske algoritmer. Definisjonen
av dette har som bakgrunn at om man i et tallproblem “kunstig” begrenser
tallstørrelsene polynomisk i forhold til instans-størrelsen (med et vilkårlig gitt
polynom), så vil en pseudopolynomisk algoritme også være (ekte) polynomisk.

Ut fra dette blir følgende definisjon rimelig: “Et problem i NPC er NP-kom-

5.6. KOMMENTARER TIL KAPITTEL 5 393

plett i sterk forstand dersom det finnes et polynom p(u) slik at problemet forblir
NP-komplett selv om vi begrenser tallene i instansen slik at deres verdier ikke
overgår p(L), der L er den tradisjonelle instanslengden”.

Det er da hvertfall klart at et problem ikke både kan ha en pseudopolyno-
misk løsningsalgoritme og samtidig være NP-komplett i sterk forstand (med-
mindre P=NP).

I kapittel 4.2.2 går boka dypere inn på NP-kompletthet i sterk forstand. Vi
så imidlertid på noen mer opplagte tilfeller av sterkt NP-komplette problem-
er, der situasjonen var så enkel at problemene forble NP-komplett selv om vi la
absolutte begrensninger på størrelsen av de tallene som inngikk. Et typisk eks-
empel her er Traveling Salesman som forblir NP-komplett selv om vi begrenser
avstandene til bare å kunne være 1 eller 2 (se starten av kap. 4.2.2).

G&J: Kapittel 4.3

Merk at det som i dette kapittelet kalles “naturlige parametere” på mange måter
tilsvarer det vi tidligere snakket om som forskjellige “dimensjoner” i problemet.

Legg også merke til at noen av de naturlige parameterne kan ha et polynom-
isk forhold til det tradisjonelle lengdemålet (f.eks. antall noder i en graf, antall
elementer i en mengde eller antall siffer i et tall), mens andre kan ha et ekspo-
nensielt forhold til lengden (men til gjengjeld da gjerne et polynomisk forhold
til Max) som f.eks. størrelsen av et tall. Det er spillet mellom disse forhold som
utgjør spenningen i kapittel 4.3.

5.6 Kommentarer til kapittel 5

Hovedideen med dette kapittelet er å utvide de betrakninger vi til nå har gjort
for desisjonsproblemer, til også å kunne utsi noe om andre typer problemer.
Vi må da f.eks. også for disse kunne snakke om at et probelem er minst like
vanskelig som eller ikke vanskeligere enn et annet problem.

Vanskeligheten med dette er at vårt gode gamle begrep ‘polynomisk trans-
formasjon’ (skrevet A∝B) ikke fungerer for annet enn desisjonsproblemer. Der-
for innføres her en mer ‘liberal’ reduksjonsform (i den forstand at den innbefat-
ter A∝ B, og mye mer) som kalles Turing-reduksjon, og som skrives A∝T B.

Vår definisjon av A ∝T B er rett og slett at vi må kunne skrive en prosedy-
re som løser A i polynomisk tid dersom vi får lov å kalle (gjerne flere gang-
er) en (orakel-)prosedyre som løser B i polynomisk tid. “Parameterene” til A-
prosedyren er da instanser av A, og parameterene til B-proseyren er instaner av
B. Det følger da helt opplagt at om A ∝T B og B kan løses i polynomisk tid, så
kan også A løses i polynomisk tid, og dermed også omvendt: Dersom A ikke kan
løses i polynomisk tid, så kan heller ikke B løses i polynomsk tid.

Øverst på side 110 defineres noe som kalles søkeproblemer. Boka konstaterer
lenger ned at også desisjonsproblemer kan sees som søkeproblemer, og tenker
man litt over saken innser man fort at nær sagt ethvert problem (av den typen
vi kan tenke på å få en datamaskin til å løse) kan sees som et slikt søkeprob-
lem. Begrepet ‘søkeproblem’ representerer altså ikke en avgrensning i forhold
til ‘mengden av alle problemer’, men snarere en terminologi og en form som vi
kan bruke når vi vil diskutere generelle problemer.

Når vi vil sammenlikne vanskeligheten av søkeproblemer kan vi nå bruke
Turing-transformasjon, og vi tolker da A∝T B til å bety at “B er minst like vans-
kelig som A”. Ut fra dette definerer vi “problemet A er NP-hardt” til å bety at A er
minst like vanskelig som de NP-komplette problemer, altså at B∝T A for et eller
annet NP-komplett problem B.

394 KAPITTEL 5. KOMMENTARER TIL LÆREBOKA G&J

Tilsvarende definerer vi “A er NP-lett” til å bety at A ∝T B for et problem
B i NP (altså ikke nødvendigvis B i NPC, selv om det vil følge av definisjon at
også for et problem C i NPC må A∝T C gjelde). De problemer som både er NP-
harde og NP-lette kalte vi NP-ekvivalente, og disse kan vi altså tenke på som
en utvidelse av de NP-komplette problemer til alle søkeproblemer. Vi fortsetter
imidlertid å la problemklassene P, NP og NPC bare inneholde desisjonsproble-
mer. Når vi ser på søkeproblemer generelt skal vi snakke om at “de er løsbare i
polynomisk tid”, “de er NP-harde”, “de er NP-lette” osv.

Siste del av kapittel 5.1 dreier seg om å vise at de søkeproblemer som naturlig
oppstår ut fra et typisk NP-komplett problem, gjerne selv blir NP-ekvivalenete.
Dette rettferdiggjør på mange måter det at vi lenge holdt oss til bare desisjons-
problemer. Ved en enkel vri fikk vi her klassifisert også de søke- og optimalise-
ringsproblemene vi kanske egentlig interesserte oss for, og de falt til og med i
samme klasse (de NP-ekvivalenete) som de litt kunstige desisjons-probleme vi
startet ut med.

Vi skal ikke her ytterligere kommentere metodene for å vise NP-ekvivalens,
men henviser til oppgavene 35 og 36.

5.7 Kommentarer til kapittel 6

Hovedideen med dette kapittelet er å se på hvordan man kan forholde seg til
NP-komplette problemer når man innen “rimelig tid” må løse dem så godt det
lar seg gjøre. Den ene muligheten er da å bruke en av de eksponensielle algo-
ritmene (vanligvis en variant av kombinatorisk søking eller av dynamisk pro-
grammering), og å forsøke å gjøre denne så effektiv som mulig med all slags
avskjæring og heuristikk. For en hel del “typeproblemer” er det her masse til-
gjengelig litteratur, og med forskjellige lure triks og synsmåter er det utrolig hva
man kan vinne av tid, selv om algoritmene fremdeles forblir eksponensielle.

Dersom vi har et optimaliseringsproblem foreligger også en annen mulig-
het, nemlig å lage en algoritme som gir et “bra nok” svar for det aktuelle formål-
et. Også angående dette finnes en mengde litteratur, og man kan som regel også
komme langt med å legge inn heuristikk som utnytter de karakteristika vi vet at
nettopp våre instanser av problemet vil ha.

Det resten av kapittelet konsentrerer seg om er å forsøke å si noe mer konk-
ret og håndfast om hvordan slike tilnærmingsalgoritmer vil oppføre seg i verste
tilfellet. Som et mål på dette innfører boka på side 128 en del begreper som noe
løslig kan karakteriseres som følger:
- RA(I): Hvor dårlig algoritmen er for instansen I.
- RA: Hvor dårlig algoritmen er for den verst mulige instans.
-R∞A : Hvor dårlig algoritmen er i verste tilfellet, om vi ser på instanser med stør-
re og større optimalverdier.

Betrakningene omkring bingepakking på sidene 124 – 127 kan taes som et
eksempel på hvordan man kan gjøre betrakninger som fører fram til verdier for
“ytelsesgarantiene” RA og R∞A . Merk at det å få bestemt nøyaktige verdier for
disse vanligvis vil innebære meget kompliserte betrakninger, men at vi ofte med
nokså løse betrakninger kan få nedre eller øvre grenser for hva RA eller R∞A kan
være.

Det å begrense dem nedenfra er ofte det enkleste, da dette bare innbærer å
komme opp med eksempler der algoritmen virker så og så dårlig. For RA kan
disse eksemplemne være helt spesifikke, mens man for R∞A må vise at vi kan
finne slike eksempler med så stor optimalverdi vi bare ønsker. Det å begrense
dem ovenfra innebærer derimot å vise at algoritmen i en passelig betydning
“aldri kan gi verre svar enn ...”, og dette er jo en mer generell (og dermed ofte

5.7. KOMMENTARER TIL KAPITTEL 6 395

vanskeligere) problemstilling.
Som nok et eksempel på hvordan slike betrakninger kan gjøres ser boka også

på problemet “Travel Salgsmann”, og man kan her legge merke til hvordan man
kan vise (for algoritmen NN) atRA ellerR∞A er∞, ved å komme opp med (h.h.v.
spesielle eller generelle) eksempler på at vi kan få svaret så dårlig vi bare vil (i
forhold til det optimale). Dette ligger i siste delen av Teorem 6.3.

Betrakningene på side 133 og 134 representerer først og fremst en påminn-
else om at ting ikke er så enkle som man kunne tro. Selv om en del av de trans-
formasjonene vi har sett på tidligere i kurset vil “bevare optimale løsninger”, så
er det altså langt fra slik at de vil bevare ytelsesgarantier. På grunn av vridninger
i perspektivet, vil altså samme algoritmen brukt på to så beslektede problemer
som nodeoverdekningr og uavhengige nodemengder, gi fullstendig forskjellige
ytelsesgarantier.

I betrakningene om ryggsekkproblemet på side 135 – 137 la vi mest vekt på
ideen med å nedskalere tallene i problemet, for derved å få et enklere problem
å løse, som dog ikke gav helt nøyaktig svar. Det overraskende er jo at man ved
å kontrollere nedskaleringen nøye, kan få et “algoritme-skjema” som er polyno-
misk både i lengden av instansen og i den nøyaktigeheten man forlanger. Mer
om dette stoffet i oppgave 38.

Vi la en viss vekt på dette med “polynomsike tilnærmingsskjemaer”, og “full-
stendig polynomsike tilnærmingsskjemaer” (side 137).

BegrepetRMIN (Π) som er omtalt på side 138 i kap. 6.2 uttrykker hvor “gode”
(regnet som R∞A) polynomiske tilnærmelsesalgoritmer det er mulig å finne for
det aktuelle problemet. Det er ingen enkel sak å bestemme RMIN (Π), men for
noen problemer kjenner man den, eller har gode indikasjoner på hva den kan
være. Dette gjelder spesielt i de tilfellene der den er 1 (vi kan få så gode algo-
ritmer vi vil, slik som for de polynomiske tilnærmingsskjemaene) og der den er
∞ (for alle algoritmer finnes instanser der algoritmen gir så dårlig svar vi bare
ønsker).

Kapittel 6.3 er hovedsaklig en oppsummering over hva vi vet om RMIN (Π)
for noen kjente problemer.

	1 Forord
	2 Polyscopic scientific teaching and writing
	2.1 Motivation
	2.2 Anecdote One
	2.3 Analysis of anecdote One
	2.4 Anecdote Two
	2.5 Analysis of anecdote Two
	2.6 Conclusion

	3 Forelesningslysark og -notater
	3.1 Lecture 1
	3.2 Lecture 2
	3.3 Lecture 3
	3.4 Lecture 4
	3.5 Lecture 5
	3.6 Lecture 6
	3.7 Lecture 7
	3.8 Lecture 8
	3.9 Lecture 9
	3.10 Lecture 10
	3.11 Lecture 11
	3.12 Lecture 12
	3.13 Lecture 13

	4 Oppgaver, ledetråder og løsninger
	4.1 Problems
	4.2 Hints
	4.3 Solutions

	5 Kommentarer til læreboka G&J
	5.1 Innledning
	5.2 Kommentarer til Kapittel 1
	5.3 Kommentarer til kapittel 2
	5.4 Kommentarer til kapittel 3
	5.5 Kommentarer til kapittel 4
	5.6 Kommentarer til kapittel 5
	5.7 Kommentarer til kapittel 6

