
Autumn 2011 1 of 23

Alternative approaches to
algorithm design and analysis
• Problem: Exhaustive search gives typically
O (n!) ≈O (nn)-algorithms for
NP-complete problems.

• So we need to get around the worst case /
best solution paradigm:

— worst-case → average-case analysis

— best solution → approximation

— best solution → randomized algorithms

Autumn 2011 2 of 23

Approximation

)(
OPT

ǫ·OPT ǫ·OPT

Def. 1 Let L be an optimization problem. We
say that algorithm M is a polynomial-time
ǫ-approximation algorithm for L if M runs
in polynomial time and there is a constant
ǫ ≥ 0 such that M is guaranteed to produce,
for all instances of L, a solution whose cost is
within an ǫ-neighborhood from the optimum.

Note 1: Formally this means that the relative

error |tM(n)−OPT|
OPT must be less than or equal to

the constant ǫ.

Note 2: We are still looking at the worst case,
but we don’t require the very best solution
any more.

Example: TSP with triangle inequality has a
polynomial-time approximation algorithm.

bc

a

c ≤ a + b

Autumn 2011 3 of 23

Algorithm TSP-△:
Phase I: Find a minimum spanning tree.

Phase II: Use the tree to create a tour.

2

1 1

2 2
2

s

The cost of the produced solution can not be
more than 2·OPT, otherweise the OPT tour
(minus one edge) would be a more minimal
spanning tree itself. Hence ǫ = 1.

Opt. tour

Autumn 2011 4 of 23

Theorem 1 TSP has no polynomial-time
ǫ-approximation algorithm for any ǫ unless
P=NP.

Proof:
Idea: Given ǫ, make a reduction from
HAMILTONICITY which has only one solution
within the ǫ-neighborhood from OPT, namely
the optimal solution itself.

a

b c

d
∝

a b c d

a 2+ǫ n 1 2+ǫ n 1

b 1 2+ǫ n 1 2+ǫ n

c 2+ǫ n 1 2+ǫ n 1

d 1 2+ǫ n 1 2+ǫ n

K = n(= 4)

The error resulting from picking a non-edge
is: Approx.solutin - OPT =
(n − 1 + 2 + ǫn) − n = (1 + ǫ)n > ǫn

Hence a polynomial-time ǫ-approximation
algorithm for TSP combined with the above
reduction would solve HAMILTONICITY in
polynomial time.

Autumn 2011 5 of 23

Example: VERTEX COVER

• Heuristics are a common way of dealing with
intractable (optimization) problems in
practice.

• Heuristics differ from algorithms in that they
have no performance guarantees, i.e. they
don’t always find the (best) solution.

A greedy heuristic for VERTEX COVER-opt.:

Heuristic VC-H1:
Repeat until all edges are covered:

1.Cover highest-degree vertex v;
2.Remove v (with edges) from

graph;

Theorem 2 The heuristic VC-H1 is not an
ǫ-approximation algorithm for VERTEX

COVER-opt. for any fixed ǫ.

Autumn 2011 6 of 23

Proof:

Show a counterexample, i.e. cook up
an instance where the heuristic per-
forms badly.

Counterexample:

• A graph with nodes a1, . . . , an and b1, . . . , bn.

• Node bi is only connected to node ai.

• A bunch of c-nodes connected to a-nodes in
the following way:

— Node c1 is connected to a1 and a2. Node c2 is
connected to a3 and a4, etc.

— Node cn/2+1 is connected to a1, a2 and a3.
Node cn/2+2 is connected to a4, a5 and a6, etc.

— . . .
— Node cm−1 is connected to a1, a2, . . . an−1.
— Node cm is connected to all a-nodes.

...

b2

a1

b1 b6b5b4b3

a6a5a4a3a2

c2 c3 c4 c5 cmc1

Autumn 2011 7 of 23

• The optimal solution OPT requires
n guards (on all a-nodes).

• VC-H1 first covers all the c-nodes (starting
with cm) before covering the a-nodes.

• The number of c-nodes are of order n log n.

• Relative error for VC-H1 on this instance:

|VC-H1| − |OPT|
|OPT| =

(n log n + n) − n

n

=
n log n

n
= log n 6= ǫ

• The relative error grows as a function of n.

Heuristic VC-H2:
Repeat until all edges are covered:

1.Pick an edge e;
2.Cover and remove

both endpoints of e.

• Since at least one endpoint of every edge
must be covered, |VC-H2| ≤ 2 · |OPT|.

• So VC-H2 is a polynomial-time
ǫ-approximation algorithm for VC with ǫ = 1.

• Surpisingly, this “stupid-looking” algorithm is
the best (worst case) approximation
algorithm known for VERTEX COVER-opt.

Autumn 2011 8 of 23

Average-case analysis &
algorithms

Worst case

Autumn 2011 9 of 23

• Problem = (L, Pr) where Pr is a probability
function over the input strings:
Pr :

∑∗ → [0, 1].

•∑x∈∑∗ Pr(x) = 1 (the probabilities must sum
up to 1).

• Average time of an algorithm:

TA(n) =
∑

{x∈∑∗
∣

∣ |x|=n}

TA(x)Pr(x)

• Key issue: How to choose Pr so that it is a
realistic model of reality.

• Natural solution: Assume that all instances of
length n are equally probable (uniform
distribution).

Autumn 2011 10 of 23

Random graphs

Uniform probability model (UPM)
• Every graph G has equal probability

• If the number of nodes = n, then
Pr(G) = 1

#graphs = 1

2(n2)
, where

(

n
2

)

= n(n−1)
2

• UPM is more natural for interpretation

Independent edge probability model (IEPM)
• Every possible edge in a graph G has equal

probabilility p of occuring

• The edges are independent in the sense that
for each pair (s, t) of vertices, we make a new
toss with the coin to decide whether there will
be an edge between s and t.

• For p = 1
2 IEPM is identical to UPM:

Pr(G) =

(

1

2

)m

·
(

1

2

)(n

2)−m

=
1

2(n

2)

• IEPM is easier to work with

Autumn 2011 11 of 23

Example: 3-COLORABILITY

In 3-COLORABILITY we are given a graph as input
and we are asked to decide whether it is possible
to color the nodes using 3 different colors in
such a way that any two nodes have different
colors if there is an edge between them.

Theorem 3 3-COLORABILITY, which is an
NP-complete problem, is solvable in constant
average (expected) time on the IEPM with
p = 1/2 by a branch-and-bound algorithm (with
exponential worst-case complexity).

Proof:
Strategy (for a rough estimate): Use the indep.
edge prob. model. Estimate expected time for
finding a proof of non-3-colorability.

a

b c

d
K4 (a clique of size 4) is a proof
of non-3-colorability.

Autumn 2011 12 of 23

• The probability of 4 nodes being a K4:

Pr(K4) = 2−(4

2) = 2−6 = 1
128

• Expected no. of 4-vertex sets examined before
a K4 is found:
∞
∑

i=1

i
(

1 − 2−6
)i−1

2−6 = 2−6
∞
∑

i=1

i
(

1 − 2−6
)i−1

∗
= 2−6 1

(1 − (1 − 2−6))2

= 2−6 1

(2−6)2
=

212

26
= 26 = 128

— (1 − 2−6)
i−1

2−6 is the probability that the
first K4 is found after examining exactly i
4-vertex sets.

— (∗) is correct due to the following formula
(q = 1 − 2−6) from mathematics (MA100):

∞
∑

i=1

iqi−1 =
δ

δq

(∞
∑

i=1

qi

)

=
δ

δq

(

q

1 − q

)

=
1

(1 − q)2

Autumn 2011 13 of 23

Conlusion: Using IEPM with p = 1
2 we need to

check 128 four-vertex sets on average before we
find a K4.

Note: Random graphs with constant edge
probability are very dense (have lots of edges).
More realistic models has p as a function of n
(the number of vertices), i.e. p = 1/

√
n or p = 5/n.

Autumn 2011 14 of 23

0-1 Laws
as a link between probabilistic and deterministic
thinking.

Example: “Almost all” graphs are

• not 3-colorable
• Hamiltonian
• connected
• . . .

Def. 2 A property of graphs or strings or other
kind of problem instances is said to have a
zero-one law if the limit of the probability that a
graph/string/problem instance has that property
is either 0 or 1 when n tends to infinity (limn→∞).

Autumn 2011 15 of 23

Example: HAMILTONICITY

a linear expected-time algorithm for random
graphs with p = 1/2.

• Difficulty: The probability of
non-Hamiltonicity is too large to be ignored,
e.g. Pr(∃ at least 1 isolated vertex) = 2−n.

• The algorithm has 3 phases:

— Phase 1: Construct a Hamiltonian path in
linear time. Fails with probability P1(n).

— Phase 2: Find proof of non-Hamiltonicity
or construct Hamiltonian path in time
O
(

n2
)

. Unsuccessful with probability P2(n).

— Phase 3: Exhaustive search (dynamic
programming) in time O

(

22n
)

.

• Expected running time is
≤ O (n) + O

(

n2
)

P1(n) + O
(

22n
)

P1(n)P2(n)

= O (n) if P1(n) · O
(

n2
)

= O (n)

and P1(n)P2(n) · O
(

22n
)

= O (n)

• Phase 2 is necessary because
O (2−n) · O

(

22n
)

= O (2n).

• After failing to construct a Hamiltonian path
fast in phase 1, we first reduce the probability
of the instance being non-Hamiltonian (phase
2), before doing exhaustive search in phase 3.

Autumn 2011 16 of 23

Randomized computing
Machines that can toss coins (generate random
bits/numbers)

• Worst case paradigm

• Always give the correct (best) solution

Autumn 2011 17 of 23

Randomized algorithms

Idea: Toss a coin & simulate
non-determinism

Example 1: Proving polynomial non-identities

(x + y)2
?

6= x2 + 2xy + y2

?

6= x2 + y2

• What is the “classical” complexity of the
problem?

• Fast, randomized algorithm:

— Guess values for x and y and compute
left-hand side (LHS) and right-hand side
(RHS) of equation.

— If LHS 6= RHS, then we know that the
polynomials are different.

— If LHS = RHS, then we suspect that the
polynomials are identical, but we don’t
know for sure, so we repeat the experiment
with other x and y values.

• Idea works if there are many witnesses.

Autumn 2011 18 of 23

1 kr Mynt

f(n)

witnesses

Let f(n) be a polynomial in n and let the
probability of success after f(n) steps/coin
tosses be ≥ 1

2. After f(n) steps the algorithm
either

• finds a witness and says “Yes, the polynomials
are different”, or

• halts without success and says “No, maybe
the polynomials are identical”.

This sort of algorithm is called a Monte Carlo
algorithm.

Note: The probability that the Monte
Carlo algorithm succeeds after f(n)
steps is independent of input (and
dependent only on the coin tosses).

• Therefore the algorithm can be repeated on
the same data set.

• After 100 repeated trials, the probability of
failure is ≤ 2−100 which is smaller then the
probability that a meteorite hits the computer
while the program is running!

Autumn 2011 19 of 23

Metaheuristics

Simulated Annealing
• Analogy with physical annealing

• ’Temperature’ T, annealing schedule

• ’Bad moves’ with probability exp (−δf/T)

Genetic algorithms
• Analogy with Darwinian evolution

• ’individuals’, ’fitness’, ’cross breeding’

Neural Networks
• Analogy with human mind

• ’neurons’, ’learning’

Taboo search
• Analogy with culture

• adaptive memory, responsive exploration

Autumn 2011 20 of 23

Parallel computing

?
= 3×

• some problems can be efficiently parallelized

• some problems seems inherently sequential

Parallel machine models
• Alternating TMs

• Boolean Circuits

∨

¬

output

x2x1 x3inputs:

∧

¬

"time" = 3

— Boolean Circuit complexity: “time” (length
of longest directed path) and hardware (#
of gates)

Autumn 2011 21 of 23

• Parallell Random Access Machines (PRAMs)

...
...

P0 P2P1

m0 m2m1 m3

— Read/Write conflict resolution strategy

— PRAM complexity: time (# of steps) and
hardware (# of processors)

Example: Parallel summation in time O (log n)

m5:1m4:6

P2

m7:5m6:2

P3P0

m1:5m0:3 m3:7m2:2

P1

log2 n

time

P1

m2 : 7m1 : 9

m1 : 14

P0

m0 : 17

m0 : 8 m3 : 7

P0

m0 : 31

Result: Boolean Circuit complexity = PRAM
complexity.

Autumn 2011 22 of 23

Limitations to parallel computing
Good news

parallel time ↔ sequential space

Example: HAMILTONICITY can easily be solved in
parallel polynomial time:

• On a graph with n nodes there are at most n!
possible Hamiltonian paths.

• Use n! processors and let each of them check 1
possible solution in polynomial time.

• Compute the the OR of the answers in parallel
time O (log(n!)) = O (n log n).

Bad news

Theorem 4 With polynomial many processors

parallel poly. time = sequential poly. time

Proof:

• 1 processor can simulate one step of m
processors in sequential time t1(m) = O (m)

• Let t2(n) be the polynomial parallel time of the
computation. If m is polynomial then
t1(m) · t2(n) = polynomial.

Autumn 2011 23 of 23

Parallel complexity classes
Def. 3 A language is said to be in class NCif it is
recognized in polylogarithmic, O

(

logk(n)
)

,
parallel time with uniform polynomial
hardware.

NC
P

P-hard, Ex: CIRCUIT VALUE

• P
?
= NC

