Alternative approaches to algorithm design and analysis

- **Problem:** Exhaustive search gives typically $\mathcal{O}(n!) \approx \mathcal{O}(n^n)$ -algorithms for \mathcal{NP} -complete problems.
- So we need to get around the **worst case / best solution** paradigm:
	- **—** worst-case → average-case analysis
	- **—** best solution → approximation
	- **—** best solution → randomized algorithms

Def. 1 *Let* L *be an optimization problem. We say that algorithm* M *is a polynomial-time* ǫ*-approximation algorithm for* L *if* M *runs in polynomial time and there is a constant* $\epsilon \geq 0$ *such that* M *is guaranteed to produce, for all instances of* L*, a solution whose cost is within an* ϵ -neighborhood from the optimum.

Note 1: Formally this means that the **relative error** $\frac{|t_M(n)-\text{OPT}|}{\text{OPT}}$ must be less than or equal to the constant ϵ .

Note 2: We are still looking at the worst case, but we don't require the very best solution any more.

Example: TSP with triangle inequality has a polynomial-time approximation algorithm.

Algorithm TSP-△:

Phase I: Find a minimum spanning tree. Phase II: Use the tree to create a tour.

The cost of the produced solution can not be more than 2·OPT, otherweise the OPT tour (minus one edge) would be a more minimal spanning tree itself. Hence $\epsilon = 1$.

Opt. tour

Theorem 1 TSP *has no polynomial-time* ϵ -approximation algorithm for any ϵ *unless* $P = NP$.

Proof:

Idea: Given ϵ , make a reduction from HAMILTONICITY which has only **one** solution within the ϵ -neighborhood from OPT, namely the optimal solution itself.

a b c d ∝ a b c d a 2+ǫ n 1 2+ǫ n 1 b 1 2+ǫ n 1 2+ǫ n c 2+ǫ n 1 2+ǫ n 1 d 1 2+ǫ n 1 2+ǫ n K = n(= 4)

The **error** resulting from picking a non-edge is: Approx.solutin - OPT = $(n-1+2+\epsilon n)-n=(1+\epsilon)n>\epsilon n$

Hence a polynomial-time ϵ -approximation algorithm for TSP combined with the above reduction would solve HAMILTONICITY in polynomial time.

Autumn 2011 4 of 23

Example: VERTEX COVER

- **Heuristics** are a common way of dealing with intractable (optimization) problems in practice.
- Heuristics differ from algorithms in that they have no performance guarantees, i.e. they don't always find the (best) solution.

A greedy heuristic for VERTEX COVER-opt.:

Heuristic VC-H1:

Repeat until all edges are covered:

- 1. Cover highest-degree vertex v ;
- 2. Remove v (with edges) from graph;

Theorem 2 *The heuristic VC-H1 is not an* ǫ*-approximation algorithm for* VERTEX COVER-opt. for any fixed ϵ .

Proof:

Show a **counterexample**, i.e. cook up an instance where the heuristic performs badly.

Counterexample:

- A graph with nodes a_1, \ldots, a_n and b_1, \ldots, b_n .
- Node b_i is only connected to node a_i .
- A bunch of c -nodes connected to a -nodes in the following way:
	- Node c_1 is connected to a_1 and a_2 . Node c_2 is connected to a_3 and a_4 , etc.
	- Node $c_{n/2+1}$ is connected to a_1 , a_2 and a_3 . Node $c_{n/2+2}$ is connected to a_4 , a_5 and a_6 , etc.
	- **—** . . . — Node c_{m-1} is connected to $a_1, a_2, \ldots a_{n-1}$.
	- Node c_m is connected to all a -nodes.

Autumn 2011 6 of 23

- The optimal solution OPT requires n guards (on all a -nodes).
- VC-H1 first covers all the c -nodes (starting with c_m) before covering the *a*-nodes.
- The number of c -nodes are of order $n \log n$.
- Relative error for VC-H1 on this instance:

 $|VC-H1| - |OPT|$ |OPT| $=\frac{(n \log n + n) - n}{n}$ \overline{n} = $n \log n$ $\frac{\partial \mathcal{S}^n}{\partial n} = \log n \neq \epsilon$

• The relative error **grows as a function of** n.

Heuristic VC-H2:

Repeat until all edges are covered: 1.Pick an edge e; 2.Cover and remove both endpoints of e .

- Since at least one endpoint of every edge must be covered, $|VC-H2| \leq 2 \cdot |OPT|$.
- So VC-H2 is a polynomial-time ϵ -approximation algorithm for VC with $\epsilon = 1$.
- Surpisingly, this "stupid-looking" algorithm is the best (worst case) approximation algorithm known for VERTEX COVER-opt.

Autumn 2011 **2011** 2012 **7** of 23

Average-case analysis & algorithms

Autumn 2011 8 of 23

- **Problem** = (L, P_r) where P_r is a probability function over the input strings: $P_r: \sum^* \to [0, 1].$
- \bullet \sum $\lim_{x\in \sum_{i=1}^{s} } P_r(x) = 1$ (the probabilities must sum up $t\overline{o}$ 1).
- **Average time** of an algorithm:

$$
T_A(n) = \sum_{\{x \in \sum^* \mid |x| = n\}} T_A(x) P_r(x)
$$

- **Key issue:** How to choose P_r so that it is a realistic model of reality.
- Natural solution: Assume that all instances of length n are equally probable (uniform distribution).

Random graphs

Uniform probability model (UPM)

- \bullet Every graph G has equal probability
- If the number of nodes $=n$, then $P_r(G) = \frac{1}{\# \text{graphs}} = \frac{1}{2^{\binom{r}{2}}}$ $\frac{1}{2^{\binom{n}{2}}}$, where $\binom{n}{2}$ $\binom{n}{2} = \frac{n(n-1)}{2}$ 2
- UPM is more natural for interpretation

Independent edge probability model (IEPM)

- \bullet Every possible edge in a graph G has equal probabilility p of occuring
- The edges are independent in the sense that for each pair (s, t) of vertices, we make a new toss with the coin to decide whether there will be an edge between s and t .
- For $p=\frac{1}{2}$ $\frac{1}{2}$ IEPM is identical to UPM:

$$
P_r(G) = \left(\frac{1}{2}\right)^m \cdot \left(\frac{1}{2}\right)^{\binom{n}{2}-m} = \frac{1}{2^{\binom{n}{2}}}
$$

• IEPM is easier to work with

Example: 3-COLORABILITY

In 3-COLORABILITY we are given a graph as input and we are asked to decide whether it is possible to color the nodes using 3 different colors in such a way that any two nodes have different colors if there is an edge between them.

Theorem 3 3-COLORABILITY*, which is an* N P*-complete problem, is solvable in constant average (expected) time on the IEPM with* p = 1/2 *by a branch-and-bound algorithm (with exponential worst-case complexity).*

Proof:

Strategy (for a rough estimate): Use the indep. edge prob. model. Estimate expected time for finding a proof of non-3-colorability.

 K_4 (a clique of size 4) is a proof of non-3-colorability.

- The probability of 4 nodes being a K_4 : $P_r(K_4) = 2^{-\binom{4}{2}} = 2^{-6} = \frac{1}{12}$ 128
- Expected no. of 4-vertex sets examined before a K_4 is found:

$$
\sum_{i=1}^{\infty} i \left(1 - 2^{-6}\right)^{i-1} 2^{-6} = 2^{-6} \sum_{i=1}^{\infty} i \left(1 - 2^{-6}\right)^{i-1}
$$

$$
\stackrel{*}{=} 2^{-6} \frac{1}{\left(1 - \left(1 - 2^{-6}\right)\right)^2}
$$

$$
= 2^{-6} \frac{1}{\left(2^{-6}\right)^2} = \frac{2^{12}}{2^6} = 2^6 = 128
$$

- $-(1-2^{-6})^{i-1}2^{-6}$ is the probability that the first K_4 is found after examining exactly i 4-vertex sets.
- **—** (∗) is correct due to the following formula $(q = 1 - 2^{-6})$ from mathematics (MA100):

$$
\sum_{i=1}^{\infty} iq^{i-1} = \frac{\delta}{\delta q} \left(\sum_{i=1}^{\infty} q^i \right) = \frac{\delta}{\delta q} \left(\frac{q}{1-q} \right)
$$

$$
= \frac{1}{(1-q)^2}
$$

Autumn 2011 **12 of 23**

Conlusion: Using IEPM with $p = \frac{1}{2}$ we need to check 128 four-vertex sets on average before we find a K_4 .

Note: Random graphs with constant edge probability are very dense (have lots of edges). More realistic models has p as a function of $\mathfrak n$ (the number of vertices), i.e. $p=1/$ √ \overline{n} or $p=5/n$.

0-1 Laws

as a link between probabilistic and deterministic thinking.

Example: "Almost all" graphs are

- not 3-colorable
- Hamiltonian
- connected
- \bullet . . .

Def. 2 *A property of graphs or strings or other kind of problem instances is said to have a zero-one law if the limit of the probability that a graph/string/problem instance has that property is either* 0 *or* 1 *when n tends to infinity* ($\lim_{n\to\infty}$).

Example: HAMILTONICITY

a linear expected-time algorithm for random graphs with $p = 1/2$.

• **Difficulty:** The probability of non-Hamiltonicity is too large to be ignored, e.g. $P_r(\exists \text{ at least } 1 \text{ isolated vertex}) = 2^{-n}$.

• The algorithm has 3 phases:

- **— Phase 1:** Construct a Hamiltonian path in linear time. Fails with probability $P_1(n)$.
- **— Phase 2:** Find proof of non-Hamiltonicity or construct Hamiltonian path in time $\mathcal{O}\left(n^2\right)$. Unsuccessful with probability $P_2(n)$.
- **— Phase 3:** Exhaustive search (dynamic programming) in time $\mathcal{O}\left(2^{2n}\right)$.

• Expected running time is
\n
$$
\leq \mathcal{O}(n) + \mathcal{O}(n^2) P_1(n) + \mathcal{O}(2^{2n}) P_1(n) P_2(n)
$$
\n
$$
= \mathcal{O}(n) \text{ if } P_1(n) \cdot \mathcal{O}(n^2) = \mathcal{O}(n)
$$
\nand $P_1(n) P_2(n) \cdot \mathcal{O}(2^{2n}) = \mathcal{O}(n)$

- Phase 2 is necessary because $\mathcal{O}\left(2^{-n}\right) \cdot \mathcal{O}\left(2^{2n}\right) = \mathcal{O}\left(2^{n}\right).$
- After failing to construct a Hamiltonian path fast in phase 1, we first reduce the probability of the instance being non-Hamiltonian (phase 2), before doing exhaustive search in phase 3.

Autumn 2011 **15 of 23**

Randomized computing

Machines that can **toss coins** (generate random bits/numbers)

- Worst case paradigm
- Always give the correct (best) solution

Randomized algorithms

Idea: Toss a coin & simulate non-determinism

Example 1: Proving polynomial non-identities

$$
(x+y)^2 \stackrel{?}{\neq} x^2 + 2xy + y^2
$$

$$
\stackrel{?}{\neq} x^2 + y^2
$$

- What is the "classical" complexity of the problem?
- Fast, randomized algorithm:
	- **—** Guess values for x and y and compute left-hand side (LHS) and right-hand side (RHS) of equation.
	- H If LHS \neq RHS, then we know that the polynomials are different.
	- **—** If LHS = RHS, then we suspect that the polynomials are identical, but we don't know for sure, so we repeat the experiment with other x and y values.
- Idea works if there are many witnesses.

Autumn 2011 **17 of 23**

witnesses

Let $f(n)$ be a polynomial in n and let the probability of success after $f(n)$ steps/coin tosses be $\geq \frac{1}{2}$ $\frac{1}{2}$. After $f(n)$ steps the algorithm either

- finds a witness and says "Yes, the polynomials are different", or
- halts without success and says "No, maybe the polynomials are identical".

This sort of algorithm is called a **Monte Carlo algorithm**.

Note: The probability that the Monte Carlo algorithm succeeds after $f(n)$ steps is **independent of input** (and dependent only on the coin tosses).

- Therefore the algorithm can be repeated on the same data set.
- After 100 repeated trials, the probability of failure is $\leq 2^{-100}$ which is smaller then the probability that a meteorite hits the computer while the program is running!

Autumn 2011 **18 of 23**

Metaheuristics

Simulated Annealing

- Analogy with physical annealing
- 'Temperature' T, annealing schedule
- 'Bad moves' with probability $\exp(-\delta f/T)$

Genetic algorithms

- Analogy with Darwinian evolution
- 'individuals', 'fitness', 'cross breeding'

Neural Networks

- Analogy with human mind
- 'neurons', 'learning'

Taboo search

- Analogy with culture
- adaptive memory, responsive exploration

Parallel computing

- some problems can be efficiently parallelized
- some problems seems inherently sequential

Parallel machine models

- **Alternating TMs**
- **Boolean Circuits**

— Boolean Circuit complexity: **"time"** (length of longest directed path) and **hardware** (# of gates)

Autumn 2011 20 of 23

• **Parallell Random Access Machines (PRAMs)** P_0) (P_1) (P_2) $m_0 \mid m_1 \mid m_2 \mid m_3$ **—** Read/Write conflict resolution strategy **—** PRAM complexity: **time** (# of steps) and **hardware** (# of processors) **Example:** Parallel summation in time $\mathcal{O}(\log n)$ $m_0\!\!:\!\!3\,\,m_1\!\!:\!\!5\,\,m_2\!\!:\!\!2\,\,m_3\!\!:\!\!7\,\,m_4\!\!:\!\!6\,\,m_5\!\!:\!\!1\,\,m_6\!\!:\!\!2\,\,m_7\!\!:\!\!5$ $P₂$ P_0 P_1 P_2 P_3 P_1 $\log_2 n$ time P_1 $m_0: {\bf 8} \hspace{1cm} m_1: {\bf 9} \hspace{1cm} m_2:7 \hspace{1cm} m_3:7$ $m_1 : 14$ P_0 $m_0:17$ P_0 $m_0:31$ **Result:** Boolean Circuit complexity = PRAM complexity.

Autumn 2011 2012 21:05 22 Of 23

Limitations to parallel computing

Good news

parallel time \leftrightarrow sequential space

Example: HAMILTONICITY can easily be solved in parallel polynomial time:

- On a graph with n nodes there are at most $n!$ possible Hamiltonian paths.
- \bullet Use n! processors and let each of them check 1 possible solution in polynomial time.
- Compute the the OR of the answers in parallel time $\mathcal{O}(\log(n!)) = \mathcal{O}(n \log n)$.

Bad news

Theorem 4 *With polynomial many processors*

parallel poly. time = sequential poly. time

Proof:

- 1 processor can simulate one step of m processors in sequential time $t_1(m) = \mathcal{O}(m)$
- Let $t_2(n)$ be the polynomial parallel time of the computation. If m is polynomial then $t_1(m) \cdot t_2(n) =$ polynomial.

Parallel complexity classes

Def. 3 *A language is said to be in class NCif it is recognized in polylogarithmic,* $\mathcal{O}(\log^k(n))$, *parallel time with uniform polynomial hardware.*

P-hard, Ex: CIRCUIT VALUE

 \bullet $\mathcal{P} \stackrel{?}{=} \mathcal{NC}$

Autumn 2011 23 of 23