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Review

Objective
techniques — how to prove that a problem is

unsolvable

insights — what sort of problems are
unsolvable

Unsolvable

Solvable

unsolvable ; undecidable

(by algorithms) languages

problems

solvable ; decidable

problems languages
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Meaning

• All algorithms in the world live in the
basket

• Infinitely many of them — most of them
are unknown to us

• Meaning of unsolvability: No algorithm in
the basket solves the problem (decides L)

• Meaning of solvability: There is an
algorithm in the basket that solves the
problem (but we don’t necessarily know
what the algorithm looks like)
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Techniques
To prove that

• L is solvable: Show an algorithm

• L is unsolvable: Difficulty: Cannot check
all the algorithms in the basket. Cannot
even see most of them, because they have
not yet been constructed . . .

Strategy
1. Show LH (HALTING problem) undecidable

using diagonalisation .

LH

2. Show another langauge L undecidable by
reduction: If L kan be solved, so can LH .

LH
L
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Step 1: HALTING is unsolvable
Def. 1 (HALTING)

LH = {(M, x)|M halts on input x}

Theorem 1 The Halting Problem is
undecidable.

Proof (by diagonalization): Given a Turing
machine M ′ that decides LH we can construct
a Turing machine M ′′ as follows:

M’

NO

YES

halt

M"

input

QUESTION: What does M ′′ do when given
M ′′, M ′′ as input?

CONCLUSION: Since the assumption that M’
exists leads to a contradiction (i.e. an
impossible machine), it must be false.
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The universal Turing machine Mu

• Mu works like an ordinary computer: It
takes a code (program) M and a string x as
input and simulates (runs) M on input x.

• Mu exists by Church’s thesis.

• To prove existence of Mu we must
construct it. Here is a 3-tape Mu:

q1

M ’su ... rules of M

...

(s,0)

... 0 1 0 b ... tape of Mb

,b, R) ...

state=s ...counters

control
finite

b

(q1
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Alternative proof of Theorem 1:

ǫ 0 1 00 01 10 11 000 · · ·

ǫ

0

1

00 1 0 0 6 10 0 1 0 0

01 0 1 0 1 6 01 1 1 0

10

11

000
...

• We have strings as column labels

• We have Turing machine (codes) as row
labels

• The 1’s in each row define the set of strings
each TM accepts.

• After flipping the diagonal elements, the 1’s
on the diagonal represents those machines
which don’t accept their own code as input

• No Turing machine can possibly accept
that diagonal language!
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Meaning
An example with Π = 3.14159265359 . . . :

L1 = {X|X is a substring of the decimal

expansion of Π}

L2 = {K| There areKconsecutive zeros

in the decimal expansion of Π}

Classify L1, L2 as

• not acceptable

• acceptable but not decidable

• decidable

Note: Only problems which take an infinite
number of different inputs can possibly be
unsolvable.
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Reductions

M

(M,x)

input
M R LM

YES

NO

H

Meaning of a reduction
Image: You meet an old friend with a brand
new ML-machine under his shoulder.
Without even looking at the machine you say:
“It is fake!”

How the reduction goes
Image (an old riddle): You are standing at a
crossroad deep in the forest. One way leads to
the hungry crocodiles, the other way to the
castle with the huge piles of gold. In front of
you stands one of the two twin brothers. One
of them always lies, the other always tells the
truth. You can ask one question. What do you
say?
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A typical reduction

L$ = {M |M (eventually) writes a $ when

started with a blank tape}

Claim: L$ is undecidable

Proof:

M R M

M

(M,x)

H

NO

YES

NO

M’
$

YES

M’:
Simulate M on input x;

IF M halts THEN write a $;

Important points:

• M ′ must not write a $ during the
simulation of M !

• ’Write a $’ is an arbitrarly chosen action!
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MR:
Output the Mu code modified as follows:
Instead of reading its input M and x, the
modified Mu has them stored in its finite
control and it writes them on its tape. After
that the modified Mu proceeds as the
ordinary Mu untill the simulation is finished.
Then it writes a $.

Reduction as mathematical function
Given a reduction from L1 to L2. Then MR

computes a function

fR :
∑∗

→
∑∗

which is such that

x ∈ L1 ⇒ fR(x) ∈ L2

x 6∈ L1 ⇒ fR(x) 6∈ L2

L2L1

Σ* Σ*
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Undecidability in a Nutshell

LH LH
L

• show LH unsolvable by diagonalization

• show L unsolvable by reduction

Reductions

M R M

M

(M,x)

H

NO

YES

NO

M’
L

YES

M’:
Simulate M on input x;

Do <ACTION>;
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Example
Theorem 2 Equivalence of programs (Turing
machines) is undecidable.

Proof:

MH

M
NO

YES

NO
E

YES

M R
(M,x)

M’’

M’

M’:
Simulate M on input x;

Accept;

M”:
Accept;

• M ′′ accepts all inputs.

• M and x are constants to M ′.

• M ′ accepts all inputs if and only if M halts
on input x.
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A solvable problem

Ls = {Ms|Ms(eventually) moves its R/W head

when started with a blank tape}

“Proof” that Ls is undecidable:

Simulate M on input x;

Move the R/W head;

“Proof” that Ls is decidable:

Simulate Ms on empty string as input;

for |Γ| × |Q| steps;


