
Autumn 2011 1 of 24

Review of unsolvability

L
LH

To prove unsolvability: show a reduction.

To prove solvability: show an algorithm.

Unsolvable problems (main insight)

• Turing machine (algorithm) properties

• Pattern matching and replacement (tiles,
formal systems, proofs etc.)

Autumn 2011 2 of 24

Complexity

Unsolvable

Nice (tractable)

Horrible (intractable)

•Horrible problems are solvable by
algorithms that take billions of years to
produce a solution.

• Nice problems are solvable by “proper”
algorithms.

•We want techniques and insights

Complexity←→ resources: time, space
l

complexity classes:
P(olynomial time), NP-complete,
Co-NP-complete, Exponential time,
PSPACE, . . .

Autumn 2011 3 of 24

Goal

= complete or "hardest"
problems in a class

Co
NP

NP

P

PSPACE

EXP TIME
...

Map of classes

Autumn 2011 4 of 24

Complexity: techniques

Impossible

Nice (tractable)

Horrible (intractable)

Intractable , best algorithms are infeasible

Tractable , solved by feasible algorithms

Problems Complexity classes

Horrible ; NP-complete,NP-hard,

PSPACE-complete,

EXP-complete, . . .

Nice ; P (Polynomial time)

Goal of complexity theory
Organize problems into complexity classes.

• Put problems of a similiar complexity into
the same class.

• Complexity reveals what approaches to
solution should be taken.

Complexity theory will give us an organized
view of both problems and algorithms.

Autumn 2011 5 of 24

Time complexity and the class P

We say that Turing machine M recognizes
language L in time t(n) if given any x ∈

∑∗

as input M halts after at most t(|x|) steps
scanning ’Y’ or ’N’ on its tape, scanning ’Y’ if
and only if x ∈L.

(|x| is the input length – the number of TM
tape squares containing the characters of x)

Note: We are measuring worst-case behavior
of M , i.e. the number of steps used for the
most “difficult” input.

We say that language L has time complexity
t(n) and write L ∈ TIME

(

t(n)
)

if there is a
Turing machine M which recognizes L in
timeO (t(n)).

Polynomial time P=
⋃

k

TIME (nk)

Note: P (as well as every other complexity
class) is a class (a set) of formal languages.

Autumn 2011 6 of 24

“Nice” or “tractable” ;P

Real time on
;

Turing machine time

a PC/Mac/Cray/ (number of steps)

Hypercube/. . .

Computation Complexity Thesis
All reasonable computer models are
polynomial-time equivalent (i.e. they can
simulate each other in polynomial time).

Consequence: P is robust (i.e. machine
independent).

Worst-case
;

Real-world

complexity difficulty

Feasible
;

Polynomial-time

solution algorithm

• t(n) ;O (t(n))
Argument: “for large-enough n. . . ”

• n100 ≤ nlog n. Yes, but only for n > 2100.
Argument: Functions like n100 or nlog n don’t
tend to arrise in practice.

n2 ≪ 2n already for small

or medium-sized inputs:

2n

n2

Autumn 2011 7 of 24

Polynomial-time simulations &
reductions
We say that Turing machine M computes
function f(x) in time t(n) if, when given x as
input, M halts after t(|x|) = t(n) steps with
f(x) as output on its tape.

Function f(x) is computable in time t(n) if
there is a TM that computes f(x) in time
O (t(n)).

For constructing the complexity theory we
need a suitable notion of an efficient
’reduction’:

ML1

M MR 2L

We say that L1 is polynomial-time reducible
to L2 and write L1 ∝ L2 if there is a
polynomial-time computable reduction from
L1 to L2.

Autumn 2011 8 of 24

For arguments of the type

L1 is hard/complex ⇒ L2 is hard/complex

we need the following lemma:

Lemma 1 A composition of polynomial-time
computable functions is polynomial-time
computable.

Proof:

f1 f2

f1(x) f1(x)2f ()
M M

x

t1 t2
t

• |f1(x)| ≤ t1(|x|) because a Turing machine
can only write one symbol in each step.

• “polynomial polynomial = polynomial” or
(

nk
)l

= nk∗l

• t2
(

|f1(x)|
)

is a polynomial.

• TIME (t) = t1(|x|) + t2
(

|f1(x)|
)

is a
polynomial because the sum of two
polynomials is a polynomial.

Autumn 2011 9 of 24

We want to make a cut!

hard
(computationally)

easy

all solvable
problems

Strategy
It is the same as before (in uncomputability):

• Prove that a problem L is easy by showing
an efficient (polynomial-time) algorithm
for L.

• Prove that a problem L is hard by showing
an efficient (polynomial-time) reduction
(L1 ∝ L) from a known hard problem L1 to
L.

Difficulty
Finding the first truly/provably “hard”
problem.

Way out
Completeness & Hardness

Autumn 2011 10 of 24

NP-completeness

How to prove that

a problem is hard?

Completeness

We say that language L is hard for class C
with respect to polynomial-time reductions†,
or C-hard, if every language in C is
polynomial-time reducible to L.

We say that language L is complete for class
C with respect to polynomial-time
reductions†, or C-complete, if L ∈C and L is
C-hard.

†Other kinds of reductions may be used

Note:

• If L is C-complete/C-hard and L is easy
(L ∈ P) then every language in C is easy.

• L is C-complete means that L is “hardest
in” C or that L “characterizes” C.

Autumn 2011 11 of 24

NP (non-deterministic polynomial
time)
A non-deterministic Turing machine (NTM)
is defined as deterministic TM with the
following modifications:

• NTM has a transition relation △ instead
of transition function δ

△ :
{

(

(s, 0), (q1, b, R)
)

,
(

(s, 0), (q2, 1, L)
)

, . . .
}

• NTM says ‘Yes’ (accepts) by halting

Note: A NTM has many possible
computations for a given input. That is why it
is non-deterministic.

time

initial
config.

accept

t (n)

•Mathematician doing a proof ;NTM

• The original TM was a NTM

Autumn 2011 12 of 24

We say that a non-deterministic Turing
machine M accepts language L if there exists
a halting computation of M on input x if and
only if x ∈ L.

Note: This implies that NTM M never stops if
x /∈ L (all paths in the tree of computations
have infinite lengths).

We say that a NTM M accepts language L in
(non-deterministic) time t(n) if M accepts L
and for every x ∈ L there is at least one
accepting computation of M on x that has
t(|x|) or fewer steps.

We say that L ∈ NTIME
(

t(n)
)

if L is
accepted by some non-deterministic Turing
machine M in timeO (t(n)).

NP =
⋃

k

NTIME (nk)

Note: All problems inNP are decision
problems since a NTM can answer only ’Yes’
(there exists a halting computation) or ’No’
(all computations “run” forever).

Autumn 2011 13 of 24

The meaning of “L isNP-complete”

Complexity
Many people have tried to solve
NP-complete problems efficiently without
succeeding, so most people believeNP6=P ,
but nobody has proven yet that
NPCproblems need exponential time to be
solved.

L is computationally hard (L ∈
NP-complete):

L ∈ P ⇒ NP = P

Physiognomy
Checking if x ∈ L is easy, given a certificate.

Autumn 2011 14 of 24

Example: HAMILTONICITY

1v

5v

v2

v3

v4

• A deterministic algorithm “must” do
exhaustive search:
v1 → v4 → v3 → v2 → backtrack
ց v2 →

n! possibilities (exponentially many!)

• A non-deterministic algorithm can guess
the solution/certificate and verify it in
polynomial time.

v1

v5

v4

v5

v1

v

time

3

2

2
1

1

1

1

1

1

2

v
bactracking

v4v3

2

v2

to 1v

v3
v

Certificate: (1,1,1,1,1)

Note: A certificate is like a ticket or an ID.

Autumn 2011 15 of 24

Proving NP-completeness
1. L ∈ NP

Prove that L has a “short certificate of
membership”.

Ex.: HAMILTONICITY certificate =
Hamiltonian path itself.

2. L ∈ NP-hard
Show that a knownNP-complete language
(problem) is polynomial-time reducible to
L, the language we want to showNP-hard.

First NP-complete
language

L

npL

L 3

L 2

L 1

L

Autumn 2011 16 of 24

Skills to learn
• Transforming problems into each other.

Insight to gain
• Seeing unity in the midst of diversity: A

variety of graph-theoretical, numerical, set
& other problems are just variants of one
another.

But before we can use reductions we need the
first NP-hard problem.

L1
L0

nL

L2

NP

Strategy
As before:

• ’Cook up’ a complete Turing machine
problem

• Turn it into / reduce it to a natural/known
real-world problem (by using the familiar
techniques).

Autumn 2011 17 of 24

BOUNDED HALTING problem

LBH =
{

(M, x, 1k) |NTM M accepts string x

in k steps or less
}

Note: 1k means k written in unary, i.e. as a
sequence of k 1’s.

Theorem 1 LBH isNP-complete.

Proof:

• LBH ∈ NP

1 4

31

1

21

accept

time
(steps)

k=4

2

2 3

(initial config.)C 0

Certificate: (4, 2, 1, 2). The certificate, which
consists of k numbers, is “short enough”
(polynomial) compared to the length of
the input because k is given in unary in the
input!

Autumn 2011 18 of 24

• LBH ∈ NP-hard

LM

M R M BH
NO

YESYES

NO

x (M,x,1PM)(|x|)

— For every L ∈ NP there exists by
definition a pair (M, PM) such that NTM
M accepts every string x that is in L (and
only those strings) in PM(|x|) steps or
less.

— Given an instance x of L the reduction
module MR computes (M, x, 1PM(|x|)) and
feeds it to MBH . This can be done in
time polynomial in the length of x.

— If MBH says ’YES’, ML answers ’YES’. If
MBH says ’NO’, ML answers ’NO’.

Autumn 2011 19 of 24

SATISFIABILITY (SAT)
The first real-world problem shown to be
NP-complete.

Instance: A set C = {C1, . . . , Cm} of clauses. A
clause consists of a number of literals over a
finite set U of Boolean variables. (If u is a
variable in U , then u and ¬u are literals over
U .)

Question: A clause is satisfied if at least one
of its literals is TRUE. Is there a truth
assignment T, T : U → {TRUE, FALSE}, which
satisfies all the clauses?

Example
I = C ∪ U
C =

{

(x1 ∨ ¬x2), (¬x1 ∨ ¬x2), (x1 ∨ x2)
}

U = {x1, x2}

T = x1 7→ TRUE, x2 7→ FALSE is a satisfying
truth assignment. Hence the given instance I
is satisfiable, i.e. I ∈ SAT.

I ′ =

{

C ′ =
{

(x1 ∨ x2), (x1 ∨ ¬x2), (¬x1)
}

U ′ = {x1, x2}

is not satisfiable.

Autumn 2011 20 of 24

Theorem 2 (Cook 1971) SATISFIABILITY is
NP-complete.

Proof – main ideas:

BOUNDED HALTING SATISFIABILITY

“There is a “There is a

computation”
7−→

truth assignment”

computation ;(computation) matrix

Example: input (M, 010, 14)

bb1 0

b b b bb0

b b b b bb

b b b b b b

b b b b b b

1q

2

q3

q

Y
h

b

0

1
s
0bb bb

bb

bb

bb

bb

k

k

k

Computation matrix A is polynomial-sized
(in length of input) because a TM moves only
one square per time step and k is given in
unary.

Autumn 2011 21 of 24

tape squares 7−→ boolean variables

Ex. Square A(2, 6) gives variables B(2, 6, 0),

B(2, 6, b), B(2, 6,
q0
0), etc. – but only

polynomially many.

input symbols 7−→ single-variable clauses

Ex. A(1, 5) =
s
0 gives clause

(

B(1, 5,
s
0)

)

∈ C.

Note that any satisfying truth assignment

must map B(1, 5,
s
0) to TRUE.

rules/templates 7−→ “if-then clauses”

Ex.
d

a b c
gives

(

(

B(i− 1, j, a) ∧ B(i, j, b)

∧B(i + 1, j, c)
)

⇒ B(i, j + 1, d)
)

∈ C.

Note: (u ∧ v ∧ w)⇒ z ≡ ¬u ∨ ¬v ∨ ¬w ∨ z

Since the tile can be anywhere in the matrix,
we must create clauses for all 2 ≤ i ≤ 2k and
1 ≤ j ≤ k, but only polynomially many.

Autumn 2011 22 of 24

non-determinism 7−→ “choice” variables

Ex.

F T...

G(2)

G(1)

F

F

T

T

k=4

G(t) tells us what non-deterministic choice
was taken by the machine at step t. We extend
the “if-then clauses” with k choice variables:

(

G(t) ∧ “a” ∧ “b” ∧ “c”⇒ “d”
)

∨
(

¬G(t) ∧ · · ·
)

Note: We assume a canonical NTM which

• has exactly 2 choices for each
(state,scanned symbol)-pair.

• halts (if it does) after exactly k steps.

Autumn 2011 23 of 24

Further (basic) reductions

BOUNDED HALTING

PARTITION

VERTEX COVER (VC)

HAMILTONICITY CLIQUE

SATISFIABILITY (SAT)

3SAT

3-DIMENSIONAL
MATCHING (3DM)

Polynomial-time reductions (review)
L1 ∝ L2 means that

• R :
∑∗ →

∑∗ such that
x ∈ L1 ⇒ fR(x) ∈ L2 and
x 6∈ L1 ⇒ fR(x) 6∈ L2

Σ* Σ*

L2L1

• R ∈ Pf , i.e. R(x) is polynomial computable

Autumn 2011 24 of 24

SATISFIABILITY ∝ 3-SATISFIABILITY

SAT 3SAT

Clauses with any Clauses with

number of literals
7−→

exactly 3 literals

• Cj is the j’th SAT-clause, and Cj
′

is the
corresponding 3SAT-clauses.

• yj are new, fresh variables, only used in Cj
′

.

Cj Cj

′

(x1 ∨ x2 ∨ x3) 7−→ (x1 ∨ x2 ∨ x3)

(x1 ∨ x2) 7−→ (x1 ∨ x2 ∨ yj), (x1 ∨ x2 ∨ ¬yj)

(x1) 7−→ (x1 ∨ y1
j ∨ y2

j), (x1 ∨ ¬y1
j ∨ y2

j),

(x1 ∨ y1
j ∨ ¬y2

j), (x1 ∨ ¬y1
j ∨ ¬y2

j)

(x1 ∨ · · · ∨ x8) 7−→ (x1 ∨ x2 ∨ y1
j), (¬y1

j ∨ x3 ∨ y2
j),

(¬y2
j ∨ x4 ∨ y3

j), (¬y3
j ∨ x5 ∨ y4

j),

(¬y4
j ∨ x6 ∨ y5

j), (¬y5
j ∨ x7 ∨ x8)

Question: Why is this a proper reduction?

