

To prove unsolvability: show a reduction.

To prove solvability: show an algorithm.

Unsolvable problems (main insight)

- Turing machine (algorithm) properties
- Pattern matching and replacement (tiles, formal systems, proofs etc.)

Complexity

 \rightarrow Unsolvable

Horrible (intractable)

Nice (tractable)

- Horrible problems are solvable by algorithms that take billions of years to produce a solution.
- Nice problems are solvable by "proper" algorithms.
- We want **techniques** and **insights**

Complexity ←→ **resources**: time, space \downarrow

complexity classes:

P(olynomial time), NP-complete, Co-NP-complete, Exponential time, PSPACE, ...

Complexity: techniques

 \rightarrow Impossible Horrible (intractable)

Nice (tractable)

Intractable , best algorithms are infeasible **Tractable** , solved by feasible algorithms

Problems Complexity classes Horrible \rightsquigarrow NP-complete, NP-hard, PSPACE-complete, EXP-complete, ...

Nice \rightsquigarrow $\not\!\mathcal{P}$ (Polynomial time)

Goal of complexity theory

Organize problems into **complexity classes**.

- Put problems of a similiar complexity into the same class.
- Complexity reveals what approaches to solution should be taken.

Complexity theory will give us an organized view of both problems and algorithms.

Autumn 2011 **4 of 24**

Time complexity and the class P We say that Turing machine M **recognizes language L in time** $t(n)$ if given any $x \in \sum^*$ as input M halts after at most $t(|x|)$ steps scanning 'Y' or 'N' on its tape, scanning 'Y' if and only if $x \in L$.

 $(|x|$ is the input length – the number of TM tape squares containing the characters of x)

Note: We are measuring **worst-case** behavior of M , i.e. the number of steps used for the most "difficult" input.

We say that **language L has time complexity** $t(n)$ and write $L \in \textbf{TIME}(t(n))$ if there is a Turing machine M which recognizes L in time $\mathcal{O}(t(n)).$

Polynomial time $\mathcal{P} = \bigcup \text{TIME } (n^k)$ k

Note: P (as well as every other complexity class) is a class (a set) of formal languages.

"Nice" or "tractable"

Real time on a PC/Mac/Cray/ (number of steps) Hypercube/...

❀ Turing machine **time**

Computation Complexity Thesis All **reasonable** computer models are **polynomial-time equivalent** (i.e. they can simulate each other in polynomial time).

Consequence: P is **robust** (i.e. machine independent).

Worst-case Real-world complexity difficulty

Feasible \rightsquigarrow Polynomial-time solution algorithm

- $t(n) \rightarrow \mathcal{O}(t(n))$ Argument: "for large-enough n..."
- $n^{100} \le n^{\log n}$. Yes, but only for $n > 2^{100}$. **Argument:** Functions like n^{100} or $n^{\log n}$ don't tend to arrise in practice.

 $n^2 \ll 2^n$ already for small or medium-sized inputs:

Autumn 2011 6 of 24

Polynomial-time simulations & reductions

We say that Turing machine M **computes function** $f(x)$ **in time** $t(n)$ if, when given x as input, M halts after $t(|x|) = t(n)$ steps with $f(x)$ as output on its tape.

Function $f(x)$ is **computable in time** $t(n)$ if there is a TM that computes $f(x)$ in time $\mathcal{O}(t(n)).$

For constructing the complexity theory we need a suitable notion of an efficient 'reduction':

We say that L_1 is **polynomial-time reducible** to L_2 and write $L_1 \propto L_2$ if there is a polynomial-time computable reduction from L_1 to L_2 .

For arguments of the type

 L_1 is hard/complex $\Rightarrow L_2$ is hard/complex we need the following lemma:

Lemma 1 *A composition of polynomial-time computable functions is polynomial-time computable.*

Proof:

- $|f_1(x)| \le t_1(|x|)$ because a Turing machine can only write one symbol in each step.
- "polynomial $P^{olynomial} = polynomial$ " or $\left(n^k\right)^l = n^{k+l}$
- \bullet $t_2(|f_1(x)|)$ is a polynomial.
- TIME $(t) = t_1(|x|) + t_2(|f_1(x)|)$ is a polynomial because the sum of two polynomials is a polynomial.

Autumn 2011 8 of 24

all solvable problems

Strategy

It is the same as before (in uncomputability):

- Prove that a problem L is easy by showing an efficient (polynomial-time) algorithm for L.
- Prove that a problem L is hard by showing an efficient (polynomial-time) reduction $(L_1 \propto L)$ from a known hard problem L_1 to L.

Difficulty

Finding the first truly/provably "hard" problem.

Way out Completeness & **Hardness**

N P**-completeness**

How to prove that a problem is hard?

We say that language L is **hard for class C** with respect to polynomial-time reductions† , or **C-hard**, if every language in C is polynomial-time reducible to L.

We say that language L is **complete for class C** with respect to polynomial-time reductions† , or **C-complete**, if L ∈C and L is C-hard.

† Other kinds of reductions may be used

- If L is C-complete/C-hard and L is **easy** $(L \in \mathcal{P})$ then every language in C is easy.
- L is C-complete means that L is "hardest" in" C or that L "characterizes" C.

Autumn 2011 10 of 24

N P **(non-deterministic polynomial time)**

A **non-deterministic Turing machine (NTM)** is defined as deterministic TM with the following modifications:

• NTM has a **transition relation** \triangle instead of transition function δ

 $\Delta: \{(s, 0), (q_1, b, R)), ((s, 0), (q_2, 1, L)), \ldots\}$

• NTM says 'Yes' (accepts) by halting

Note: A NTM has many possible computations for a given input. That is why it is non-deterministic.

- Mathematician doing a proof \rightarrow NTM
- The original TM was a NTM

Autumn 2011 **11 of 24**

We say that a non-deterministic Turing machine M **accepts language** L if there exists a halting computation of M on input x if and only if $x \in L$.

Note: This implies that NTM M never stops if $x \notin L$ (all paths in the tree of computations have infinite lengths).

We say that a NTM M **accepts language** L **in (non-deterministic) time** $t(n)$ if M accepts L and for every $x \in L$ there is at least one accepting computation of M on x that has $t(|x|)$ or fewer steps.

We say that $L \in \textbf{NTIME}(t(n))$ if L is accepted by some non-deterministic Turing machine M in time $\mathcal{O}(t(n))$.

 $\mathcal{NP}=\bigcup$ k $\mathbf{NTIME}\left(n^{k}\right)$

Note: All problems in \mathcal{NP} are decision problems since a NTM can answer only 'Yes' (there exists a halting computation) or 'No' (all computations "run" forever).

Autumn 2011 **12 of 24**

The meaning of " L is $N \mathcal{P}$ -complete"

Complexity

Many people have tried to solve $\mathcal N\mathcal P$ -complete problems efficiently without succeeding, so most people believe $\mathcal{NP}\neq\mathcal{P}$, but nobody has **proven** yet that NPC problems need exponential time to be solved.

L is computationally hard ($L \in$ \mathcal{NP} -complete):

 $L \in \mathcal{P} \Rightarrow \mathcal{NP} = \mathcal{P}$

Physiognomy

Checking if $x \in L$ is easy, given a certificate.

Example: HAMILTONICITY

• A deterministic algorithm "must" do exhaustive search:

 $v_1 \rightarrow v_4 \rightarrow v_3 \rightarrow v_2 \rightarrow$ **backtrack** $\rightarrow v_2 \rightarrow$

n! possibilities (exponentially many!)

• A non-deterministic algorithm can **guess** the solution/**certificate** and verify it in polynomial time.

Autumn 2011 **14 of 24**

Proving N P**-completeness**

 $1. L \in \mathcal{NP}$ Prove that L has a "short certificate of membership".

Ex.: HAMILTONICITY certificate = Hamiltonian path itself.

2. $L \in \mathcal{NP}$ -hard

Show that a known \mathcal{NP} -complete language (problem) is polynomial-time reducible to L, the language we want to show \mathcal{NP} -hard.

Skills to learn

• Transforming problems into each other.

Insight to gain

• Seeing unity in the midst of diversity: A variety of graph-theoretical, numerical, set & other problems are just variants of one another.

But before we can use reductions we need **the first** $\mathcal N \mathcal P$ -hard problem.

Strategy

As before:

- 'Cook up' a complete Turing machine problem
- Turn it into / reduce it to a natural/known real-world problem (by using the familiar techniques).

BOUNDED HALTING problem

 $L_{BH}=\left\{ (M,x,1^{k})\,|\, \text{NTM }M \text{ accepts string }x\right\}$ in k steps or less $\}$

Note: 1^k means k written in unary, i.e. as a sequence of k 1's.

Theorem 1 L_{BH} *is* \mathcal{NP} *-complete.*

Proof:

$$
\bullet \; L_{BH} \in \mathcal{NP}
$$

Certificate: (4, 2, 1, 2). The certificate, which consists of k numbers, is "short enough" (polynomial) compared to the length of the input because k is given in unary in the input!

Autumn 2011 **17 of 24**

• $L_{BH} \in \mathcal{NP}$ -hard

- For **every** $L \in \mathcal{NP}$ there exists by definition a pair (M, P_M) such that NTM M accepts every string x that is in L (and only those strings) in $P_M(|x|)$ steps or less.
- **—** Given an instance x of L the reduction module M_R computes $(M, x, 1^{P_M(|x|)})$ and feeds it to M_{BH} . This can be done in time polynomial in the length of x .
- If M_{BH} says 'YES', M_L answers 'YES'. If M_{BH} says 'NO', M_L answers 'NO'.

Autumn 2011 **18 of 24**

SATISFIABILITY (SAT)

The first real-world problem shown to be $\mathcal N\mathcal P$ -complete.

Instance: A set $C = \{C_1, \ldots, C_m\}$ of **clauses**. A clause consists of a number of **literals** over a finite set U of Boolean variables. (If u is a variable in U, then u and $\neg u$ are literals over $U.$

Question: A clause is **satisfied** if at least one of its literals is TRUE. Is there a **truth assignment T**, $T: U \rightarrow \{TRUE, FALSE\}$, which satisfies all the clauses?

Example

$$
I = C \cup U
$$

\n
$$
C = \{(x_1 \lor \neg x_2), (\neg x_1 \lor \neg x_2), (x_1 \lor x_2)\}
$$

\n
$$
U = \{x_1, x_2\}
$$

 $T = x_1 \mapsto \text{TRUE}, x_2 \mapsto \text{FALSE}$ is a satisfying truth assignment. Hence the given instance I is **satisfiable**, i.e. $I \in SAT$.

$$
I' = \begin{cases} C' = \{(x_1 \lor x_2), (x_1 \lor \neg x_2), (\neg x_1)\} \\ U' = \{x_1, x_2\} \end{cases}
$$

is not satisfiable.

Autumn 2011 \sim 19 of 24 \sim

Theorem 2 (Cook 1971) SATISFIABILITY *is* N P*-complete.*

7−→

Proof – main ideas:

BOUNDED HALTING SATISFIABILITY

computation"

"There is a "There is a truth assignment"

computation \rightsquigarrow (computation) matrix

Example: input $(M, 010, 14)$

Computation matrix A is polynomial-sized (in length of input) because a TM moves only one square per time step and k is given in unary.

Autumn 2011 **2011** 2012 **20** of 24

tape squares 7−→ **boolean variables**

Ex. Square $A(2, 6)$ gives variables $B(2, 6, 0)$, $B(2,6,b), B(2,6,$ q_0 $\binom{10}{0}$, etc. – but only polynomially many.

input symbols 7−→ **single-variable clauses**

Ex. $A(1, 5) = \frac{s}{0}$ gives clause $(B(1, 5,$ s $S_{0}^{(s)}$) $\in C$.

Note that any satisfying truth assignment must map $B(1,5,$ s \int_0^5 to TRUE.

rules/templates 7−→ **"if-then clauses" Ex.** \overline{d} $a \mid b \mid c$ gives $\Big((B(i-1,j,a) \wedge B(i,j,b)) \Big)$ $\wedge B(i+1,j,c)$ $\Rightarrow B(i,j+1,d)$ $\in C$.

Note: $(u \wedge v \wedge w) \Rightarrow z \equiv \neg u \vee \neg v \vee \neg w \vee z$

Since the tile can be anywhere in the matrix, we must create clauses for all $2 \le i \le 2k$ and $1 \leq j \leq k$, but only polynomially many.

Autumn 2011 \sim 21 of 24

non-determinism 7−→ **"choice" variables Ex.**

 $G(t)$ tells us what non-deterministic choice was taken by the machine at step t . We extend the "if-then clauses" with k choice variables:

 $(G(t) \wedge "a" \wedge "b" \wedge "c" \Rightarrow "d") \vee (\neg G(t) \wedge \cdots)$

Note: We assume a **canonical NTM** which

- has exactly 2 choices for each (state,scanned symbol)-pair.
- \bullet halts (if it does) after exactly k steps.

SATISFIABILITY ∝ **3-SATISFIABILITY**

SAT 3SAT Clauses with any Clauses with number of literals 7−→ exactly 3 literals \bullet C_j is the j 'th SAT-clause, and $C_j^{'}$ is the corresponding 3SAT-clauses. \bullet y_j are new, fresh variables, only used in $C_j^{'}.$ C_j and C_j C_i^{\prime} $(x_1 \vee x_2 \vee x_3) \longmapsto (x_1 \vee x_2 \vee x_3)$ $(x_1 \vee x_2) \longrightarrow (x_1 \vee x_2 \vee y_j), (x_1 \vee x_2 \vee \neg y_j)$ $(x_1) \longrightarrow (x_1 \vee y_j^1 \vee y_j^2)$ $j^{2}), (x_{1} \vee \neg y_{j}^{1} \vee y_{j}^{2})$ $\binom{2}{j},$ $(x_1 \vee y_j^1 \vee \neg y_j^2)$ $\widehat{y}^2),$ $(x_1 \vee \neg y^1_j \vee \neg y^2_j)$ $\binom{2}{j}$ $(x_1 \vee \cdots \vee x_8) \longmapsto (x_1 \vee x_2 \vee y_i^1)$ $j^{1}_{j}), (\neg y^{1}_{j} \vee x_{3} \vee y^{2}_{j})$ $\binom{2}{j},$ $(\neg y_j^2 \lor x_4 \lor y_j^3)$ $j^{3}),(\neg y_{j}^{3} \lor x_{5} \lor y_{j}^{4})$ $\binom{4}{j},$ $(\neg y_j^4 \lor x_6 \lor y_j^5)$ $\{(\neg y_j^5 \lor x_7 \lor x_8)$ **Question:** Why is this a proper reduction?

Autumn 2011 24 of 24