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DYNAMIC PROGRAMMING

Dynamic programming is a design strategy that involves dynamically construct-
ing a solution S to a given problem using solutions S, S,, ... , S, to smaller (or
simpler) instances of the problem. The solution S, to a given smaller problem in-
stance is itself built from the solutions to even smaller (or simpler) problem
instances, and so forth. We start with the known solutions to the smallest (sim-
plest) problem instances and build from there in‘a bottom-up fashion. To be able
to reconstruct S from S, S,, ..., S, We usually require some additional informa-
tion. We let Combine denote the function that combines S, S,, ..., S, using the
additional information to obtain S, so that
S = Combine(S,, S, .-, S,,)-

Dynamic programming is similar to divide-and-conquer in the sense that it
is based on a recursive division of a problem instance into smaller or simpler
problem instances. However, whereas divide-and-conquer algorithms often use
a top-down resolution method, dynamic programming algorithms invariably
proceed by solving all the simplest problem instances before combining them
into more complicated problem instances in a bottom-up fashion. Further,
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ynlike many instances of divide-and-conquet, dynamic programming algo-
rithms typically do not recalculate the solution to a given problem instance. Dy-
namic programming algorithms for optimization problems also can avoid
generating suboptimal problem instances when the Principle of Optimality holds,
thereby leading to increased efficiency.

/

Optimization Problems,avhd the Principle of Optimality

; A

The method of dynamic programining is most effective in solving optimization
problems when the Principle of Optimality holds. Consider the set of all feasible
solutions to an optimizaﬁon problem; that is, all the solutions satistying the con-
straints of the problem//An optimal solution S is a solution that optimizes (mini-
mizes or maximizes)/the objective function. If we wish to obtain an optimal
solution S to the givén problem instance, then we must optimize (minjimize or
maximize) over all solutions Sy, Sy ve s Sy such that S = Combine(Sy, Sy, -+ » S,).
For many problems, it is computationally infeasible to examine all feasible solu-
tions because exponentially many possibilities exist. Fortunately, we can drasti-
cally reduce the number of problem instances that we need to consider if the
Principle of Optimality holds.

Given an optimization problem and an associated function Combine, the Principle
of Optimality holds if the following is always true: £ S = Combine(Sys Sys +++ » Sy and

> m

S is an optimal solution to the problem instance, then S, Sy -+ » Sy ALE optimal

ne
solutions to their associated problem instances.

\

' The efficiency of dynamic programming solutions based on a recurrence relation express- |
ing the principle of optimality results from (1) the bottom-up resolution of the recurrence,
thereby eliminating redundant recalculations, and (2) eliminating suboptimal solutions to
subproblems as we build up optimal solutions to larger problems; that is, we use only opti-
mal solution “building blocks” in constructing our optimal solution.

We first illustrate the Principle of Optimality for the problem of finding
a parenthesization of a matrix product of matrices Mg, ... » M, | that minimizes
the total number of (scalar) multiplications over all possible parenthesizations. if
(M M) (M oy M, _,)isthe “first-cut” set of parentheses (and the last prod-
uct performed), then the matrix products M - M, and M, M,_, must both
be parenthesized in such a way as to minimize the number of multiplications v¢-

quired to carry out the respective products. As a second example, consider the
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problem of finding optimal binary search trees for a set of distinct keys. Recall
that a binary search tree T for keys K, < -+ < K, _, is a binary tree on # nodes,
each containing a key such that the following property is satisfied: Given any
node v in the tree, each key in the left subtree rooted at v is no larger than the
key in v, and each key in the right subtree rooted at v is no smaller than the key
in v (see Figure 4.17). If K, is the key in the root, then the left subtree L of the
root contains K, ... , K, _,, and the right subtree R of the root contains K, , |, ... ,
K, _ . Given a binary search tree T for keys K, ... , K, _ |, let K; denote the key
associated with the root of T, and let L and R denote the left and right subtrees
(of the root) of T, respectively. Again, it follows that L (solution S,) is a binary
search tree for keys K, ... , K, _ |, and R (solution S,) is a binary search tree for

H
keys K K, _,. Given L and R, the function Combine(L,R) merely recon-

i+t -
structs the tree T'using K, as the root. In the next section, we show that the Prin-
ciple of Optimality holds for this problem by showing that if T is an optimal

binary search tree, then so are L and R.

Optimal Parenthesization for Computing a
Chained Matrix Product

Our first example of dynamic programming is an algorithm for the problem
of parenthesizing a chained matrix product so as to minimize the number of
multiplications performed when computing the product. When solving this
problem, we will assume the straightforward method of matrix multiplication.
If A and B are matrices of dimensions p X g and g X 7, then the matrix product
AB involves pqr multiplications. Given a sequence (or chain) of matrices
My, My, ..., M, |, consider the product MM, M, _, where the matrix M, has
dimensiond, X d, ,, i=0,...,n fora suitable sequence of positive integers d,,
d,, ..., d . Because a matrix product is an associative operation, we can evalu-
ate the chained product in one of many ways, depending on how we choose to
parenthesize the expression. It turns out that the manner in which the
expression is parenthesized can make a major difference in the total number of
multiplications performed when computing the chained product. In this
section, we consider the problem of finding an optimal parenthesization—that is,
a parenthesization that minimizes the total number of multiplications per-
formed using ordinary matrix products.

We illustrate the problem with an example that commonly occurs in multi-
variate calculus. Suppose 4 and B are n X »n matrices, X is an n X 1 column vec-
tor, and we wish to evaluate ABX. The product ABX can be parenthesized in two
ways, (AB)X and A(BX), resulting in #* + »n? and 2#* multiplications, respectively.
Thus, the two ways of parenthesizing make a rather dramatic difference in the
number of multiplications performed; that is, order ©(*) versus order ©(n?).
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The following is a formal, recursive definition of a fully parenthesized
chained matrix product and its associated first cut.

DEFINITION 9.2.1 Given the sequence of matrices My, My, .- M, Pisa fully par enthesized matrix
product of My, M, ... M, (vvh1ch for convenience, we simply call a parenthe-

sization of MM, = M, _ ) ifp satisfies

P=M, n=1, *
p=(PP,y), n>1

where for some k, P, and P, are parenthesizétions of the matrix products
MM, M, and M, , M, M. ., respectively. We call P, and P, the left and

"n—

right parenthesmaﬂons of P, respectwely. We call the index k the first-cit index
of P.

The table in Figure 9.1 shows all the parenthesizations of the matrices M,
M,, M,, and M, having dimensions 20 X 10, 10 %X 50, 50 X 5, and 5 X 30, re-
spectwely, with the optimal parenthesmaﬂons highlighted.

There is one-to-one correspondence between parenthesizations of

MM, -~ M, and 2-trees having n leaf nodes. Given a parenthesization P

of M, M M, if n = 1, its associated 2-tree T(P) consists of a single node cor-
respondmg to the matrix My otherwise, T(P) has left subtree T(P,) and right
subtree T(P,), where P, and P, are the left and right parenthesizations of P. The
2-tree T(P) is the expr ession tree for P (see Figure 9.2).

(M (M MZ)) ,) 6500

shown for matrices M, ((M,M,)M,)M,) 18000
3

M,, M, and M, having
dumensmns 20 X 10,
10 X 50, 50 % 5, and
5 x 30, respectively.
The optimal
parenthesizations are
shaded.

............................................. no. no. no. no.
FIGURE 9.1 mult.  mult. mult. mult.
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Thus, the number of parenthesizations p, equals the number ¢, of 2-trees
having 7 leaf nodes, so that by Exercise 4.14 we have ’

_ l<2n = 2) N Q(_AL_")

P\ n-1)" 22— n n*)

Hence, a brute-force algorithm that examines all possible parenthesizations is
computationally infeasible.

We are led to consider a dynamic programming solution to our problem by
noting that the Principle of Optimality holds for optimal parenthesizing. Indeed,
if we consider any optimal parenthesization P for.M M, =+ M, _,, clearly both the
left and right parenthesizations P, and P, of P must be optimal for P to be
optimal.

For0=i=j=n-1,letm;denote the number of multiplications performed
using an optimal parenthesization of MM, - M, By the Principle of Optimal-
ity, we have the following recurrence for my; based on making an optimal choice
for the first-cut index:

(9.2.1)

k<j=n-—1}
O,z'=0,...,n—

m; mn{mlk+ink+lj+ddk+ldj+l 0=i= (9.2.2)
init. cond. n; = 1.7

The value m, , _, corresponds to the minimum number of multiplications
performed when computing M M, -+ M, _ . We could base a divide-and-
conquer algorithm ParenthesizeRec directly on a top-down implementation of
the recurrence relation (9.2.2). Unfortunately, a great many recalculations are

performed by ParenthesizeRec, and it ends up doing €(3”) multiplications
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to compute the minimum number m, ,_, corresponding to an optimal
parenthesization.

A straightforward dynamic programming algorithm proceeds by computing
the values My 0=i=j=n— 1,in abottom-up fashion using (9.2.2), thereby
avoiding recalculations. Note that the values my, 0= i =j=mn—1, occupy the
upper-right triangular portion of an 7 X 7 table. Our bottom-up resolution pro-
ceeds throughout the upper-right triangular portion diagonal by diagonal, start-
ing from the bottom diagonal consisting of the elements m;, = 0,1 =0, ..., 71 — 1.
The g™ diagonal consists of the elements m:’l +g4=0,..,n— 1 Figure 9.3 il-
lustrates the computation of m i for the example given in Figure 9.1. When com-
puting m,;, we also generate a table ¢; of indices k, where the minimum in (9.2.2)
occurs; that is, ¢ is where the first cut in MM, , | - MJ is made in an optimal
parenthesization. The values ¢, can then be used to actually compute the matrix
product according to the optimal parenthesization.

The following procedure, OptimalParenthesization, accepts as input the dimen-
sion sequence d[0:n], where matrix M, has dimension d, X d,, |, i1 =0, ..,7 — 1.
Procedure OptimalParenthesization outputs the matrix m[0:n — 1, 0 — 1], where
mli,j] = My 0=i=j=n— 1,isdefined by recurrence (9.2.2). OptimalParenthe-
sization also outputs the matrix FirstCut[0:n — 1, 0:n — 1], where FirstCutli, j] = G
0 =i=j=n— 1,which is the first-cut index in an optimal parenthesization for

i J
FIGURE 9.3 ;o0 ! 2 ’
Table showing oo 0 10000 3500 6500
values my, 0 0 2 =3
O0=i=sj=3, 1
computed diagonal \
by diagonal from 1 0 2500 4000
g=0tog=3 1 2 =2
using the bottom- a
up resolution of
(9.2.2) for matrices 2 0 7500
Mo, My, M, and M, 2 g=1
having dimensions
20 X 10, 10 X 50,
50 X 5, and 3 0
5 X 30, respectively. g=0

The values of G
are shown
underneath each
m0=i=j=3.
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procedure OptimalParenthesization(d[0:n], m[O:n — 1, O:n — 1], FirstCut[O:n — 1,
On—1]
Input:  d[0:n] (dimension sequence for matrices M, M,, ..., M, _ )
Output: m[0:n — 1,00 — 11 (mli, j] = number of multiplications performed in an
optimal parenthesization for computing M, - - - M,
O=i=j=n-1)
FirstCut[O:n — 1, 0:n — 1] (index of first cut in optimal parenthesization of
MM, 0=i=j=n-1)
fori<—Oton — 1do // initialize M[i, 1] tc%‘zero
mfi,i] <0
endfor
for diag <~ 1ton — 1 do
fori« Oton — 1 — diag do

5
&
»

EER R

LT UG AR E AP B B RN PR

j« i+ diag // compute m;; according to (9.2.2)
Min <« m[i + 1,/] + dlilxd]i + 1]xd[j + 1]
TempCut « i

fork i+ 1toj~ 1do
Temp < mli, kK] + mlk + 1,/] + dlilxdlk + 1]xd[j + 1]
if Temp < Min then
Min « Temp
TempCut « k
endif
endfor
mli, j] < Min
FirstCutlj, j] < TempCut
endfor
endfor
end OptimalParenthesization

B U BN e R R DD RGO DR RO RA BT R GEORR OO E O NI Y I E BT DD OGETHD DG FNAR TS CERBT VO EGRTTIRBOEERE 2 60T
\

zocco6a

GresmacRULRATTY

exas

swe

EREEY

A simple loop counting shows that the complexity of OptimalParenthesization
is in ©(n?).

It is now straightforward to write pseudocode for a recursive function
ChainMatrixProd for computing the chained matrix product M, --- M, _, using
an optimal parenthesization. We assume that the matrices M, ... , M, _ | and
the matrix FirstCut[O:n — 1, O:n — 1] are global variables to the procedure
ChainMatrixProd. The chained matrix product M, --- M, _, is computed by ini-
tially invoking the function ChainMatrixProd with i = 0 and j = n — 1. Chain-
MatrixProd invokes a function MatrixProd, which computes the matrix product

of two input matrices.
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ERERd

»»=200 function ChainMatrixProd(j, ) recursive

Input: /, / (indices delimiting matrix chain M,, ..., M)
M, ..., M, _, (global matrices)
FirstCut[0:n — 1, 0:n — 1] (global matrix computed by
OptimalParenthesization)
Output: M, - - - M; (matrix chain)
if j > i then
X < ChainMatrixProd(i, FirstCutli, j])
Y « ChainMatrixProd(FirstCutli, j} + 1,/) ¢«
return(MatrixProd(X, Y))
else
return(M)
endif
end ChainMatrixProd

MG BB AL ETE O RS DL OB PR CIOE BRIV TR RO GRABVT OB NI RRRNDEEPANDIEFNOBODECABBNVHIPE RO Oy

SR EBDAe 0L A A E N EBEBEN S P B OB ERLESD

passas

For the example given in Figure 9.1, invoking ChainMatrixProd with M, M,
M, M, computes the chained matrix product M M, M,M, according to the paren-
thesization ((M,(M M,))M,).

Optimal Binary Search Trees

We now use dynamic programming and the Principle of Optimality to generate
an algorithm for the problem of finding optimal binary search trees. Given a
search tree T and a search element X, the following recursive strategy finds any
occurrence of a key X. First, X is compared to the key K associated with the root.
If Xis found there, we are done. If X is not found, and if X is less than K, then we
search the left subtree; otherwise, we search the right subtree.

Consider, for example, the binary search tree given in Figure 9.4 involving
the four keys “Ann,” “Joe,” “Pat,” and “Ray”. The internal nodes correspond to
the successful searches X = “Ann,” X = “Joe,” X = “Pat,” X= “Ray,” and the leaf
nodes correspond to the unsuccessful searches X < “Ann,” “Ann” < X < “Joe,”
“Joe” < X < “Pat,” “Pat” < X < “Ray,” “Ray” < X. Suppose, for example that
X = “Ann.” Then SearchBinSrchTree makes three comparisons, first comparing X
to “Pat,” then comparing X to “Joe,” and finally comparing X to “Ann.” Now sup-
pose that X = “Pete.” Then SearchBinSrchTree makes two comparisons, first com-
paring X to “Pat” and then comparing X to “Ray.” SearchBinSrchTree implicitly
branches to the left child of the node containing the key “Ray”—that is, to the
leaf (implicit node) corresponding to the interval “Pat” < X < “Ray.” Let p,, Py
Py Vs be the probability that X = “Ann,” X = “Joe,” X = “Pat,” X = “Ray,” re-
spectively, and let g, 4,, 4,, 4, 4,, denote the probability that X < “Ann,” “Ann”
< X < “Joe,” “Joe” < X < “Pat,” “Pat” < X < “Ray,” “Ray” < X, respectively.




FIGURE 9.4
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Pat

Joe Ray

Ann

o€

Then, the average number of comparisons made by SearchBinSrchTree for the tree
T of Figure 9.4 is given by ’

3pg + 2py + py + 2p3 340 T 391 T 2q; + 245 + 24,

Now consider a general binary search tree T whose internal nodes corre-
spond to a fixed set of n keys K, K, ... . K, _, with associated probabilities
P = (P Py s P, _ ) and whose n + 1 leal (external) nodes correspond to the
n + 1 intervals Iy X <K, I: K0< X <Ky, .. ,In* % Kn L, NX<K,_,, [ X>
K, _, with associated probabilities @ = (4, 4 - » q,,)- {(When implementing 7,
the leaf nodes need not actually be included. However, when discussing the av-
erage behavior of SearchBinSrchTree, it is useful to include them.) We now derive
a formula for the average number of comparisons A(T, #, p, q) made by Search-
BinSrchTree. Let d; denote the depth of the internal node corresponding to K,
i=0,..,n— 1. Similarly, let ¢, denote the depth of the leaf node corresponding
to the interval I, i =0, 1, .. ,n. f X = K, then SearchBinSrchTree traverses the
path from the root to the internal node corresponding to K,. Thus, it terminates
after performing d, + 1 comparisons. On the other hand, if X lies in [, then
SearchBinSrchTree traverses the path from the root to the leaf node corresponding
to I, and terminates after performing e; comparisons. Thus, we have

n—1 n

A(T,n,p,q) = 2pi(d; + 1) + > g (9.3.1)
=0 =0

We now consider the problem of determining an optimal binary search tree
T, optimal in the sense that T minimizes A(T, 7, p, q) over all binary search trees
T. This problem is solved by a complete tree in the case where all the p/s are
equal and all the g;’s are equal. Here we use dynamic programming to solve the
problem for general probabilities p, and g,. In fact, we solve the slightly more gen-
eral problem, where we relax the condition that p, ... , p, _, and g, ... , g, are
probabilities by allowing them to be arbitrary nonnegative real numbers. One
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could regard these numbers as frequencies, as we did when discussing Huffman
codes in Chapter 7. That is, we solve the problem

minimize A(T, 1, p,q) ‘ (9.3.2)
T

over all binary search trees T of size i, where p, ..., P, _, and g, ... , 4, are given
fixed nonnegative real numbers. For convenience, we sometimes refer to A(T, n,
p, q) as the cost of T. We define o (p, q) by

n—1 n

o(p,q) = ;)pf + Z,)q}- (9.3.3)

Note that we have removed the probability constraint that o(p, q) = 1.

As with chained matrix products, we could obtain an optimal search tree by
enumerating all binary search trees on the given identifiers and choosing the one
with minimum A(T, #, p, q). However, the number of different binary search
trees on 72 identifiers is the same as the number of binary trees on # nodes, which
is given by the n® Catalan number

1 2n 47
b, + ——< ;) e Q('j)
n+1\n n

Thus, a brute-force algorithm for determining an optimal binary search tree
using simple enumeration is computationally infeasible. Fortunately, the Princi-
ple of Optimality holds for the optimal binary search tree problem, so we look for
a solution using dynamic programming.

Let K, denote the key associated with the root of T, and let L and R denote
the left and right subtrees (of the root) of T, respectively. As we remarked earlier,
I is a binary search tree for the keys K, ... , K; _ |, and R is a binary search tree
for the keys K, . |, ... , K, _,. For convenience, let A(T) = A(T, n, P, q),
A(L) = AL, 4, Py vov s Py 10 gy - ;) and A(R) = AR, n —1—1,p,, s Py
4;4 1> »4q,)- Clearly, each node ot T that is different from the root corresponds
to exactly one node in either L or R. Further, if Nisa node in T corresponding to
anode N’ in I, then the depth of N in Tis exactly one greater then the depth of
N’ in L. A similar result holds if N corresponds to a node in R. Thus, it follows im-
mediately from Formula (9.3.1) that '

A(T) = A(L) + A(R) + o(p, Q). : (9.3.4)
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We now employ recurrence relation (9.3.4) to show that the Principle of
Optimality holds for the problem of finding an optimal search tree. Suppose
that T'is an optimal search tree; that is, 7 minimizes A(T). We must show that
L and R are also optimal search trees. Suppose there exists a binary search tree
L’ with i — 1 nodes involving the keys K,, ... , K, _, such that A(L") < A(L).
Clearly, the tree T’ obtained from T by replacing L with I’ is a binary search
tree. Further, it follows from Formula (9.3.4) that A(T*) < A(T), contradicting
the assumption that T is an optimal binary search tree. Hence, L is an optimal
binary search tree. By symmetry, R is also an optimal binary search tree, which
establishes that the Principle of Optimality holds for the optimal binary search
tree problem.

Because the Principle of Optimality holds, when constructing an optimal
search tree T, we need only consider binary search trees L and R, both of which
are optimal. This observation, together with recurrence relation (9.3.4), is the
basis of the following dynamic programming algorithm for constructing an opti-
mal binary search tree. For i,j € {0, ... ,n — 1}, we let Tl.j denote an optimal search
tree involving the consecutive keys Ko K\ s oo s Kj, where Tij is the null tree if
i > j. Thus, if K, is the root key, then the left subtree L is Tl.’ h— 1> and the right sub-
tree Ris T, | j(see Figure 9.5). Moreover, T = T,, -, 1s an optimal search tree

J j+1
involving all # keys. For convenience, we define o (i,7) = 2 Pr Eqk.
=i k=i

Ty
e Pr
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We define A(T}) by

A(T, ) A(Tijaj — i+ 1,05 Pir1s 5 P Gi di+1s e 5]j+1)- (9.3.5)

Because the keys are sorted in nondecreasing order, it follows from the Principle
of Optimality and (9.3.4) that

A(Tij) = mkin{A(Ti,k*l) + A(Ty +’1,j)} + o(i,f), (9.3.6)

where the minimum is taken overall ke {i,i + 1, ..., j}.

Recurrence relation (9.3.6) yields an algorithm for computing an optimal
search tree 7. The algorithm begins by generating all single-node binary search
trees, which are trivially optimal. Namely, Ty, T}y, . » T, 1, - - Using (9.3.6),
the algorithm can then generate optimal search trees T;,, T15, ... , T, _, ,_ . In
general, at the k™ stage in the algorithm, recurrence relation (9.3.6) is applied to
construct the optimal search trees Ty, ,T} 4 - » T, _ ., ;> using the previously
generated optimal search trees as building blocks. Figure 9.6 illustrates the algo-
rithm for a sample instance involving # = 4 keys. Note that there are two possi-
ble choices for T, in Figure 9.6, each having a minimum cost of 1.1. The tree

with the smaller root key was selected.

g; 05 .05 0 .05 .1 .

Too:@ Tu:@ T22=@ T33:@

AlTy) = 25 A(T)=.15 A(Ty)=.25 A(Ty)= 45

Ko o} s
D @ 0

min {0+ .15 =.15,.25+0= .25} +.35=.5

=T,= A(Ty,) = .55

min {0+ .25 = .25, .15 + 0 = .15} + .4 = .55 ‘ continued

i
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FIGURE 9.6
, T, = A(T,5)=.9
Continued ’ = 1 (T2s)

min {0+ .45 = .45, 25+ 0 = .25} + .65 = .9

min {0 +.55=.55,.25+.25=.55+0=.5+.6=1.1

;G) Q&Q{[ﬁ = Tos A(Ty5) =135

min {0 +.9 = .9, .15 + .45 = .6, .55 + 0 = .55} + .8 = 1.35

o

min {0 +1.35=1.35,25+.9=1.15,.5+.45=9511+0=1.1}+1=1.95
= Tp3 = o e A(Tps) = 1.95

The following pseudocode for the algorithm OptimalSearchTree implements
the preceding strategy. OptimalSearchTree computes the root, Root[i, j], of each
tree T, and the cost, A[i, j], of T, An optimal binary search tree T for all the
keys (namely, 0.n—1) can be easily constructed using recursion from the two-
dimensional array Root[0:n — 1, 0:n — 1].
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sesoasces procedure OptimalSearchTree(P[0:n — 1], Q[O:n], Root[0:n — 1, 0:n — 1], A[o:n — 1,
On—1]
Input:  P[0:n — 1] (an array of probabilities associated with successful searches)
Q[0:n] (an array of probabilities associated with unsuccessful searches)
Output: Root[0:n — 1, 0:n — 1] (Root[i, j] is the key of the root node of 7
Alo:n — 1,00 — 1] (Ali, f] is the costA(T,].) of T,])
fori<~Oton—1do
Rootfj, /] « i
Sigmali, il < plil + qli] + qli + 1]
Ali, 1 « Sigmali, /]
endfor
for Pass <~ 1 ton — 1 do // Pass is one less than the size of the optimal
trees T, being constructed in the given pass.
fori<0Oton — 1 - Pass do
J i+ Pass

**

//Compute o(p,, ... Pji G Gigy)
Sigmali, j] « Sigmali,j — 1] + p[j] + qlj+1]
Rootli, j] i
Min < Ali + 1,/]
fork« i+ 1tojdo
Sum « Ali, k — 1] + Ak + 1,/]
if Sum < Min then
Min « Sum
Rootli, j] « k
endif
endfor
Al j1 < Min + Sigmali, /]
endfor
endfor |
. end OptimalSearchTree
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In Figure 9.7, we illustrate the action of OptimalSearchTree for the optimal
binary search tree just described. For convenience, we change all the probabil-
ities to frequencies, which, in the case we are considering, result by multiplying
each probability by 100 to change all the numbers to integers. As we have
remarked, working with frequencies instead of probabilities can always be
done. In fact, when we are constructing optimal subtrees, it is actually
frequencies that we are dealing with instead of probabilities. The optimal
subtrees TI.]. are built starting from the base case T,, i = 0, 1, 2, 3. The figure

i

shows how the tables are built during each pass for A(Ty) = Ali, jh
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:n — 1], A0 — 1, Root(Ty) = Root[i, jl, and Sigmali, j] = p; + -+ p,+ q,+ -+ q,. | = Sigmal[j,
L y i J i j+1 [

TRV I
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ode of T) _  — P01 2 3 a4
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Because OptimalSearchTree does the same amount of work for any input
P[0:n — 1] and Q[0:n], the best-case, worst-case, and average complexities are
equal. Clearly, the number of additions made in computing Sum has the same
order as the total number of additions made by OptimalSearchTree. Therefore, we
choose the addition made in computing Sum as the basic operation. Since Pass
varies from 1 ton — 1, i varies from 0 to n — 1 — Pass, and k varies from i + 1 to
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i + Pass, it follows that the total number of additions made in computing Sum is
given by

n—1n—1—t i+t
2 2 21
t=1 i=0 k=i+1
n—1
= > (n— 0t
Z‘:nil n—1 .
=nyt— 28 ¥
= t=

t=1 1

= n[(n - 1)2} - {(n - 1)n(—2!16_—1)] € 0(?).

9.4 Longest Common Subsequence

In this section, we consider the problem of determining how close two character
strings are to one another. For example, a spell checker might compare a text
string created on a word processor with pattern strings from a stored dictionary.
1f there is no exact match between the text string and any pattern string, then
the spell checker offers several alternative pattern strings that are fairly close, in
some sense, to the text string. As another example, a forensic scientist might
compare two DNA strings to measure how close they match.

We can measure the closeness of two strings in several ways. In Chapter 20,
we will consider one important measure called the edit distance, which is com-
monly used by search engines to find approximate matchings for a user-entered
text string for which an exact match cannot be found. The edit distance is also
used by spell checkers. Roughly speaking, the edit distance between two strings
is the minimum number of changes that need to be made (adding, deleting, or
changing characters) to transform one string to the other.

In this section, we consider another closeness measure, the longest common
subsequence (LCS) contained in a text string and a particular pattern string.
Computing either the L.CS or the edit distance is an optimization problem that
satisfies the Principle of Optimality and can be solved using dynamic program-
ming. However, the solution to the LCS problem is easier to understand because
it has a simpler recurrence relation, which we now describe.

Suppose T'= T,T, - T, _, is a text string that we want to compare to a pat-
tern string P = Py P, P, where we assume that the characters in each string
are drawn from some fixed alphabet A. A subsequence of T is a string of the form
T,T;,  T;, where 0 = i, <i, < <i, =n — 1. Note that a substring of T is a
special case of a subsequence of T'in which the subscripts making up the subse-
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quence increase by one. For example, consider the pattern string “Cincinnati”
and the text string “Cincinatti” (a common misspelling). You can easily check
that the longest common subsequence of the pattern string and the text string
has length 9 (just one less than the common length of both strings), whereas it
takes two changes to transform the text string to the pattern string (so that the
edit distance between the two strings is two).

We now describe a dynamic programming algorithm to determine the
length of the longest common subsequence of Tand P. For simplicity of notation,
we assume that the strings are stored in arrays*7[0:# — 1] and P[O:m — 1], re-
spectively. For integers / and j, we define LCS[, j] to be the length of the longest
common subsequence of the substrings T[0:i — 1] and P[0:j — 1] (so that LCS[n,
m] is the length of the longest common subsequence of T and P). For conve-
nience, we set LCS[4, j] = 0if i = 0 or j = 0 (corresponding to empty strings).
Note that LCS[1, 1] = 1 if T[0] = P[0]; otherwisé, LCS[1, 1] = 0. This initial con-
dition is actually a special case of the following recurrence relation for LCS[i, jl:

LCS[i,j1 = LCS[i— 1,j— 11+ 1 it T[i — 1] = P[j — 1]; (9.4.1)
otherwise, LCS[i, j] = max{LCS[i,j — 1], LCS[i — 1, j]}.

To verify recurrence relation (9.4.1), note first that if 77 — 1] # P[j — 1],
then a longest common subsequence of T[0:i — 1] and P[0:j — 1] might end in
TTi — 1] or P[j — 1], but certainly not both. In other words, if T[; — 1] # Plj— 1],
then a longest common subsequence of T[0:i — 1] and P[0:j — 1] must be drawn
from either the pair T[0:/ — 2] and P[0:;j — 1] or from the pair T[0:i — 1] and
P[0 — 2]. Moreover, such a longest common subsequence must be a longest
common subsequence of the pair of substrings from which it is drawn (that s,
the principle of optimality holds). This verifies that

LCS[i, ] = max{LCS[i, j — 11, LCS[i — 1,71} if T[i — 1] # P[] — 1].(9.4.2)

On the other hand, if T[7 — 1] = P[j — 1] = C, then a longest common subse-
quence must end either at T[{ — 1] in T[0:/ — 1] or at P[j — 1] in P[0, j — 1], or
both,; otherwise, by adding the common value C to a given subsequence, we
would increase the length of the subsequence by 1. Also, if the last term of a
longest common subsequence ends at an index k < i — 1 in T[0:i — 17 (so that
T[k] = C), then clearly we achieve an equivalent longest common subsequence by
swapping T[i — 1] for T[k] in the subsequence. By a similar argument involving
P[0;j — 1], when T[i — 1] = P[j — 1], we can assume without loss of generality that
a longest common subsequence in T[0:/ — 1] and P[0;j — 1] ends at T[i — 171 and
P[j — 1]. However, then removing these end points from the subsequence clearly
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must result in a longest common subsequence in T]0:i — 2] and P[0 — 2], respec-
tively (that is, the principle of optimality again holds). It follows that

LCS[i,j] = LCS[i — 1,j — 1] + 1if T[f— 1] = P[j — 1],  (9.4.3)

which, together with Formula (9.4.2), completes the verification of Formula
(9.4.1).

The following algorithm is the straightforward row-by-row computation of
the array LCS[0:7, 0:m] based on the recurrerfée (9.4.1).

procedure LongestCommonSubseq(T[0:n — 1], P[O:m — 1], LCS[O:n, 0:m])
Input:  T7{0O:n — 1], P[O:m — 1] (strings)
Output: LCS[O:n, O:m] (array such that LCSY, ] is length of the longest common
subsequence of [0/ — 1] and P[0 — 1])
fori«0Otondo //initialize for boundary conditions
LCS}i, 0] « 0
endfor
forj < Otomdo //initialize for boundary conditions
LCS[0, j] < O
endfor
forie—1tondo  //compute the row index by i of LCS[0:n, O:m]
forj « 1 to m do // compute LCS]i, /] using (9.4.1)
if T[i — 1] = P}j — 1] then
LCS[i, jl = LCSli— 1,/ — 1] + 1
else
LCSTi, /] < max(LCS[i,j — 1], LCS[ = 1,/
endif
endfor )
endfor
end LongestCommonSubseq
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Using the comparison of text characters as our basic operation, we see that
LongestCommonSubseq has complexity in O(nm), which is a rather dramatic im-
provement over the exponential complexity ®(2"m) brute-force algorithm that
would examine each of the 27 subsquences of T[0:# — 1] and determine the
longest subsequence that also occurs in P[0:m — 1].

Figure 9.8 shows the array LCS[0:8, 0:11] output by LongestCommonSubseq for
T10:7] = “usbeeune” and P[0:10] = “subsequence”.

Note that LongestContmonSubseq determines the length of the longest common
subsequence of T[0:x — 1] and P[0:m — 1] but does not output the actual subse-
quence itself. In the previous problem of finding the optimal paranthesization of a
chained matrix product, in addition to knowing the minimum number of multi-
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plications required, it was also important to determine the actual paranthesization
that did the job. Thus, we needed to compute the array FirstCut[0:n — 1, 0:11 — 1] to
be able to construct the optimal paranthesization. Similarly, in the optimal binary
search tree problem, in addition to knowing the avérage search complexity of the
optimal search tree, it was important to determine the optimal search tree itself.
Thus, we kept track of the key Root[, j] in the root of the optimal binary search tree
containing the keys K, < -+ < K. However, in the LCS problem, knowing the ac-
tual common subsequence is not as important as knowing its length. For example,
in a process like spell checking, the subsequence {8 not as important as its length.
Typically, to correct a misspelled word in the text, the spell checker displays a list of
pattern strings that share subsequences exceeding a threshold length (depending
on the length of the strings), as opposed to exhibiting common subsequences.
Nevertheless, it is interesting that a longest common subsequence can be deter-
mined just from the array LCS[0:# — 1, 0:m — 1] (and T[0:#2 — 1] and P[0:m — 1])
without the need to maintain any additional information.

One way we can generate a longest common subsequence is to start at the
bottom-right corner (1, m) of the array LCS and work our way backward through
the array to build the subsequence in reverse order. The moves are dictated by
looking at how we get the value assigned to a given position when we used
(9.4.1) to build the array LCS. More precisely, if we are currently at position (4, j)
in LCS, and T[i — 1] = P[j — 1], then this common value is appended to the be-
ginning of the string already generated (starting with the null string), and we
move to position ( — 1,7 — 1) in LCS. On the other hand, if T[7 — 11# P[j — 1],
then we move to position (i — 1, j) or (i,j — 1), depending on whether LCS[i — 1,
71 is greater than LCS[4, j — 1]. When LCS[i — 1, ] is equal to LCS[Z, j — 1], either
move can be made. In the latter case, the two different choices might not only
generate different longest common subsequences but also yield different longest
common strings corresponding to these subsequences. For example, Figure 9.8a

@]
¢

5
V)
—
o
—
—

OIS~ w»n

o

—l—= | Ofw T

NN~V o

WlW|ININ|I=IO(N =

Blwlwin| N[~ B

ol|lojlo|jo|lololo c olo

oo || N Vo~ |ola «
wlw|w \.u win|nl—=|o|loe o
ur | o ».p. wlw|vin|={ole o

winlwlw|lw|v|nl—~]o
ik |lwlw|NIN|[—=]|O

© g O U W N D

o D2 o 0 O wu
— ot | = =
NAENEENRNNY

ww|wiw




FIGURE 9.8(b)

The path in the
matrix LCS
generating the
longest common
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using the
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shows the path generated using the move-left rule, which requires us to move to
position (i — 1,7) when T[i — 1] # P[j — 1], whereas Figure 9.8b shows the path
resulting from always moving up to position (7, j — 1). The darker shaded posi-
tions (i, f) in these paths correspond to where T[i — 1] = P[j — 1]. These two
paths yield the longest common strings “sbeune” and “useune”, respectively.
When generating a path in LCS, we obtain a longest common subsequence when
we reach a position where i = 0 orj = 0.

Closing Remarks

In subsequent chapters, we will use dynamic programming to solve a number of
important problems. For example, in Chapter 12, we will discuss Floyd's dy-
namic programming solution to the all-pairs shortest-path problem in weighted
directed graphs. In Chapter 20 we will use dynamic programming to solve the
edit distance version of the approximate string matching problem. Dynamic pro:
gramming, because it is based on a bottom-up resolution of recurrence relations;
is usually amenable to straightforward level-by-level parallelization. However,
this straightforward parallelization usually does not result in optimal speedup,
and more clever parallel algorithms, sometimes based on finding recurrences
better suited to parallelization, must be sought. We will see such an example in
Chapter 16 for computing shortest paths.
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Section 9.1 Optimization Problems and the Principle of Optimality

Suppose the matrix C[0:z — 1, 0:n — 1 ] contains the cost of C[i, j] of fly-
ing directly from airport 7 to airport j. Consider the problem of finding the
cheapest flight from 7 to j where we may fly to as many intermediate air-
ports as desired. Verify that the Principle of Optimality holds for the
minimum-cost flight. Derive a recurrence relation based on the Principle
of Optimality.

Does the Principle of Optimality hold for the costliest trips (no revisiting
of airports, please)? Discuss.

Does the Principle of Optimality hold for coin changing? Discuss with var-
ious interpretations of the Combine function.

Section 9.2 Optimal Parenthesization for Computing a

9.4

9.5

9.6

9.7

9.8

Chained Matrix Product
Given the matrix product MM, - M, _ | and a 2-tree T with n leaves,
show that there is a unique parenthesization P such that T = T(P).
Give pseudocode for ParenthesizeRec and analyze its complexity.
Show that the complexity of OptimalParenthesization is in ©(13).

Using OptimalParenthesization, find an optimal parenthesization for the
chained product of five matrices with dimensions 6 X 7,7 X 8, 8 X 3,
3 X 10,and 10 X 6.

Write a program implementing OptimalParenthesization and run it for some
sample inputs.
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Section 9.3 Optimal Binary Search Trees

9.9

9.10

9.12

Section 9.4 Longest Common Subsequence

9.13

9.14

9.15

9.16

Use dynamic programming to find an optimal binary search tree for the
following probabilities, where we assume that the search key is in the

search tree; that is, g,= 0, i=0,..,nm
keys 1 0 1 2 3
probabilities p; 4 3 2 1

Use dynamic programming to find an#optimal search tree for the follow-
ing probabilities:

i 0 1 2 3 4 s
P, 2 1 2 .05 .05
g, .05 0 .25 0 1 0

a. Design and analyze a recursive algorithm that computes an optimal bi-
nary search tree T for all the keys from the two-dimensional array
Root[0:n — 1, 0:n — 1] generated by OptimalSearchTree.

b. Show the action of your algorithm from part (a) for the instance given
in Exercise 9.10.

a. Give a set of probabilities p, ... , p, _, (assume a successtul search so
thatg, = g, = --- = g, = 0), such that a completely right-skewed search -
tree T (the left child of every node is null) is an optimal search tree
with respect to these probabilities.

b. More generally, prove the following induction on n: If T'is any given
binary search tree with # nodes, then there exists a set of probabilities
Pgs - » P, ; Such that T'is the unique optimal binary search tree with
respect to these probabilities.

Show the array LCS[0:9, 0:10] that is built by LongestCommonSubseq for
T10:8] = “alligator” and P[0:9] = “algorithms”.

By following various paths in the array LCS[0:8, 0:11] given in Figure 9.8,
find all the longest common subsequences of the strings “usbeeune” and
“subsequence”.

Design and analyze an algorithm that generates all longest common sub-
sequences given the input array LCS[0:z — 1, O:m — 1]7.

Write a program that implements LongestCommonSubseq, and run it for
some sample inputs.
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Additional Problems

9.17

9.18

9.19

9.20

Consider a sequence of # distinct integers. Design and analyze a dynamic
programming algorithm to find the length of the longest increasing sub-
sequence. For example, consider the sequence:

45 23 9 3 99 108 76 12 77 16 18 4
The longest increasing subsequence is 3 12 16 18, having length 4.

The 0/1 knapsack problem is NP-hard Yvhen the input is measured in bi-
nary. However, when the input is measured in unary (see the discussion
at the end of Section 7.3 of Chapter 7), dynamic programming can be
used to find a polynomial-complexity solution. Design and analyze a dy-
namic programming solution to the 0/1 knapsack problem, with positive
integer capacity and weights, which is quadratic in C + n, where Cis the
capacity and » is the number of objects. Hint: Let V[, j] denote the maxi-
mum value that can be placed in a knapsack of capacity j using objects
drawn from (b, ..., b; _,}. Use the principle of optimality to find a recur-
rence relation for V[i, j].

Design and analyze a dynamic programming solution to the coin-chang-
ing problem under similar assumptions to that in the previous exercise.

Given n integers, the partition problem is to find a bipartition of the inte-
gers into two subsets having the same sum or determine that no such bi-
partition exists. Design and analyze a dynamic programming algorithm
for solving the partition problem.



