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• In the textbook: Ch 9 and Section 20 5• In the textbook: Ch. 9, and Section 20.5

• Chapter 9 can be found at the home page for INF4130

• These slides were originally made by Petter Kristiansen, but
are adjusted by Stein Krogdahlare adjusted by Stein Krogdahl.

• The slides presented here have got a slightly differentp g g y
introduction than the one in the textbook:
• We are not stressing the «principle of optimality» (page 266)

• I (SK) think the one used here is easier to understand (but
that might indeed be a matter of taste!):g )



Dynamic programming

Dynamic programming was formalised by Richard Bellmann (RANDDynamic programming was formalised by Richard Bellmann (RAND 
Corporation) in the 1950’es.

– «programming» should here be understood as planning, or 
making decisions.  It has nothing to do with writing code.

– ”Dynamic” should indicate that it is a stepwise process.



We start with an example: 
Searching for similar strings (Ch. 20.5)

This is relevant e.g. for research in genetics

A string P is a k-approximation of a string T if T can be converted to P by a 
sequence of maximum k of the following opertions:sequence of maximum k of the following opertions:

Substitution One symbol in T is changed to another symbol.
Addition A new symbol is inserted somwhere in TAddition A new symbol is inserted somwhere in T.
Removing One symbol is removed from T.

The Edit Distance, ED(P,T ), between two strings T and P is the smallest 
number of such operations needed to convert T to P  (or P to T!).

Example.
l ith  l ith  l ith  l ith (St + > )logarithm alogarithm algarithm algorithm (Steps: +a, -o, a->o)

T                                                            P

Thus ED(”logarithm”, ”algorithm”) = 3



Finding the edit distance
• Given two strings T and P of length m and n respectively• Given two strings T and P of length m and n respectively.    
• We want to find ED(P, T).
• We will use a two-dimentional matrix D, and we hope to fill it in so that:

D [i, j ] = ED( P [1: i ], T [1: j ] ). The size of this instance is  i + j
• We imagine that the string P is written downwards along the left edge, and that

T is written from right to left above the matrix:g

0 1 … j -1 j                n

0 0 1 j -1 j

T
The matrix D:

1 1

...

P

i -1 i -1
i i ?

• The problem with the smallest size occur when i = j =0 (the size is 0).  Then
ED is obviously 0, as filled in above.

m

y ,
• We can also easily fill in for the cases where i = 0 or j = 0 (T or P is empty, that

is: row 0 and line 0). Why should these be filled as indicated above?



Finding the edit distance
See discussion of a similar problem in Ch. 9.4p

From previous slide: Given two strings T and P of length m and n respectively.  
• We want to find ED(P, T).
• We will use a two dimentional matrix D, and hope to fill it so that:

D[i, j ] = ED( P [1: i ], T [1: j ] ). 
• Thus, the answer for the full strings P and T will occur in D[m,n] , g [ , ]

It turns out that to find the value D[i, j ] we only need to look at the entries
D [ i -1, j -1], D [ i , j -1], and D [ i -1, j ]

which all have smaller sizes than D[i, j].  There are two cases:

Case 1: If P [ i ] = T [ j ], then D [ i, j ] = D [ i -1, j -1] (see figure below)

0 1 i

a P[0: i ]

a T[0: j ]

=

[ j ]
0 1 j

Why is it not possible to obtain a better ED?



A Substitusjon change T [ j ] to P [ i ]

Case 2: T [ j ] is not equal to P [ i ].  
We choose the best of the following three possibilities (but why is this enough?):

A. Substitusjon – change T [ j ] to P [ i ]
0 i

b n n e P[1: i ] ED [ i, j ] would be 

a n n f T[1: j ]
0 j

≠ D [ i -1, j -1] +1
(ED between the gray 
areas plus 1)

B. Addition of T [ j ] at the end of T – corresponds to removing the last symbol 
P [i ] of P

0 j

0 i

ED[ i j ] ld bb n n e P[1: i ]

a n n f T[1: j ]

≠

ED[ i, j ] would be 
D[ i -1, j ] +1 

(ED between the gray 
areas plus 1)

C Remove T [ j ] from T

[ j ]
0 j

0 i

areas plus 1)

C. Remove T [ j ] from T.0 i

b n n e P[1: i ]

≠

ED[ i, j ] would be
D[ i , j -1] + 1

a n n f T[1: j ]
0 j

(ED between the gray 
areas plus 1).



Computing edit distance

Thus, a recursive expression for D[ i, j ] is:

if P[i] T[j]……………………………… if P[i] = T[j]
otherwise

substitution addition in T  Deletion in T

0 1 … j -1 j n

0 0 1 j -1 j
1 1

...

i -1 i -1

When fully filled in, we
will find the edit
distance between Ti i

m

distance between T 
and P in D[n,m]

We will fill in the entries of the matrix in the order from smaller to 
larger sizes, starting with size 0. 



Computing edit distance
function EditDistance ( P [1:n ], T [1:m ] )( [ ], [ ] )

i ← 0
j ← 0
for i ← 0 to n do D[ i, 0 ] ← i
for j ← 1 to m do D[ 0, j ] ← j
for i ← 1 to n do

for j ← 1 to m do
If P [ i ] = T [ j ] then

D[ i, j ] ← D[ i -1, j - 1 ] 
else

D[ i j ] i { D[i 1 j 1] 1 D[i 1 j ] 1 D[i j 1] 1 }D[ i, j ] ← min {  D[i -1, j - 1] +1,   D[i -1, j ] +1,   D[i, j - 1] +1  } 
endif

endfor
endfor

Note that this algorithm does not go through the
instances strictly in the order from smaller to larger onesendfor

return( D[ n, m ] )
end EditDistance

instances strictly in the order from smaller to larger ones.  
In fact, after the initialization we use the following order of
the pairs (i, j):
(1,1) (1,2) … (1,m) (2,1) (2,2) … (2,m) (3,1) (3,2) … (n,m)(1,1) (1,2) … (1,m) (2,1) (2,2) … (2,m) (3,1) (3,2) … (n,m)
This is OK as also this order ensures that the smaller
instances are solved before they are needed to solve a 
larger instance.  An order strictly following increasing sizeg y g g
would also work fine, but is slightly more complex to 
program (following diagonals).



Example

T

a n e

0 1 2 3 j

D

0 0 1 2 3

a 1 1 0 1 2

n 2 2 1 0 1

del T del T

ins T

n 2 2 1 0 1

n 3 3 2 1 1
P

e 4 4 3 2 1

i



Computing edit distance

T
Example

a n e

0 1 2 3 j

D

0 0 1 2 3

a 1 1 0 1 2

n 2 2 1 0 1

del T del T

ins T

n 2 2 1 0 1

n 3 3 2 1 1
P

e 4 4 3 2 1

i



Generally about dynamic programming - 1
• Dynamic programming is typically used to solve optimazation

problems.  That is, problems that can have a number of «feasible» 
solutions, but where we want to find the «best» – by optimizing the
value of a given objective function.

• Each instance of the problem must have an integer size. Typically the
smallest (or simplest) instances ha e si e 0 or 1 that can easil besmallest (or simplest) instances have size 0 or 1, that can easily be 
solved.

• For each problem instance A of size n there is a set of instances B1For each problem instance A of size n there is a set of instances B1, 
B2, … ,Bm, all with sizes less that n, so that we can find an (optimal) 
solution of A if we know the (optimal) solution of the Bi-problems.

0 1 j 1 j

Example:
0 1 … j -1 j

0 0 1 j -1 j
1 1

...

i -1 i -1

The values of the
yellow area is 
computed when

i ithe gray value is 
to be computed



Generally about dynamic programming - 2

I th t tb k ( 265) th l ti t th i t A i ll d S• In the textbook (page 265) the solution to the instance A is called S, 
and that of each Bi is called Si. The way to find S from the Si-s is 
written:

S = Combine(S1, S2, …, Sm)

For our example problem:

if
otherwiseotherwise

initialization



Generally about dynamic programming - 3

• Dynamic programming is useful if the total number of smaller
i t ( i l ) d d t l i t A i ll th tinstances (recursively) needed to solve an instance A is so small that
the answer to all of them can be stored in a table.

• For dynamic programming to be useful, the solution to a given 
instance B will be used in a number of problems A with size larger
than that of B The main trick is to store solutions for later usethan that of B. The main trick is to store solutions for later use.

0 1 … j -1 j

0 0 1 j 1 j0 0 1 j -1 j
1 1

....

i -1 i -1
i ii



When to use dynamic programming?
• Thus, if we compute and store (in a table of a suitable format), the

solutions to all relevant  instances of a given size before looking at 
instances of larger sizes we will always know the arguments to theinstances of larger sizes, we will always know the arguments to the
Combine-function when we need them for computing the solution of
an instance of larger size.

• We start by solving the smallest instances, and then look at larger
and larger instances (all the time storing the solutions)and larger instances (all the time storing the solutions).

0 1 … j -1 j

0 0 1 j -1 j0 0 1 j -1 j
1 1

...

i -1 i -1
i i



Another view
• As indicated on the previous slide, Dynamic Programming is useful if the

l i i i i d i h l i f i fsolution to a certain instance is used in the solution of many instances of
larger size.

• In the problem C below, an instance is given by some data (e.g two strings) 
and by two intergers i and j. The corresponding instance is written C(i, j).  
Thus the solutions to the instances can be stored in a two-dimentional table
with dimensions i and j.

• The size of an instanstance C(i, j) is j – i
• Below, the children of a node N indicate the instances of which we need the

solution for computing the solution to N.
• Note that the solution to many instances, e.g. C(3,4), is used multiple times, 

and that all terminal nodes have size 0.



Number of solutions needed
• If the number of solutions to different smaller instances that are needed to 

find the soluton to a certain instance may very big (e.g. exponential in the
size of the instance) then the resulting algoritm will usually not be practicalsize of the instance), then the resulting algoritm will usually not be practical.

• Instead, this number should at least be polynomial in the size of the
i t d ll it i th llinstance, and usually it is rather small. 

C(m,n)

Sketch indicating the situation when the solution of one instance needs
the solution of many different smaller instancesthe solution of many different smaller instances.



Bottom up (traditional) and top down (memoization)

Dynamic Programming (bottom up)Dynamic Programming (bottom up)
• Is traditionally performed bottom-up. All relevant smaller instances

are solved first, and the solutions are stored in a table.
• Works best when the answers to smaller instances are needed by• Works best when the answers to smaller instances are needed by 

many larger instances.

«Top-Down» dynamic programming (called Memoization)«Top Down» dynamic programming (called Memoization)
• A drawback with (traditional) dynamic programming is that one

usually solve a number of smaller instances that turns out not to be 
needeed for the actual (larger) instance you originally wanted toneedeed for the actual (larger) instance you originally wanted to 
solve.

• We can instead start at this actual instance we want to solve, and 
do the computation top down (usually recursively) and put alldo the computation top-down (usually recursively), and put all 
solutions into the same table as above (see later slides). 

• The table entries then need a special marker «not computed», 
which should be the initial value of the entrieswhich should be the initial value of the entries.



«Top-Down» dynamic programming
”Memoization”

T

You only have to compute the colored entries below

a n e

0 1 2 3 jD

0 0 1 2 3

D

a 1 1 0 1 2

n 2 2 1 0 1

del T del T

ins T

n 2 2 1 0 1

n 3 3 2 1 1
P

e 4 4 3 2 1

i



New example: Optimal Matrix Multiplication
Given the sequence M0, M1, …, Mn -1 of matrices.  We want to compute the

product:   M0 · M1 · … · Mn -1. 

Note that for this multiplication to be meaningful the length of the rows in Mi must 
be equal to the length of the columns Mi+1 for i = 0, 1, …, n-2

M t i lti li ti i i ti (A B) C A (B C)Matrix multiplication is associative: (A · B) · C  =  A · (B · C) 
(but not symmetric, since A · B  generally is different from  B · A )

Th d h l i li i i diff d E i h f i iThus, one can do the multiplications in different orders.  E.g., with four matrices it 
can be done in the following five ways:

(M · (M · (M · M )))(M0  (M1  (M2  M3)))
(M0 · ((M1 · M2) · M3))
((M0 · M1) · (M2 · M3))
((M0 · (M1 · M2)) · M3)((M0  (M1  M2))  M3)
(((M0 · M1) · M2) · M3)

The cost (the number of simple (scalar) multiplications) of these will vary a lot ( p ( ) p ) y
between the differnt alternatives.  We want to find the the one with as few scalar
multiplications as possible.



Optimal matrix multiplication - 2
Given two matrices A and B with dimentions:

A is a  p × q matrix,
B is a  q × r matrix. 

The cost of computing A · B is p · q · r , and the result is a p × r matrixThe cost of computing A  B is p q r , and the result is a  p r matrix

Example
Compute A · B · C whereCompute A  B  C, where
A is a 10 × 100 matrix, B is a 100 × 5 matrix, and C is a 5 × 50 matrix.

Computing D = (A · B) costs 5,000 and gives a  10 × 5 matrix.p g ( ) , g
Computing D · C costs 2,500.
Total cost for  (A · B) · C is thus 7,500.

C ti E (B C) t 25 000 d i 100 50 t iComputing E = (B · C) costs 25,000 and gives a 100 × 50 matrix.
Computing A · E costs 50,000.
Total cost for A · (B · C) is thus 75,000.

We would indeed prefer to do it the first way!



Optimal matrix multiplication - 3
Given a sequence of matrices M0, M1, …, Mn -1.  We want to find the
cheapest way to do this multiplication (that is, an optimal 
paranthesization)paranthesization).

From the outermost level, the first step in a parenthesizaton is a partition
into two parts:        (M0 · M1 · … · Mk) · (Mk + 1 · Mk + 2 · … · Mn-1)0 1 k k  1 k  2 n 1
If we know the best parenthesizaton of the two parts, we can sum their
cost and get the cost of the best parameterization with this outermost
partition.

Thus, to find the best parenthesizaton of M0, M1, …, Mn -1, we can simply
look at all the n-1 possible outermost partitions (k = 0, 1, n-2), and 
choose the best But we will then need the cost of the optimalchoose the best. But we will then need the cost of the optimal 
parenthesizaton of all instances of smaller sizes.

And we shall say that the size of the instance Mi, Mi+1, …, Mj is j - i.j

We therefore generally have to look at the best parenthesizaton of all 
intervals Mi, Mi+1, …, Mj , in the order of growing sizes.

We will refer to the lowest possible cost for Mi, Mi+1, …, Mj as mi,j.



Optimal matrix multiplication - 4

Let d0, d1, …, dn be the dimensiones of the matrices M0, M1, …,Mn-1,
th t t i M h di i d dso that matrix Mi has dimension di × di+1

As on the previous slide:p
Let mi,j be the cost of an optimal parenthesizaton of Mi, Mi+1, …, Mj. 
Thus the value we are interested in is m0,n-1

The recursive fomula for mi,j will be:

 
10 allfor  , 0,  nim ii

  10 allfor , min 11,1,,  
njidddmmm jkijkkijkiji

Note that all the values mk,l we need here to compute mi,j are for 
smaller instances That is: l - k < j - i)

,

smaller instances. That is:  l - k < j - i).



Example: Optimal matrix multiplication

30 35 515 10 20 25d Example

m = min(d d d + m(1 1) + m(2 4)

5 0

m1,4 = min(d1d2d5 + m(1,1) + m(2,4),
d1d3d5 + m(1,2) + m(3,4),
d1d4d5 + m(1,3) + m(4,4))

The values mi,j:

Size is 5

4

3

1

211,875 10,500

15,125 = min(35 · 15 · 20 + 0 + 2,500,
35 · 5 · 20 + 2,625 + 1,000,

35 · 10 · 20 + 4,375 + 0)

Second index: j First index: i

3

2

2

3

7 875 4 375 2 500 3 500

9,375 5,3757,125

, , 35  10  20  4,375  0)

= min(13000, 7125, 11375)

1

0

4

515,750 2,625 750 1,000 5,000

7,875 4,375 2,500 3,500 =7125 
Size is 1

0 0 0 0 0 0 Size is 0



Optimal matrix multiplication
Remembering the best partitions

c

0
1

2

5
4

3

M1 · M2 · M3 · M4
= M1 · (M2 · M3 · M4)
= (M1 · M2) · (M3 · M4)

( )

g p

2
3

4

3
2

1

= (M1 · M2 · M3) · M4
2

m
5

4

0

115,125
T b l R b i h

3

2

2

39,375 5,3757,125

11,875 10,500 Tabel c: Remembering the
optimal partition points.
The optimal partition point

f M M M M i2

1

3

4

15 750 2 625 750 1 000 5 000

7,875 4,375 2,500 3,500
of M1 · M2 · M3 · M4 is  
after M2

0 5

0 0 0 0 0 0

15,750 2,625 750 1,000 5,000



Optimal matrix multiplication
Remembering the best partitions

c

0
1

2

5
4

3
2

2 2

e e be g e bes pa o s

2
3

4

3
2

1
2

0 2 2 4
2 2

2 2

m
5

4

0

115,125
0 1 2 3 4

3

2

2

39,375 5,3757,125

11,875 10,500

2

1

3

4

15 750 2 625 750 1 000 5 000

7,875 4,375 2,500 3,500

0 5

0 0 0 0 0 0

15,750 2,625 750 1,000 5,000



Optimal matrix multiplication

c

0
1

2

5
4

3
2

2 2 2
3

4

3
2

1
2

0 2 2 4
2 2

2 2

0 1 2 3 4

The optimal parenthesizaton is thus:

M0 · M1 · M2 · M3 · M4 · M5
= (M0 · M1 · M2) · (M3 · M4 · M5)
= ((M0) · (M1 · M2)) · ((M3 · M4) · (M5))(( 0) ( 1 2)) (( 3 4) ( 5))



Optimal matrix multiplication

function OptimalParens( d[0 : n – 1] )
for i ← 0 to n-1 do

m[i, i] ← 0
for diag ← 1 to n – 1 dog

for i ← 0 to n – 1 – diag do
j ← i + diag

[i j] // R l ti t th l l th tm[i, j] ← ∞   // Relative to the scalar values that can occur
for k ← i to j – 1 do

q ← m[i, k] + m[k + 1, j] + d[i] · d[k + 1] · d[j + 1]
if q < m[i, j] then

m[i, j] ← q
c[i j] ← kc[i,j] ← k

endif
return m[0, n – 1]

end OptimalParens



Yet another example: Optimal search trees
(Not in the curriculum for 2013)(Not in the curriculum for 2013)

0 Pat

1 Joe Ray

2 Ann

33

Ann Joe Pat Ray

p0 p1 p2 p3

q0 q1 q2 q3 q4

3 3 3 2 2 1 2 2 2

The sum of
the p’s and 
q’s is 1

3 3 3 2 2 1 2 2 2

Average search time:   3p0 + 2p1 + 1p2 + 2p3 + 3q0 + 3q1 + 2q2 + 2q3 + 2q4



Optimal search trees
• To get a managable problem that still catches the essence of the general 

problem, we shall assume that all q-es are zero (that is, we never search for 
values not in the tree)

• A key to a solution is that a subtree in a search tree will always represent an 
interval of the values in the tree in sorted order (and that such an interval
can be seen as an optimal seach instance in itself)p )

• Thus, we can use the same type of table as in the matrix multiplication
case, where the value of the optimal tree over the values from intex i to 
index j is stored in A[i, j], and the size of such an instance is j - ij [ , j], j

• Then, for finding the optimal tree for the an interval with values Ki, …, Kj we
can simply try with each of the values Ki, …, Kj as root, and use the best 
subtrees in each of these cases (which are already computed).subtrees in each of these cases (which are already computed).

• To compute the cost of the subtrees is slightly more complicated than in the
matrix case, but is no problem.

KT ith k i i 1 j The optimal values and KkTry with k= i, i+1, …, j p
form for these subtrees
are already computed, 
when we here try with

Ki , …, Kk -1 Kk+1 , …, Kj

y
different values Kk at 
the root



Dynamic programming in general: 
We fill in differnt types of tables «bottom up»We fill in differnt types of tables bottom up

(smallet instances first)



Dynamic programming
Filling in the tablesg e ab es

• It is always safe to solve all the smaller instances before any larger
ones, using the defined size of the instances.

• However, if we know what smaller instances are needed to solve a 
larger instance, we can deviate from that.  The important thing is that
the smaller instances needed to solve a certain instance J is 
computed before we start solving Jcomputed before we start solving J.

• Thus, if we know the «dependency graph» of the problem (which
must be cycle-free, see examples below), the important thing is to y , p ), p g
look at the instances in an order that conforms with this dependency.  
This freedom is often utilized to get a simple computation (see earlier
slide).



Dynamic Programming
using memoizationusing memoization

«Top-Down» dynamic programming (Memoization)

• A drawback with bottom up dynamic programming is that you solve a 
lot of smaller instances whose answers are never used.

• We can instead do the computation recursively from the top and• We can instead do the computation recursively from the top, and 
store the (really needed) answers of the smaller instances in the
same table as before. Then we can later find the answers in this table
if we need the answer to the same instance once moreif we need the answer to the same instance once more.

• The reason we do not always use this technique is that recursion in 
itself can take a lot of time, so that a simple bottom up may be faster.itself can take a lot of time, so that a simple bottom up may be faster.

• For the recursive method to work, we need a flag «NotYetComputed» 
in each entry, and if this flag is set when we need that value, wey g
compute it, and save the result (and turn off the flag, so the recursion
from here will only be done once).

• The «NotYetComputed» flag must be set in all entries at the start of
the algorithm.



Dynamic programming
using memoization

• It is always safe to solve all the smaller instances before any larger
ones, using the defined size of the instances.

g

• However, if we know what smaller instances are needed to solve a 
larger instance, we can deviate from that.  The important thing is that
the smaller instances needed to solve a certain instance J is 
computed before we start solving Jcomputed before we start solving J.

• Thus, if we know the «dependency graph» of the problem (which
must be cycle-free, see examples below), the important thing is to y , p ), p g
look at the instances in an order that conforms with this dependency.  
This freedom is often utilized to get a simple computation.

At most the
t i ithentries with a 

green dot will
have to be 
computedcomputed


