
1

INF 4130
22 October 2013

Stein Krogdahl

• Today’s topics from Chapter 14:
– Matchings in (undirected) graphs

– Flow in networks (network = directed graphs with
capacities etc.)

• These topics are stongly connected to:
– Convexity, polyhedrons with integer corners etc.

– This is treated more generally in other courses, e.g.
in INF-MAT 4110: Mathematical Optimization.

Matchings in undirected bipartite graphs, Ch.14.1
Bipartite graph= The set of nodes can be partitioned into two sets X
and Y, so that each edge has one end in X and the other in Y

It is the same as a two-colorable graphor a graph withoutodd loops:

The node set X, e.g. workers in a workshop

The node set Y, e.g, the jobs of the day

Edges: Who has competence for doing the differnt jobs?

• We are here not able to find a ”perfect matching”, and
thus all jobs cannot be done that day.

Can be used in many different areas, e.g.:
Teaching assistents (X) each have a wishlist from the list of
”groups” (Y). Can each teaching assistant get a group
from his/her wishlist?

Some variations over the same theme:
– We might have |X| ≠ |Y|, and then we can obviously have no perfect matching

– Even if there is noperfectmatching, we are often interested in finding a match that
is as large as possible.

– There might be «weights» on the edges, and we can ask for the heaviest matching

X3

Y5X3

X3

Y5

Y5

• However, if we add the edge X3 – Y5 we are suddenly
able to find a ”perfect matching”, so that all jobs can be
done.

Hall’s Theorem:
When can we find a perfect matching?

Below: A subset S of X is only connected to R in Y, and R has fewer nodes than S.

Then we can obviously not find a perfect matching. But this also works the other way around:

Hall’s Theorem: There is a perfect matching if and only if there is no subset S so thatR = ᴦ(S)
has fewer nodes than S.

Proof in the easy direction, as indicated above: If there is such an S so that R = ᴦ(S) is smaller
than S, there is obviously no perfect matching. We are not able to match each node in S with its
own node in R.
Proof in the difficult direction : The «Hungarien» algorithm will either give a perfect matching,

or it will (when it stops without giving a perfect matching) point out an S with |S| > |ᴦ(S)|

S

R

R = ᴦ(S) = the set of
nodes in Y directly
connected with nodes in S

X

X

Y

Y

Bipartite graphs with and without a perfect matching (same as on previous slide)

X

Y

The naive ”greedy algorithm” don’t work

Instace: Given a bipartite graph. Question: Find, if possible, a perfect matching.
We could try a simple greedy approach, which can go as follows:

Look repeatedly at the edges of the graph, and include an edge in the
matching if it has no node in common with an already included edge.

The greedy strategy is not working here. Example:
Given the bipartite graph to the upper right. A greedy
approach may, after two steps, give the matching
to the lower left. However, there exists a matching
with three edges (lower right), but we cannot use a
simple greedy scheme to extend the left matching
to the one with three edges.

Reminder from INF2220: In connection with greedy algoritms the elements
often also has a weight, A place where such a greedy algorithm really works
is if we want the heaviest span tree in an undirected graph, where the edges
have weights. Algorithm:
”Look at the edges in order of decreasing weight, and include those that does
not make a loop with those already included (Kruskal’s algorithm).

The Hungarien algorithm to find a perfect matching
We assume here that |X| = |Y|

• With the simple greedy strategy we only looked for «fully independant»
edges, when we wanted to increase the size of the current matching M.

• This was obviously too simple, but it turns out that if we instead look for «M-
augumentingpaths», and each time pick the best, the algorithm will work.
– This can be shown directly, but we’ll do it so that we also show Halls Theorem

• An M-augumenting path:
– Must first of all be an «M-alternatingpath», which is a (simple) path where

alternating edges are in M and not in M.

– In addition both end-nodes of the path must be «unmatched» (and then one end-
node will be in X and the other in Y)

M-augumenting paths (dashed)

We can «use» an augumenting path to obtain a larger matching

• If we have found an augumenting path, we can obviously «use
this» to find a matching which is one larger (written M ⊕ P):

• The results are shown for the dashed M-augumenting paths
below:

This
gives

This
gives

This
gives

How can we find possible augumenting paths?
• The Hungarien algorithm goes as follows:

- Start with an empty matching

- Search for an augumenting path

- Use this to find a matching with one more edge

Repeat this until either:
– You have a perfect matching

– Or you cannot find an augumenting path relative to the current M

• In the last case, the sitiation will hopefully show us a subset S in X that is
connected only to the subset R in Y, where R is smaller than X.

• Thus, when the algorithm stops, we can show that there is no perfect matching.

• The search for an augumenting path is done as follows (See figure on next slide):
– Choose an unmatched node ‘r’ in X. This node should be the root in a tree where all

paths out from the root are alternating paths (which is, in fact, always the case in a
bipartite graph)

– We then grow the tree by two and two edges as explained in the next slide, untilwe
we have found an augumenting path, or we cannot grow the tree any further by using
legal steps.

Growing a tree to find an augumenting path
• We assume that we have a matching M that is not

perfect, and we will search for an augumenting path

• This step should build an alternating treeT, and at
the start the tree will consist only of a root node ‘r’
in X which must be an unmatched node in X(and
such a node can always be found when M is not
perfect and |X| = |Y|)

• Building the alternating tree is done by repeating
the following step:

• We search for an edge, not in T, between ared node
in T and another node (which must be blue)

• If we find such an edge, there are three cases:

1. The blue node is already in T: Do nothing

2. The edge leads to an unmatchednode in Y.
We have thenfound an augumenting path, and
we can use that to find a larger M.

3. The edge leads to a matchednode y in Y. We
then include in T the chosen edge from T, and
the edge adjacent to y in the matching. The
tree T will then be extended by two
edges/nodes.

r

Unmatchet.We
have then found
an augumenting
path. We use this
to obtain a larger
matching M. We
then trow away
the built tree T,
and start building
a new tree if we
don’t have a
perfect matching

The node y is
matched. We
then include
in T the
chosen edge
to y and the
matched edge
adjacent to y.

To a node
already in T.
Do nothing.

Treet T:

Growing a tree to find an augumenting path

The tree to the right looks nice and clean. Note that
only the the edges of the tree, and a few potential
new ones, are drawn. There may be a number of
other nodes.

But the tree can obviously also be drawn in the
bipartite graph. Then it looks as shown below
(where all nodes, but not all edges, is drawn)

r

The tree T
grows with an
umatched and a
matched edge

We do
nothing with
this edge

Augumentig
path is found

x yz

r

The node y is
matched. We
then include
in T the
chosen edge
to y and the
matched edge
adjacent to y.

To a node
already in T.
Do nothing.

Treet T:

Unmatchet.We
have then found
an augumenting
path. We use this
to obtain a larger
matching M. We
then trow away
the built tree T,
and start building
a new tree if we
don’t have a
perfect matching

Termination of the Hungarien algorithm
The case when we don’t find a perfect matching

• Assume that, when we are growing a tree,
the algorithm stops because we don’t find
any unused edge between a red node in the
tree to a blue node outside the tree. Then at
least this search did not find any
augumenting path. Our hope is then that the
situation will show us a «Hall-situation» that
shows that no perfect matching can be found
at all:

• We want: A subset of S of X such that the the set

of nodes R = ᴦ(S) in Y is smaller than S.

• We then simply choose S as the red nodes in the
tree T. The nuber of nodes in S is one larger than
the number of edges in the current matching.

• We then claim that the only nodes in Y connected
to a node in S are the blue nodes in T. Proof:

• If there were an edge from S to Y-R, then the
algorithm would not have stopped.

r

NB: The two trees above are different
Thus, Hall Theorem is proven
The Hungarien algorithm can be run on
any bipartite graph with |X|=|Y|, and it will
either give a perfect matching or it will
give us a pair of sets S and R showing that
no perfect matching can exist.

S

R

No such edge exist

r

Variations over the matching problem

• Studied until now:
– Find a perfect matching in a bipartite graph (or show that no one exists)

– A sketch of a program for this algorithm is given at page 422/423

• Variants of the problem (which can also be solved in similar ways)
– Find a matching with as many edges as possible (and then X and Y don’t

have to be of the same size)
• We shall look at some of these as exercises next Thusrday

– Given «weights» on the edges: Find a perfect matchingt with as high
weight as possible.

• Is described in the textbook (Ch 14.1.3), but is not part of the curriculum

– Flow in «networks», where the matching for bipartite graphs occurs as a
special case.

• Also treated as an exercise next Thursday

• Flow in networks will be studied in the next hour today.

– Generalizing to graphs that are not bipartite
• Will be discussed at next slides

Matchings in graphs that arenotbipartite
The slides on this theme is included in the curriculum

Generalization of matchings beyond bipartite graphs:
– Pose the same questions for general graphs:

• Find a perfect matching (or show that no one can be found)

• Find a meching as many edges as possible

• With weights on the edges: Find a (perfect?) matching with the
largest possible weight

– All thes can be solved in polynomical time

– Algorithm for matching in general graphs
• This algorithm are sligthly more complicated to describe, but it is

considerably more complex to prove correct.

• As part og the curriclium you should know this algorithm, but not
how it it can be proven correct.

• The algorithm is a generalization of that for the bipartite case,
with one more case a few places.

May have ”odd” loops: These are ”difficult” for
matchings.

The step in the «extended Hungarien algorithm»”

r

Edge to
uncolored and
unmatched
node:
We have then
found an
augumenting
path, and we
can use it to
get a larger
matching.

Edge to a matched
uncolored node:
We color the node
blue, and the
corresponding
matched node red,
and include both
nodes in the tree

Treet T:

New elements in the algorithm:
• There should be no node colors at the outset
• Each tree building starts with unmatched node. We

color it red, and it will be the root of the new tree
• When the graph is not bipartite, there can be edges

in the tree from from red to red nodes, like the edge
(u,v) in the figure to the right. This will form an
odd loop with the rest of the tree.

• This loop is treated by simply collapsing it
(including its internal edges) to one red node.

• If it stops without finding an augumenting path,
start with another unmatched node as root.

u v

New edge type,
not found in
bipartite graphs.
Odd loop is
collapsed

r

Important:

Both of these extensions have
alternating paths to the root

Red collapsed
nodes:
They all have
an alternating
path back to
the root, stating
with a matched
node

Edge to a
blue node
already in T.
Do nothing.

The end of the treebuilding step in the
extended Hungarian algorthms

r If you find an augementing path:

We then go backwards along the alternating
path, and along the way we unpack the
collapsed nodes, and find the alternating
path througt them.

We thereby get an alternating path in the
original graph back to the root.

We can use this to find a matching that is
one edge larger than the one we have.

Umatched node!

Otherwise the treebuilding stops because
there are no more unmatched nodes, and no
edge from a red node to a node that is
uncolored and unmatched.

- Then no larger matching exist

- But this is quite complex to prove, and it is
not part of the curriculum

Flow in Networks, Ch. 14.2

• This stuff is, to some extent, also covered in the Weiss Book, so one may
also read about it there.

• The use of the word «Network» is simply a tradition in this area. It is the
same as directed graphs, usually with some weight, capacity etc. for each
edge.

• There are a lot of practical problems that can be seen as flow problems in
networks.
• Data nets, where there is a flow of data packages through the edges.

• Different types of pipe-networks where fluid can flow, and where each pipe has a
capacity

s

t

5
3

1

6

4

3

2
8

3

1

• Networks of roads with different capacities,
where cars are «flowing» on the roads.

• The networks we shall study here have:
• A capacity on each of the edges

• Onesourcenode s og onesinknodet

• And the goal is usually to find a largest
possible flow from s to t

Flow in networks, Ch. 14.2

• A flow f in such a network is composed of a flowf(e) ≥ 0 for each edgee,
with the follow properties:
– Flow conservation: For each node, except for s andt, the sum of flow into the

node is equal to the sum of the flow out of the node (whereinto and out of is
defined according to the directions of the edges).

– In networks with capacities: Each edge has a capacityc(e) ≥ 0 ,and the flow
f(e) must be between0 and c(e).

• We assume during the following discussion:
– There are no edges leading intos or out oft.

– val(f) is by definition the sum of the flow out ofs.

– Lemma: The sum of the flow into t is the same as val(f)

• Can be proved by summation of the flow

into and out of all nodes.

s

t

5
3

1

6

4

3

2
8

3

1

Concepts used in the book, that we don’t use here.
These details are therefore not important at the exam!

– A semipaththrough the network is a path froms to t in the underlying
undirected graph.

– Thecharacteristic flowof a semipathS: This is a flow with value 1
where it follows the edge forward, and value -1 in the other edges (and it
is therefore not a proper flow as f(e) may be negative)

– Lemma for networks without capacities: Two legal flows may be
summed at each edge, and the result is a new legal flow.

– Lemma for networks without capacities: If we multiply the edgeflow of
each edge with a certain constant, we get a new legal flow

s

t

5
3

1

6

4

3

2
8

3

1 A (legal) flow
and a
semipath.

No capacities.
The numbers
are edge flows.

Flow in networks, with capacities

• Each edge has a capacity c(e),and the flow f(e)must be between 0 and c(e).

• Our goal:
– Given a network with capacities

– We want to find edgeflows f(e) that

• Satesfy the capacity requirement 0 ≤ f(e) ≤ c(e)

• Forms a maximum flow (there are no legal flow with larger val(f))

• The example below to the left, is a network with given capacities.
– We can easily see: Maksimum flow is 7, and such a flow is given to the right.

s
t

5

5

8

3

4

10

2

b

c d

a

s
t

5

1

4

3

3

5

2

b

c d

a

A cut with capacity 8.
More about that later.

A maximum flow, of 7

The naive greedy algorithm is again not working
• The naive greedy algorithm (that in fact don’t work!) would be as follows:

– The step:

• Find a directed, simple path from s to t where all the currentf(e) are positive
and smallerthanc(e)

• Increase the flow along this path as much as possible (dictated by the edge
that has the smallestc(e) – f(e)along the path)

– Repeat this step until no such pathes can be found.

• In the figures below the capacity is given abovethe edges (all c(e) =1) and the
current flow is given below the edge (initially zero everywhere)

– We first find a simple flowincreasing path, e.g. s-a-b-c-d-t. We can increase
each edgeflow along this path with 1, and get the situation to the right.

– Nowval(f)= 1. But this is not a maximum flow, as we can easily find a flow with
val(f)=2

– BUT, there is no flowincreasing path in the right network that can bring usto a
flow with value 2. Thus this simple scheme won’t bring us to a maximum flow.

s
t

1

1

1

1

1

1

1

b

c d

a

1
1

1
0

10
1

s
t

1

1

1

1

1

1

1

b

c d

a

0
0

0
0

00
0

Thef-derived network N(f)

• What we haven’t taken into account on the previous slide, is that we, while
searching for a larger matching, also candecreasethe flow for edges with
nonzero flow. And by utilizing this, we in fact get a working algorithm!

• To get an overview of the ways we can change the current flow on each
edge we can set up thef-derived network referred to as Nf, Nf, or N(f). We
will here useN(f).

(Note: the capacities here are different from those on the previous slide):

A network with capacities (above The f-derived network, of the

the edge) and a flow (under) situation to the left

Also, look at Figure 14.8 in the textbook (page 435)

s
t

1

2

1

1

3

4

2

b

c d

a

1
1

1
0

10
1

s
t1

11

1

2
3

2

b

c d

a

1

1

1

f-forbedringsveier
(Same network, capacities, and N(f) as on the previous slide:)

• We the search for paths from s to t in the f-derived network N(f)
– Such paths are called f-augumenting paths

– The search can be done e.g. bredth-first or depth-first in N(f) from s.

– We can e.g choose the path F = s-c-b-t. The maximal flow-increase along this
path is 1 (assume, in general h).

• We then perform the corresponding flow change, by:
– Increasing the flow with h for the edges where their direction is the same as inF

– Reduce the flow with h where edge direction is opposite to that of F

This gives the new flow:

• We then forget the old f-derived network,

and build a new one relative to the new flow.

s
t

1

2

1

1

3

4

2

b

c d

a

1
1

1
0

10
1

s
t1

11

1

2
3

2

b

c d

a

1

1

1

s
t

1

2

1

1

3

4

2

c d

1
1

0
1

11
1

Cuts in networks

• A cut in a network is simply a devision of the set of nodes into
two sets X and Y, where s is in X and t is in Y.

• Thecapacity of a cut K=(X,Y), written cap(K). is the sum of the
capacities of all edges leading from a node in X to a node in Y.

• In the figure above, the capacity of the cut is 3 + 7 = 10
• Thus, the capacity of the edges from Y to X do not influence the

capacity of the cut.

X Y
s t

4
7

5

3

More about cuts in networks

• Lemma:Given a legal flowf and a cutK = (X,Y). Thenval(f) ≤ cap(K).
This can be shown as follows:
– By adding together the flow in/out of all nodes in X’ = X–s, we find that

(flow out of s) + (flow backwards over K) = (flow forwards over K)
– This means (as (flow out of s) = val(f)):

val(f) = (flow forward over K) – (flow backwards over K)
– The right hand side of the above equality is called theflow over K, and (as all

flows are positve) we no that it will not exceedcap(K)
– Thus, we know: val(f) ≤ cap(K).
– In the figure above: 5 = 2 + 6 – 0 – 3 ≤ 3 + 7

• This gives us a way to decide whether a given flow is optimal
If we have a flowf and a cutK so thatval(f) = cap(K)

then we have a maximum flow, and there is nocut with smaller capacity!

s t
4

7

5

3
2

0
6

3

55

The Ford-Fulkerson algorithm

The FordFulkerson-algorithm goes as follows:
– Start with zero flow (which is always a legal flow)

– The main step (and at the start of this we generally have any legal flow):
• Find thef-derived networkN(f) (that shows all possible changes for the edgesflows)

• Find, if possible, an f-augumenting path from s to t, and find the maximum increase it
allows (before any of the edgeflows exceed the capacity or will go under zero).

• Do the changes that thisf-augumenting path indicate

• Repeat this step until we can no longer find an f-augumenting path in N(f)
– The algorithm stops when there are no directed path from s to t in N(f).

– A proof showing that we now have a maximum flow, is that we can now show a
cut with capasity equal to the current flow. Thus, there can be no larger flow!

You should also look at the program at page 438

We will next Thursday look closer at this algorithm exemplified by figure 14.9

s
11

1

2
3

1

b

c d

a

1

1

2s
t

1

2

1

1

3

4

2

c d

1
1

0
1

11
1

1

t
2

0 0

Termiation of the Ford-Fulkerson algorithm
It stops when there is no connection from s to t in N(f).

• As indicated: To show that we now have a maximum flow, we will show
that we can construct a cutK with capacity equal to the current flow. That is:
cap(K)=val(f).

• It turns out that such a cut is easy to find: Let X be the set of nodes reachable
from s in N(f), and let Y be the rest of the nodes (includingt).

• As no edges in N(f) is leading from X to Y, we know by the def. ofN(f):
– All edges in N (the original network) from X to Y are used to its full capacity.
– All edges in N leading from Y to X have flowf = 0

• From the definition ofcap(K)we see that the current flow over K is val(f)
• Thus, we know we have a maximum flow, and we have proven the following

Theorem:

Theorem(Max-flow, min-cut): In a network with capacities we can find a
flow f and a cutK so thatval(f)=cap(K). Then we know that we have a
maximum flow, and that no cut has lewer capacity.

s
11

1

2
3

1

b

c d

a

1

1

2
s

t
1

2

1

1

3

4

2

c d

1
1

0
1

11
1

1

t

X Y X Y

2
0 2

a b

Variations of the Ford-Fulkerson algorithm

– TheFord-Fulkerson algorithm says nothing about whichf-augumenting path should
be chosen in each step, if there are more than one.

– If we do not decide anything about the choice off-augumenting paths, we know:
• If all capacities are (positive) intergers, then the number of steps can be at least at

large as the size of the largest capacity. Example:

• If the capacities are real numbers, the algorithm can in theory loop forever.

– Proposal 1:All the time, choose thef-augumenting path that gives that largest
possible incremet in the flow. This one can be found by an algorithm similarto a
shortest path algorithm)

• This gives a worst-case-time: O(m log(n) log(max-flow))

– Proposal 2:(Edmonds og Karp) All the time, choose thef-augumenting path that has
the smallest number of edges (can be found by a bredth-first search)

• This gives a worst-case-time: O(n m2)
(and this independant of the max. flow, which is very convenient)

s
t1

1000

1000 1000

1000
n = number of nodes
m = number of edges

Varianter av problemet med maksimal flyt

– First of all, there are alternatives to the Ford-Fulkerson algorithm
• Dinac has designed an algorithm
• Goldberg and Tarjan(preflow push algorithm)

– We may also have a minimal flow for each edge
• Then it is an interesting problem just to find a possibleflow
• But after that you can proceed as Ford-Fulkerson

– We may also have a price on each edge, saying how much a flow of
1 costs over this edge.

• For this problem there is a well known algorithm: The Out-of-
kilter algorithm.

– We can also have multiple sources and/or multiple sinks, with
different requirements to the flow in and out of these

– We may also have different ”commodities” that should flow in the
network (cars, busses, trucks, … in a street network) , and the edges
may have a different capacity for each commodity.

• This is a field of active research, in connection with e.g. traffic
planning, routing in communication networks, etc.

28

Kap. 14.2.7:A connection between flow in networks
and matching in bipartite graphs

A simple but important lemma, which is obvious from thealgorihtm:
1. If we have interger capacities, Ford-Fulkerson will always find an interger max. flow

2. When all the capacities are 1, we can find a max. flow where all edgeflows are either 0
or 1.

Such a flow can be seen as pointing out a subset of the edges (those with flow 1)

Concerning the above picture, we will next Thursday look at:
– That searching for an M-augumenting path in the bipartite graph to the

left, corresponds to searchong for an f-augumenting path to the right.

All capacities are 1

