INF 4130

22 October 2013
Stein Krogdahl

 Today’s topics from Chapter 14:
— Matchings in (undirected) graphs

— Flow in networks (network = directed graphs with
capacities etc.)

 These topics are stongly connected to:
— Convexity, polyhedrons with integer corners etc.

— This is treated more generally in other courses, e.g
In INF-MAT 4110: Mathematical Optimization.

Matchings in undirected bipartite graphs, Ch.14.1

Bipartite grapl= The set of nhodes can be partitioned into two sets
and Y, so that each edge has one end in X and the otlyer | O

It is the same astavo-colorable graptor a graph withoubdd loops

@ X The node set X, e.g. workers in a workshop
/ The node setY, e.g, the jobs of the day

® y Edges: Who has competence for doing the diffetmgo @—
5

X3 » We are here not able to find a "perfect matching”, and

/ < thus all jobs cannot be done that day.

® vy, * However, if we add the edgeyx Y we are suddenly
able to find a "perfect matching”, so that all jobs can b
3 /done.
Can be used in many different areas,:e.g.
° v Teaching assistents (X) each have a wishlist fromigthef
5

"groups” (Y). Can each teaching assistant get a group
from his/her wishlist?

Some variations over the same theme;

— We might have |[X}£ |Y|, and then we can obviously have no perfect matching

— Even if there is nperfectmatching, we are often interested in finding a match tha
Is as large as possible.

— There might be «weights» on the edges, and we can afikefieaviest matching

Hall's Theorem:
When can we find a perfect matching

Bipartite graphs with and without a perfect matghifsame as on previous slide)

X @ X ®
Y () Y) /
Below: A subset S of X is only connected to R in Y, and R leagelr nodes than S.
S
X _ _
R =TI'(S) = the set of
/ nodes in Y directly
v connected with nodes in S
R

Then we can obviously not find a perfect matching. Big #iso works the other way around:

Hall's Theorem: There is a perfect matching if and only if there is nosgils so thaR =T'(S)
has fewer nodes than S.

Proof in the easy direction, as indicated abovdf there is such an S so that R°6S) is smaller

than S, there is obviously no perfect matching. We ataht® to match each node in S with its
own node in R.

Proof in the difficult direction : The «Hungarien» algorithm will either give a perfect amatg,
or it will (when it stops without giving a perfect matnly) point out an S with [S| F(S)|

The naive "greedy algorithhdon’t work

InstaceGiven a bipartite graphQuestion¥ind, if possible, a perfect matching.
We could try a simplgreedy approachyhich can go as follows:

Look repeatedly at the edges of the graph, and incluaziga in the
matching if it has no node in common with an alreadyuded edge.

Given the bipartite graph to the upper right. A greedy
approach may, after two steps, give the matching
to the lower left. However, there exists a matchin

with three edges (lower right), but we cannot use
simple greedy scheme to extend the left matching

to the one with three edges.

The greedy strategy is not working here. Example: / ><

Reminder from INF2220n connection with greedy algoritms the elements
often also has a weight, A place where such a greedyitdgoreally works
Is if we want the heaviest span tree in an undirectedgnapere the edges
have weights. Algorithm:

"Look at the edges in order of decreasing weight, actlde those that does
not make a loop with those already included (Kruskdgeathm).

The Hungarien algorithm to find a perfect matching
We assume here that |X| = |Y]

With the simple greedy strategy we only looked for «fuidependant»
edges, when we wanted to increase the size of the curreahimg M.

This was obviously too simple, but it turns out that & wmstead look for «M
augumentingpaths», and each time pick the best, the algorithm valkw

— This can be shown directly, but we’ll do it so that we also show H&léorem
An M-augumenting path:

— Must first of all be an «Malternatingpath», which is a (simple) path where
alternating edges are in M and not in M.

— In addition both end-nodes of the path must be «unmatched» (and then one end-
node will be in X and the other in YR/I .
-augumenting paths (dashed)

We can «use» an augumenting path to obtain a larger matching

 |If we have found an augumenting path, we can obviously «use
this» to find a matching which is one larger (written LIMP):

* The results are shown for the dashed M-augumenting paths
below.

A Vi =l
;hvl: S @ ;f\\/ig S @

How can we find possible augumenting paths?

 The Hungarien algorithm goes as follows: ® O
- Start with an empty matching / >< ><
- Search for an augumenting path S

@ O
- Use this to find a matching with one more edge

Repeat this until either: / ><

— You have a perfect matching
— Or you cannot find an augumenting path relative to the current M

* In the last case, the sitiation will hopefully show us a subset Sthrakis
connected only to the subset R in Y, where R is smaller than X.

* Thus, when the algorithm stops, we can show that there is no perfect ngatchi

 The search for an augumenting path is done as foll®es {igure on next slide):

— Choose an unmatched node ‘r’ in X. This node should be the root in a tree Where a
paths out from the root are alternating paths (which is, in fact, alvieysdse in a
bipartite graph)

— We then grow the tree by two and two edges as explained in the next slideveintil
we have found an augumenting path, or we cannot grow the tree any further by using
legal steps.

Growing a tree to find an augumenting path

We assume that we have a matching M that is not
perfect, and we will search for an augumenting patt]’reet T

This step should build aalternating treeT, and at
the start the tree will consist only of a root node ‘r’
in X which must be an unmatched node irjaxd

such a node can always be found when M is not
perfectand |K=[Y]) { I . \

o _ _ _ Toa node X ®
Building the alternating tree is done by repeating already in T.
the following step:

Do nothing.)
We search for an edge, not in T, betweeadnode /

in T and another node (which must be blue) ’ é ®
If we find such an edge, there are three cases: E Unmatchet. we
_ _ _ ® have then found @
1. The blue node is already in T: Do nothing an augumenting
2. The edge leads to ammatchedode in Y. Thenodeyis path. We use this

We have thefiound an augumenting patand ~1&tched-We o obtain a larger

: then include -
we can use that to find a larger M. T th matching M. \We
in 1 1ihe then trow away

3. The (_edge Iea_lds tonaatchechode y in Y. We chosen edge the puilt tree T,
then include in T the chosen edge from T, andoy and the and start building
the edge adjacentto y in the matching. The matched edge g new tree if we
tree T will then be extended by two adjacenttoy. don't have a
edges/nodes_ perfect matChing

Growing a tree to find an augumenting path

Treet T:
The tree to the right looks nice and clean. Note that
only the the edges of the tree, and a few potential
new ones, are drawn. There may be a number of

other nodes. \ \
But the tree can obviously also be drawn in the To a node ®
bipartite graph. Then it looks as shown below I already in T.
(where all nodes, but not all edges, is drawn) Do nothing. @
6 o ¢
. Unmatchet.We
) é have then found @

~an augumenting
The nodeyis path. We use this
matched.We o obtain a larger

) theninclude matching M. We
in T the then trow away
Thetree T We do chosen edge the built tree T,
grows with an nothing with Augumentig toyandthe and start building
umatched and a this edge path is found ma_ttched edge g new tree if we
matched edge adjacenttoy. don't have a

perfect matching

Termination of the Hungarien algoritl
The case when we don’t find a perfect matching

Assume that, when we are growing a tree, r
the algorithm stops because we don't find

any unused edge between a red node in the

tree to a blue node outside the tree. Then at

least this search did not find any \ \
augumenting path. Our hope is then that thef I ®

situation will show us a «Hall-situation» that
shows that no perfect matching can be foun
at all: No such edge exist

We want: A subset of S of X such that the the set
of nodes R T(S) inY is smaller than S.

We then simply choose S as the red nodes in the J-
tree T. The nuber of nodes in S is one larger than

the number of edges in the current matching. NB: The two trees above are different

We then claim that the only nodes in Y connecldtls, Hall Theorem is proven
to a node in S are the blue nodes in T. Proof: The Hungarien algorithm can be run on

If there were an edge from S to Y-R, then the any bipartite graph with [X[=[Y[, and it will

algorithm would not have stopped. either give a perfect matching or it will
give us a pair of sets S and R showing that

no perfect matching can exist.

4

Variations over the matching problem

e Studied until now:

Find a perfect matching in a bipartite graph (or show that no one exists)
A sketch of a program for this algorithm is given at page 422/423

e Variants of the problem (which can also be solved in similar ways)

Find a matching with as many edges as possible (and then X and Y don't
have to be of the same size)

o We shall look at some of these as exercises next Thusrday

Given «weights» on the edges: Find a perfect matchingt with as high
weight as possible.

o s described in the textbook (Ch 14.1.3), but is not part of the curriculum

Flow in «networks», where the matching for bipartite graphs occurs as a
special case.

e Also treated as an exercise next Thursday
e Flow in networks will be studied in the next hour today.

Generalizing to graphs that are not bipartite
o Will be discussed at next slides

Matchings in graphs that an®t bipartite

The slides on this theme is included in the curriculum

May have "odd” loops: I::> ! >‘ These are "difficult” for
matchings.

Generalization of matchings beyond bipartite graphs:

— Pose the same questions for general graphs:
e Find a perfect matching (or show that no one can be found)
e Find a meching as many edges as possible
o With weights on the edges: Find a (perfect?) matching with the
largest possible weight
— All thes can be solved in polynomical time

— Algorithm for matching in general graphs

e This algorithm are sligthly more complicated to describe, but it is
considerably more complex to prove correct.

e As part og the curriclium you should know this algorithm, but not
how it it can be proven correct.

e The algorithm is a generalization of that for the bipartite case,
with one more case a few places.

The step In the «extended Hungarien algorithm>’

New elements in the algorithm:
 There should be no node colors at the outset

. : Treet T:

 Each tree building starts with unmatched nod

color it red and it will be the root of the new tree
« When the graph is not bipartite, there can be edges

In the tree from from red to red nodes, like the edge

(u,v) in the figure to the right. This will form an \ /, \

odd loop with the rest of the tree. Edge f0 a ®
« This loop is treated by simply collapsing it blue node

(including its internal edges) tone red node ul v already in T

If it stops without finding an augumenting path, / " Do nothing.. ; ®

start with another unmatched node as root. New edge type,

not found in ©) O 4

nodes: O oon 1S . unmatched
They all have collapsed /

an alternating
path back to
the root, stating
with a matched
node o

Important:

We color the node augumenting
blue, and the path, and we
corresponding can use itto
matched node red, get a larger
and include both matching.
nodes in the tree

Both of these extensions have
alternating paths to the root

node:
Q/ Edge to a matched We have then
® uncolored node: found an
()
Q
()

The end of the treebuilding step In the
extended Hungarian algorthms

[

O
Umatched nodet—"

If you find an augementing path:

We then go backwards along the alternating
path, and along the way we unpack the
collapsed nodes, and find the alternating
path througt them.

We thereby get an alternating path in the
original graph back to the root.

We can use this to find a matching that is
one edge larger than the one we have.

Otherwise the treebuilding stops because
there are no more unmatched nodes, and no
edge from a red node to a node that is
uncolored and unmatched.

Then no larger matching exist

But this is quite complex to prove, and it is
not part of the curriculum

Flow In Networks, Ch. 14.2

* This stuff is, to some extent, also covered in the WBB0ok, so one may
also read about it there.

e The use of the word «Network» is simply a traditionhistarea. It is the
same as directed graphs, usually with some weight ctgetc. for each
edge.

 There are a lot of practical problems that can be sedowgproblems in
networks.
« Data nets, where there is a flow of data packages through the edges.

« Different types of pipe-networks where fluid can flow, and where eachhapea
capacity

* Networks of roads with different capacities,
where cars are «flowing» on the roads.

 The networks we shall study here have:
« A capacity on each of the edges
* Onesourcenodes og onesinknodet

* And the goal is usually to find a largest
possible flow from s to t

Flow In networks, Ch. 14.2

A flow fin such a network is composed of a flé{@) > O for each edge,
with the follow properties:

— Flow conservation:For each node, except feandt, the sum of flow into the
node is equal to the sum of the flow out of the node (wirdeeandout ofis
defined according to the directions of the edges).

— In networks with capacities: Each edge has a capaaiie)> 0 ,and the flow
f(e) must be betweed andc(e).

We assume during the following discussion:
— There are no edges leading irstor out oft.
— val(f) is by definition the sum of the flow out &f
— Lemma: The sum of the flow into t is the samevalff)

« Can be proved by summation of the flow
into and out of all nodes.

Concepts used in the book, that we don’t use here.
These details are therefore not important at tiaengx

A semipaththrough the network is a path frogrio t in the underlying
undirected graph.

Thecharacteristic flowof a semipatlts. This is a flow with value 1
where it follows the edge forward, and value -1 in tHeeotedges (and it
IS therefore not a proper flow &§&) may be negative)

Lemma for networks without capacitidavo legal flows may be
summed at each edge, and the result is a new legal flow.

Lemma for networks without capacitiest we multiply the edgeflow of
each edge with a certain constant, we get a new legal flow

3
No capacities. A (legal) flow
8 @ —
The numbers ¢ and a
are edge flows. semipath

Flow In networks, with capacities

 Each edge has a capaaifg),and the flowf(e) must be between 0 aia(e).
* Our goal:
— Given a network with capacities
— We want to find edgeflowige) that
« Satesfy the capacity requirement @e) < c(e)
 Forms a maximum flow (there are no legal flow with langg(f))
 The example below to the left, is a network witheq capacities.
— We can easily see: Maksimum flow is 7, and such a flow isxgvéhe right.

A cut with capacity 8.
More about that later.

A maximum flow, of 7

The naive greedy algorithm is again not working

 The naive greedy algorithm (that in fact don’t work!) would be as follows:
— The step:

* Find a directed, simple path from s to t where all the cuf(ehare positive
andsmallerthanc(e)

 Increase the flow along this path as much as possible (dictated by the edge
that has the smalles{e) — f(e)along the path)

— Repeat this step until no such pathes can be found.

* Inthe figures below the capacity is givahovethe edges (all c(e) =1) and the
current flow is given below the edge (initially zero everywhere)

— We first find a simple flowincreasing path, e.g. s-a-b-c-tive can increase
each edgeflow along this path with 1, and get the situation to the right.

— Nowval(f)= 1. But this is not a maximum flow, as we can easily find a flovhwit
val(f)=2

— BUT, there is no flowincreasing path in the right network that can brirtg as
flow with value 2. Thus this simple scheme won’t bring us to a maximum flow.

Thef-derived network\(f)

 What we haven’t taken into account on the previous slglghat we, while
searching for a larger matching, also ckxtreasdhe flow for edges with
nonzero flow. And by utilizing this, we in fact get awking algorithm!

 To get an overview of the ways we can change the currentdio each
edge we can set up tielerived network referred to &, Nf, or N(f). We
will here useN(f).

(Note: the capacities here are different from those on the previous slide):

A network with capacities (above Thelerived network, of the
the edge) and a flow (under) situation to the left

Also, look at Figure 14.8 in the textbook (page 435)

f-forbedringsveler

(Same network, capacities, aN{) as on the previous slide:)
a 1 b a 1 b

1 d 1 1 d- 1
e Wethe se;rch for paths fromstotin thErivc(:ed networkN(f)

— Such paths are callédhugumenting paths

— The search can be done e.g. bredth-first or depth-firsgf)rirom s.

— We can e.g choose the p&tk s-c-b-t The maximal flow-increase along this

path is 1 (assume, in genendl

 We then perform the corresponding flow change, by:

— Increasing the flow with for the edges where their direction is the same &s Iin

— Reduce the flow with where edge direction is opposite to that of F
This gives the new flow:

 We then forget the oltiderived network, s
and build a new one relative to the new flow. o 1 d

Cuts In networks

A cutin a network is simply a devision of the set of nodes into
two sets X and Y, whergis in X andtisin'Y.

3

<7 |

4

Thecapacityof a cutk=(X,Y), written cap(K).is the sum of the
capacities of all edges leading from a node in X to a node in Y.

In the figure above, the capacity of the cutis 3+ 7 =10

Thus, the capacity of the edges from Y to X do not influence the
capacity of the cut.

More about cuts in networks

Lemma:Given a legal flowf and a cuK = (X,Y). Thenval(f) < cap(K).

This can be shown as follows:
— By adding together the flow in/out of all nodes in X’ = X—s, we find that
(flow out of s) + (flow backwards over K) = (flow forwards over K)
— This means (as (flow out of s)al(f)):
val(f) = (flow forward over K) — (flow backwards over K)

— The right hand side of the above equality is calledlthe over K and (as all
flows are positve) we no that it will not exceedp(K)

— Thus, we knowval(f) < cap(K).
— Inthe figure above5=2+6-0-3< 3+7

This gives us a way to decide whether a given flow isnogl
If we have a flowf and acutK so thatval(f) = cap(K)
then we have a maximum flgwnd there is naut with smaller capacity

The Ford-Fulkerson algorithm

The FordFulkerson-algorithm goes as follows:
— Start with zero flow (which is always a legal flow)

— The main step (and at the start of this we generally have any legal fl
» Find thef-derived network\(f) (that shows all possible changes for the edgesflows)

* Find, if possible, afraugumenting path from s to t, and find the maximumease it
allows (before any of the edgeflows exceed the capacityilbgaunder zero).

« Do the changes that thisaugumenting path indicate
 Repeat this step until we can no longer findfaaugumenting path ih(f)
— The algorithm stops when there are no directed path from s td(f)in

— A proof showing that we now have a maximum flow, is that we can now show a
cut with capasity equal to the current flow. Thus, there can be no ldogér f

C
You should also look at the program at page 438
We will next Thursday look closer at this algorithm exerfipd by figure 14.9

Termiation of the Ford-Fulkerson algorithm

It stops when there is no connection from s toN({f).

As indicatedTo show that we now have a maximum flow, we will show
that we can construct a cktwith capacity equal to the current flow. That is:
cap(K)=val(f).

It turns out that such a cut is easy to find: Let Xlbe $et of nodes reachable
fromsin N(f), and let Y be the rest of the nodes (including

As no edges imN(f) is leading from X to Y, we know by the def. N{(f):
— All edges inN (the original network) from X to Y are used to its full capacity.
— All edges inN leading from Y to X have flowf =0

From the definition otLap(K)we see that the current flow over Kual(f)

Thus, we know we have a maximum flow, and we have praoe following
Theorem:

Theorem (Max-flow, min-cut): In a network with capacities we can find a
flow f and a cuK so thatval(f)=cap(K). Then we know that we have a
maximum flow, and that no cut has lewer capacity.

Variations of the Ford-Fulkerson algorithm

— TheFord-Fulkerson algorithm says nothing about whidhaugumenting path should
be chosen in each step, if there are more than one.

— If we do not decide anything about the choicé-atigumenting paths, we know:

« If all capacities are (positive) intergers, then the number of stepbe at least at
large as the size of the largest capacity. Example:

n = number of nodes
m = number of edges

« |f the capacities are real numbers, the algorithm can in theory loopefiore

— Proposal 1: All the time, choose thEaugumenting path that gives that largest
possible incremet in the flow. This one can be found by an algorithm sitmi&ar

shortest path algorithm)
* This gives a worst-case-tim@&(m log(n) log(max-flow))

— Proposal 2:(Edmonds og Karp) All the time, choose fr@ugumenting path that has
the smallest number of edges (can be found by a bredth-first search)

e This gives a worst-case-tim&@(n n?)
(and this independant of the max. flow, which is very convenient)

Varianter av problemet med maksimal flyt

— First of all, there are alternatives to the Ford-Fulkerson algorithm
* Dinac has designed an algorithm
* Goldberg and Tarjarjpreflow push algorithm)

— We may also have a minimal flow for each edge
 Thenitis an interesting problem just to fing@ssibleflow
« But after that you can proceed as Ford-Fulkerson

— We may also have a price on each edge, saying how much a flow of
1 costs over this edge.

* For this problem there is a well known algorithm: The Out-of-
kilter algorithm.

— We can also have multiple sources and/or multiple sinks, with
different requirements to the flow in and out of these

— We may also have different "commodities” that should flow in the
network (cars, busses, trucks, ... in a street network) , and the edges
may have a different capacity for each commodity.

 This is a field of active research, in connection with e.g.itraff
planning, routing in communication networks, etc.

Kap. 14.2.7:A connection between flow in networks
and matching in bipartite graphs

A simple but important lemma, which is obvious from #igorintm:
1. If we have interger capacities, Ford-Fulkerson will always finchterger max. flow

2. When all the capacities are 1, we can find a max. flow wherelgéfeows are either O
orl.

Such a flow can be seen as pointing out a subset of thes ¢tigse with flow 1)

N\,
Pasl= %s
All capacities are 1

Concerning the above picture, we will next Thursday look at:

— That searching for an Mugumenting path in the bipartite graph to the
left, corresponds to searchong forfeaugumenting path to the rigié.

