
INF 4130, 29th november 2013 
 

Petter Kristiansen 
 

Today: 
     1.  Triangulation.  No book, the slides are the curriculum 
     2.  Finding the convex hull.  Textbook, 8.6.2 
 

Next week: 
      Dino: coping with intractability. 
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Triangulation and terrain models 
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•  Here we have measured the 
elevation of a number of points 
in the terrain. 

•  Each point is projected down to 
a “sea level plane”. Here we 
have used a “reasonable” 
triangulation of the resulting 
points. 

•  This triangulation also gives a 
triangulation of the terrain, and 
this can easily be drawn, e.g. 
from the side and in any 
projection 



Triangulation 

•  The general problem is finding a triangulation of a given set of 
points in the plane. 
 Below, a set of points are given (left), and a arbitrarily chosen  
triangulation of this set is drawn (right)   

 
                                 

 
•  When finding a triangulation, a polygon should also be given, 

where the corners are are points of the given point set, with the 
rest of the points inside the polygon. (To define a boundary.) 

•  We will assume that this polygon always is the convex hull of the 
set of points (see next slide). 
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The convex hull of a point set 
Let P be a set of points in the plane (R2)    (Can also be defined for Rk, k > 2)  
 

The convex hull of a set of points P ∈ R2 is the smallest 
convex set Q that contains all the points of P.   

Definition: 

A set Q ∈ R2 is convex if:  
for all q1, q2 ∈ Q the line q1q2  is fully within Q. 

Definition: 
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How many triangles and edges will a  
triangulation consist of? 

•  This way of counting also defines an algorithm for finding a triangulation       
(and we shall use a refinement of this algorithm later) 

•  Assume that the outer (convex) polygon has n corners, and that there  
are m points inside (so that the total number of points is  n+m ).  

–  We can find a triangulation of the corners by choosing one of them, p, and draw an 
edge to the n-3 corners that do not already have an edge to p. 

–  Together with the outer edges this gives n + (n - 3) = 2n - 3  edges, and   
n - 2 triangles. 

–  We then take each of the inner points, q, and do as follows: We find the triangle that  
q resides in,  and draw edges from q to the three corners of this triangle. This gives 
three extra edges and two extra triangles for each of the m inner points 

–  We then get: 
   Number of edges:  2n – 3 + 3m =  2n + 3m – 3  

                Number of triangles:  n - 2 + 2m = n + 2m - 2  

•  Even if this is a special way to construct a triangulation, the answer 
(number of edges and triangles) holds for any triangulation, even if the 
outer polygon is not convex. (We do not prove this.) 5 



Constructing a triangulation  
(an illustration of the previous slide) 

•  We have n corners in the outer polygon 
and m internal points 

•  The upper figure shows the situation 
just after the n-3 diagonals are drawn, 
the lower shows a later situation, in 
which we want to include the red node. 

 
•  The new red node gives:  

–  Three extra edges 
–  Two extra triangles 

•  Thus the number of edges will be:   
n + (n – 3) + 3m =  2n + 3m – 3 

  Number of triangles: 
n - 2 + 2m = n + 2m - 2  

6 



There are a number of different triangulations 
of the same set of points 

•  We assume that the following special cases do not occur: 
1)  Four points lie on one circle (along the circumference), 
2)  all the points occurs on the same straight line. 

•  And, what is a “good” triangulation? 
–  Usually one where each triangle is as close to an equilateral triangle (with 

all angles equal to 60O) as possible. 
 Two reasonable goals could be 
–  To minimize the maximal angle : The largest angle is as small as possible 

(And notice: The largest angle in a triangle is always at least 60O) 
–  To maximize the minimal angle: The smallest angle (which is never larger 

than 60O) is as large as possible. 

•  It turns out that max-of-min is easier to handle than  
min-of-max, so it’s most commonly used. 
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Definition of a Delaunay-triangulation (max-of-min) 

 
 
 
 
 
 
 
 
 
 
•  Figure (a) is a Delaunay triangulation, but not figure (b). 
•  They have he same smallest angle, but the next to smallest is largest in (a) 
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      This angle larger than alfa, 
but smaller than all other 
angles in (a) 

•  Roughly speaking, a triangulation of a set 
of points is, a Delaunay triangulation if, over 
all triangulations, the smallest angle is as 
large as possible. 

•  Or more precisely: When the angles of a 
triangulation are sorted from smallest to 
largest, the Delaunay triangulation is the 
sequence with the highest lexicographic 
order. 



The Voronoi diagram 
Another definition of Delaunay triangulation 

•  The diagram to the left is the Voronoi Diagram of the given points 
–  It is constructed as if the points are islands, and so that that the sea area 

closer to island x than to any other island belongs to island x. (“midtinje-
prinsippet”) (“closest store”). 

 
 
 
 
 

•  The Delaunay-triangulation is then obtained by: 
–  By drawing an edge between those points/islands that have a common 

border, you will get a Delaunay triangulation (and this edge will be 
orthogonal to the common border). 

–  Note that these edges will not always pass through the common border  
(this is the case for the top two edges, and one at the bottom left). 9 



A property equivalen to the two other definitions  
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•  A triangulation is a Delaunay triangulation if and only if 
for all triangles, the circle through the three corners does not contain  
(in its inside) any of the other points. 

–  It is at the outset not clear that such a triangulation will always 
exist. However, it in fact does, and there is only one such 
triangulation  (if we don’t have any of the special cases mentioned 
earlier) 

 
•  The triangulation to the left is a Delaunay triangulation, but not the one 

to the right. 
–  Note that we here have one of the special cases (four points on a circle), 

and then the Delaunay triangulation is not unique. 
–  We could have replaced the edge c-a with the one from p and downwards.  

•  This is the definition we will use for the Delaunay triangulation. 



Some facts about angles and circles 

11 

a 

d” 

d d’ 

c 

b 

•  To the left, we have:ᶿ1 > ᶿ2 > ᶿ3. 
•  To decide whether the point d is inside, on, 

or outside the circle through a, b and c, we 
have to assure that a, b, c and d are taken 
in counter clockwise order, and then 
compute the value of the determinant: 

     (The computation of this can be optimized, and performed quite fast.) 



The Delaunay trick 
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 Assume the quadrangle a-b-c-d above is convex. 
 

•  We can observe that if d is inside the circle through a, b, and c, then the 
circle through a, c, and d will contain b. 

•  The Delaunay requirement is not fulfilled. 
•  If we in (b) remove the edge a-c and instead insert b-d (see (c)), then point 

a will be outside circle through b, c and d, and c will be outside the one 
through a, b, and d. 

•  Now the Delaunay requirement is fulfilled, at least locally. 



An algorithm that finds the Delaunay triangulation  

•  We are given a set of points in the plane. 
•  Start: To have a triangulation to begin with, we add three points, so 

that the triangle defined by these points contains all the given points. 
–  And we let this triangle be the initial triangle (see below). 
–  This single triangle is a Delaunay triangulation of the three points.  

•  We then do as we did earlier when we constructed a triangulation to 
count triangles and edges: 
–  That is, we add one node at a time, and for each node we also add the 

three edges to the corners of the triangle where the node resides. 
–  This may locally destroy the Delaunay property, and before we add the 

next node we will restore the Delaunay property, when necessary. 
(see next slide) 
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       It is important here to choose two of 
the three starting nodes far away from 
the node set.  Then it will be easier to 
remove them afterwards.  The third 
point can in fact be one of the original 
points. 



Restoring the Delaunay property 
•  Adding a point (see previous slide): 

–  Before the addition we have a Delaunay triangulation (invariant). 
–  We add a point p in one of the triangles, and draw edges from p to 

each of the three corners of this triangle. 
–  This may destroy the Delaunay property, and we want to restore it by 

using the Delaunay trick (see earlier slide). 
•  An important fact that we don’t prove: 

–  To restore the Delaunay property we look at all triangles that have a 
corner in p. We look at each of these triangles together with the 
neighboring triangle opposite to p, and check whether the Delaunay 
property holds for these two triangles together. If not, we use the 
Delaunay trick on those two triangles (see figure next slide). 

–  While this checking and repair goes on, the set of triangles with a 
corner in p can increase, and we have to go on testing until we have 
gone a full round without any Delaunay property being broken. 

–  This process will always stop, as the number of edges to p will 
increase each time we use the Delaunay trick, and there is only a 
finite number of points that p can have edges to. 14 
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Adding a new node, and restoring the  
Delaunay property   



Starting and ending the algorithm  

     As we have described the algorithm, we start the algorithm by 
adding three extra points, so that the triangle spanned by these 
contains all the given (“real”) points.    
–  This triangle makes up our initial Delaunay triangulation. 
–  We then perform the algorithm as explained above. 
–  Thus, the last problem is to “get rid of” the extra points we started with. 
–  The trick here is to place at least two of the extra nodes far away from 

the given node set. Then we can simply remove the extra points, and 
the edges to them. This works because the convex hull of the original 
points will all be edges in the triangulation (not proven here). 
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      With a good data 
representation and some 
optimizations, the 
algorithm will run in time: 

               O(n log n) 
 



Convex hull (8.6.2) 
Chapter 8 is generally about  “divide-and-conquer”, which can be outlined as 
follows: 
 
•  Split the problem into smaller problems of the same kind. 
•  Solve each of the smaller problems, usually by further splitting these 

problems. 
•  Find the solution of the larger problem by combining the solutions to the  

smaller problems. 
 
 
Divide-and-conquer is used in many algorithms, e.g. in QuickSort 
 
We shall use it for finding the convex hull of a set of points. 
   
(There are also algorithms for triangulation that uses divide-and-conquer.) 
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Convex hull: Norwegians could wonder what type of “hull” (= hole) this is.  
(Some even use the phrase “Det konvekse hullet”……….) 
However, it is not the type to the left, but the English version to the right. 
The correct Norwegian phrase is ”Den konvekse innhylling/omslutning”. 
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Convex hull (same slide as earlier) 

Let P be a set of points in the plane (R2)    (Can also be defined for Rk, k > 2)  
 

The convex hull of a set of points P ∈ R2 is the smallest 
convex set Q that contains all the points of P.   

Definition: 

A set Q ∈ R2 is convex if:  
for all q1, q2 ∈ Q the line q1q2  is fully within Q. 

Definition: 
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At the start: A set of points in the plane 
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Convex hull of a set of points 
 
 

The intuition used in the textbook:  
The points are pegs, and we put a rubber band around all the pegs. 
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The answer from an algorithm should be given as a 
sequence of points (x, y) in order around the set of points. 
  

 

The starting point and the direction may vary. 
(Counterclockwise most common, an arbitrary choice, 
but corresponds with the notion of a positively oriented 
curve in mathematics.) 22 



One way to find the convex hull: 
Is called “Jarvis’ March” 

  
 

Use a thin rope and wrap it around the points, step by step. 
 
To get a staring point, choose e.g. the point with the smallest x-value.  
This is always a corner of the convex hull 
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Vertical 

Idea: 



First step 
 
 

Swing the rope to the right, and stop as soon as it meets a point. This is 
the next corner of the convex hull. 
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Further: 
 
 

 
Swing the rope further to the right, always around the last identified 
corner, until you touch a new point. 
 
In each step we have to find the point that has the smallest angle with 
the previous edge. 
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Next step: 
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And next: 
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And next: 
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And next: 
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Termination:  
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When the starting point becomes the next corner, we are finished. 

 



And we have the convex hull:  
 

•  In two dimensions worst case running time is: O(n2) 
•  In d dimensions the running time is: O(n ⎣(d/2)⎦+1)) 
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A faster method for finding the convex hull 
using divide-and-conquer 

  
 

The first step is to divide the set into two sets with the same 
number of nodes (+1 or -1 for odd numbers), using a vertical line.  
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•  Divide the set at the median of the x-values. 
•  Repeat this for each of the sets until you have 1, 2, or 3 points in 

each set. 
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Convex hull 



Convex hull 
 
 

Then divide each of the smaller sets in the same 
way 
. 
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The depth of the “division tree” will be no larger than  log2n. 
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“Tree depth” 

Convex hull 



 
 

Solve lowest level: Find the convex hull for 2 or 3 points (easy). 
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Convex hull 



 
 

We merge together two and two convex hulls, following the structure 
of the division tree. 
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Convex hull 
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We merge two hulls into one by finding the upper and 
lower “bridge” between them. 

Convex hull 



 
 

p1 

q1 

q2 

q3 

q4 

q7 

q6 

q5 

We know that all x-values in the left set are smaller than those in the 
right set. Let p1 be the rightmost corner of the left hull and q1 the 
leftmost of the right 
 
Number the corners of the left hull counterclockwise p1, p2, …, and the 
corners of the right hull clockwise q1, q2, … 
 
NB: This is different from what is done in the textbook! Inaccurate. 
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Finding the upper bridge 



 
 

q1 

q2 

q3 

q4 

q7 

q6 

q5 

p1 
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We start by ”crossing” the edge p1-q1, and moving to the next corner, q2, 
of the right convex hull (as is done above) 
 
To check if this was the upper bridge, we have to be able to decide 
whether three consecutive points represent a turn to the left or to the 
right.  See next slides.  

Finding the upper bridge 



How can we find whether three consecutive points 
represent a turn to the left or to the right. 

 
We assume that the three points are  p1=(x1, y1) ,  p2=(x2, y2) ,  p3=(x3, y3) 

p2 = (x2, y2) 

p1 = (x1, y1) 

p3 = (x3, y3) 

Turning left 

0
1
1
1
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>
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p2 = (x2, y2) 

p1 = (x1, y1) 

p3 = (x3, y3) 

Straight ahead 

0
1
1
1
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=
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yx
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p2 = (x2, y2) 

p1 = (x1, y1) 

p3 = (x3, y3) 

Turning right 

0
1
1
1

33

22
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<
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This is a determinant.  Computing is is described on next slide. 41 



         How to compute 3 x 3 determinants? 
 
Given the matrix A:  
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Since c, f and i are all 1, we get the formula:      
          ae – ah – bd + bg + dh – eg    
 

A scheme for computing a 
3x3 determinant     
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Convex hull 
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The geometric interpretation of the determinant of matrix A (det(A), or simply 
|A|) is the volume of the parallelepiped spanned by the row vectors of A.  
(Or the column vectors, it is the same volume). 



Convex hull 
 
 



 
 

q1 

q2 

q3 
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q6 

q5 

p1 
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We start by “crossing” the edge p1-q1, and moving to the next corner, q2, 
of the right convex hull (as is done above) 
We then use the determinant to decide whether p1-q1-q2 is a turn to the 
right or to the left. 
If it turns to the left (as above), we move one step to the tipple p1-q2-q3 
(otherwise we ”change side”, see later). 

Finding the upper bridge same figure as earlier 
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p1 
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We again test if this is a left or a right turn.  
As it too is a left turn, we go one step further along the right hull. 

Finding the upper bridge 
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q7 

q6 

q5 

p1 
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Now p1–q3–q4 is a turn to the right, and we “move to the other side”. 
We have “crossed over” from p1 to the right hull and followed the 
corners to end up in q3, now we “cross back” from q3 to p1 and 
follow the corners of the left hull. 

Finding the upper bridge 
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p1 
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We repeat the process, but now check for a right turn, and “move to 
the other side” if we encounter a left turn. 

Finding the upper bridge 



 
 

q1 

q2 

q3 

q4 

q7 

q6 

q5 

p5 

p4 p3 

p2 

p6 
p1 

49 

We keep going as long as we only encounter right turns. 

Finding the upper bridge 
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q3-p3-p4 is a left turn, so we move to the other side again. 

Finding the upper bridge 
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As p3-q3-q4 turns left, we keep going along the right hull. 

51 

Finding the upper bridge 
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p3-q4-q5 is a right turn, so we change back. 
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Finding the upper bridge 
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As q4-p3-qp4 turns right, we keep going along the left hull. 
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Finding the upper bridge 
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Finding the upper bridge 

q1 

Finally we have the upper bridge.  
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We can not go any further (no change when going back and forth). 
This means we have found the upper bridge. 
(This process is inaccurately described in the book.) 
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Finding the upper bridge 
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•  The lower bridge is found the same way (upside down). 
•  Afterwards we need to remove some “old” corners (now interior points), 

and renumber the current corners. 
•  All points visited during the search for the bridges, except the endpoints of 

the bridges are no longer corners of the merged hull. 
•  We re-number remaining corners so that we get a continuous numbering of 

the corners around the merged hull. 56 

Completing the merge 



•  We first sort the points according to their x-value.  This 
takes time O(n log n), where n is the total number of 
points. We can then easily do the partitioning. 

•  Each time we merge two convex hulls, we may have to 
move the endpoints of the potential bridges m times, 
where m is the total number of nodes in the two merged 
sets. Thus, each merge takes time O(m). 

•  All merging at one tree-depth will therefore take time 
     O(m1) + O(m2) + O(m3) +…+ O(mk)  which becomes 
     O(n) since m1+ m2 + m3 +…+ mk  =  n. 
 
•  The number of tree-levels do not exceed log2 n, so the 

total running time is therefore: O(n log n). 
57 

Time complexity 
(of the divide-and-conquer method for finding the convex hull) 



Example: Why large angles are best  
The figure shows heights at different points 

•  One usually assumes that the edges of the triangulation are straight 
lines in the terrain. 

•  That means that the height of a point on an edge can be found by 
interpolation of the height of the endpoints of the edge 

•  We can see that the left triangulation below gives an intuitively better 
height for q than the triangulation to the right. 
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