
The sum of heights in a perfect binary tree of n nodes is O(n)

Observation: A perfect binary tree of height h has:

 n = n(h) = 2
h + 1

– 1 nodes, (1 + 2 + 4 + … + 2
k
 = 2

k + 1
– 1)

 sum-of-heights Σh = n – h – 1.

We explain the observation with a small inductive proof. The induction is on h, the height of

the tree. We first show that the observation holds for h = 0 (the inductive basis). We then

assume that the observation holds for h = k, and show that this implies that it holds for

h = k + 1 (the inductive step).

Basis:

Let h = 0, this is the binary tree consisting of a single node; its sum-of-heights is zero (we

count edges). The observation holds, we have:

 n = 2
h + 1

– 1 = 2
0 + 1

– 1 = 2 – 1 = 1, (one node)

 Σh = n – h – 1 = 1 – 0 – 1 = 0. (sum-of-heights is zero)

Step:

We now assume that the observation holds for h = k, and show that this implies that it holds

for h = k + 1. The assumption gives the number of nodes and sum-of-heights for a tree of

height k:

 n = 2
k + 1

– 1,

 Σh = n – h – 1 = 2
k + 1

– 1 – k – 1.

We then move one step up, to a tree of height k + 1, by adding a new row of 2
k + 1

 leafs. A tree

of height k + 1 has the same number of non-leafs as the number of nodes in a tree of height k.

Each such non-leaf is now one level higher up the tree than in the tree of height k. We get:

 n = (2
k + 1

 – 1) + (2
k + 1

) = 2
k + 2

 – 1, (adding 2
k + 1

leafs)

 Σh = (2
k + 1

 – 1 – k – 1) + (2
k + 1

– 1) (adding 1 for all non-leafs)

 = 2
k + 2

 – 1 – k – 1

– 1

 = (2
k + 2

 – 1) – (k + 1)

– 1,

and the observation holds for h = k + 1.

We know, of course, that the height of a perfect binary tree of n nodes is O(log n)
†
, so that the

sum-of-heights is n – O(log n) – 1 = O(n), which is what we really wanted to prove.

†
 To be exact, the height of complete or perfect binary trees of n nodes is log2 (n + 1) – 1, if

we count edges.

A leftist heap of n nodes has a right path of at most log (n + 1) nodes

Observation: If the right path of a leftist heap has r nodes, then the heap has n = n(r) ≥ 2
r
– 1

nodes.

We again apply a small inductive proof, this time on r, the number of nodes in the right path.

We first show that the observation holds for r = 1; we then assume that it holds for r = k, and

show that this implies that it holds for r = k + 1.

Basis:

Let r = 1. The observation holds, the tree has at least 2
1
 – 1 = 1 node.

Step:

We now assume that the observation holds for r = k, and show that this implies that it holds

for r = k + 1.

A leftist heap with a right path of k + 1 nodes consists of a root with one left and one right

subtree, both subtrees must by definition be leftist. The right subtree must have a right path of

k nodes for our tree to have a right path of k + 1 nodes. The left subtree must have at least k

nodes on its right path; otherwise the root of the left subtree would have a null path length

shorter than the null path length of the right subtree. Therefore, by the assumption, the

number of nodes in both subtrees is at least 2
k
 – 1. This, plus the root, gives us

n ≥ (2
k
 – 1) + (2

k
 – 1) + 1 = 2

k + 1
 – 1 nodes, as wanted.

If a heap with right path of r nodes has n ≥ 2
r

– 1 nodes in total, it follows that a heap of n

nodes has a right path of at most log (n + 1) nodes, which is what we really wanted to

prove.

