
The sum of heights in a perfect binary tree of n nodes is O(n) 
 

Observation: A perfect binary tree of height h has: 

 n = n(h) = 2
h + 1 

– 1 nodes,     (1 + 2 + 4 + … + 2
k
 = 2

k + 1 
– 1) 

 sum-of-heights Σh = n – h – 1. 

 

We explain the observation with a small inductive proof. The induction is on h, the height of 

the tree. We first show that the observation holds for h = 0 (the inductive basis). We then 

assume that the observation holds for h = k, and show that this implies that it holds for 

h = k + 1 (the inductive step). 

 

Basis:  

Let h = 0, this is the binary tree consisting of a single node; its sum-of-heights is zero (we 

count edges). The observation holds, we have: 

 n  =  2
h + 1 

– 1 = 2
0 + 1 

– 1 =  2 – 1 = 1,  (one node) 

 Σh  =  n – h – 1 = 1 – 0 – 1 = 0.    (sum-of-heights is zero) 

 

Step: 

We now assume that the observation holds for h = k, and show that this implies that it holds 

for h = k + 1. The assumption gives the number of nodes and sum-of-heights for a tree of 

height k: 

 n  =  2
k + 1 

– 1, 

 Σh  = n – h – 1  =  2
k + 1 

– 1 – k – 1. 

We then move one step up, to a tree of height k + 1, by adding a new row of 2
k + 1

 leafs. A tree 

of height k + 1 has the same number of non-leafs as the number of nodes in a tree of height k. 

Each such non-leaf  is now one level higher up the tree than in the tree of height k. We get:
 

 n  =  (2
k + 1

 – 1) + (2
k + 1

)  =  2
k + 2

 – 1,  (adding 2
k + 1 

leafs) 

 Σh  =  (2
k + 1

 – 1 – k – 1) + (2
k + 1 

– 1)   (adding 1 for all non-leafs) 

 = 2
k + 2

 – 1 – k – 1
 
– 1 

 =  (2
k + 2

 – 1) – (k + 1)
 
– 1, 

and the observation holds for h = k + 1. 

 

 

We know, of course, that the height of a perfect binary tree of n nodes is O(log n)
†
, so that the 

sum-of-heights  is n – O(log n) – 1 = O(n), which is what we really wanted to prove. 

  

                                                           
†
 To be exact, the height of complete or perfect binary trees of n nodes is log2 (n + 1) – 1, if 

we count edges. 
 



A leftist heap of n nodes has a right path of at most log (n + 1) nodes 
 

Observation: If the right path of a leftist heap has r nodes, then the heap has n = n(r) ≥  2
r 
– 1 

nodes. 

  

We again apply a small inductive proof, this time on r, the number of nodes in the right path. 

We first show that the observation holds for r = 1; we then assume that it holds for r = k, and 

show that this implies that it holds for r = k + 1. 

 

Basis: 

Let r = 1. The observation holds, the tree has at least 2
1
 – 1 = 1 node. 

 

Step: 

We now assume that the observation holds for r = k, and show that this implies that it holds 

for r = k + 1.  

 

A leftist heap with a right path of k + 1 nodes consists of a root with one left and one right 

subtree, both subtrees must by definition be leftist. The right subtree must have a right path of 

k nodes for our tree to have a right path of k + 1 nodes. The left subtree must have at least k 

nodes on its right path; otherwise the root of the left subtree would have a null path length 

shorter than the null path length of the right subtree. Therefore, by the assumption, the 

number of nodes in both subtrees is at least 2
k
 – 1. This, plus the root, gives us  

n ≥ (2
k
 – 1) + (2

k
 – 1) + 1 = 2

k + 1
 – 1 nodes, as wanted. 

 

 

If a heap with right path of r nodes has n ≥ 2
r 

– 1 nodes in total, it follows that a heap of n 

nodes has a right path of at most log (n + 1)  nodes, which is what we really wanted to 

prove. 

 


