Answers to weekly exercises - /B2

Reidar André Brenna
reidarab
reidarab@ifi.uio.no

16. september 2013

1

l1la

See the lecture notes.

1.1b

The double(nested) for loops give us a running time of O(n*m)

1.2

Hint when solving this by hand note that you have two options: iif P[T][j]
then you fill the square"with the value from one diagonaly aphie left. if P[i]
I=T[j] then you fill the square with % the lowest value of these squares: the one
directly to the left, the one directly above and the one dmadypup to the left.

® | 0123456
al| 1123345
1212123445
g3]3222345
o04] 4323345
rS5| 5433434
i6]| 65444143

like
01234

0 | 012314
11110123
i2121012
k3]321601
ed4 143210

Note The answear is located in the bottom right square.

1.3

When proving that the algorithm is correct, we shall use angle where T=
"logaru” and P= "algor”, and we assume that we shall transform T into P with as
few operations as possible. With the algorithm used in 1.2yatethe following
table:

logaru
0123456

0| 0123456
a 111123345
1l 212123445
g 313222345
o 4114323345
r 515433434

Our task is to explain why this algorithm is correct. This vimusly the case if
can prove that if D[i,j-1], D[i-1,j] and D[i-1,j-1] are thenfinimum) edit distance

for the corresponding prefix strings of T and P, we can comiinge&orrect value
of DJi,j] by taking the minimum of these three values, and ax@ (where we
assume that T[j] is dierent from P[i]). We will use the computation of D[5,6] as
an example. So, generally, we want to transform “logaru”alg6r” with as few
operations as possible. We start by picking such a shodgsesce of operations
leading from “logaru” to “algor”, and we then sort these @i@ms so that they
are made from left to right in T. For our example, these stepddcbe:

We start with T= “logaru”
1. Insert a at the start of T, getting “alogaru”
(Do nothing with the |, still having “alogaru”)
2. Remove the o, getting “algaru”
(Do nothing with the g, still having “algaru”)
3. Change the a to o, getting “algoru”
(Do nothing with the r, still having “algoru”)
4. Remove the u, getting “algor”, which is P!

As we assumed that this is a shortest transformation, thedestance between
alogaru and algor is obviously€ 4 (as we, encouragingly, also got in the table
above). We now look at the last step made, which was to remde then claim
that the edit-distance before the last step (that is, betweestrings = “logaru”
and “algoru”) must have been d < 3, as the ED increases by one with each
operation we perform. As we assume that the last characterlaofl of P are not
equal, the last step must have been one of the three legalamsust involve
either the last charcter of T (delete it), the last charaatté (insert it at the end of
T), or both (change the last character of T to the last charadtP). Thus, if DJ[i-
1,j], DIi,j-1], and DJi-1,j-1] are the correct optimal vads for the corresponding
cases, one of these must be d-1, and which it is depends ortlvenast operation
was. Also, none of the other two can be smaller than d-1, fam thtransformation
between T= "logaru” and P= "algor” with a smaller edit distance than d could be
found, and this is contrary to the assumption. Thus, if Dfj; DJi,j-1], and DJi-
1,j-1], are the correct ED between the corresponding stritigen the ED between
the strings corresponding DJi,j] is the smallest of theagsplone. Thus we have
shown that the basic step of the algorithm is correct, ankl thé obviously correct
initialization and by doing the operation in a bottom up fashwe have shown
that the algorithm will work correct.

1.4

We want to calculte the values in the table is it is descrillzal/a, we assume it
has dimensions D[0:m,0:n]. We index it with DJ[i,j], and wahe value of D[m,n].
We calculate row by row from the top down, in our algorithm wawnuse an
array DR[0:n] that we initialize with O, 1, 2, ..., n. Duringecution this array
will contain values from row i in DR[O:j], and values from rawl in DR[j+1:n].
We also need two new variables, newDij"and prevoius”. (Gagethe exercise
suggested, is not enough.) The program looks like this:

for (j = 0; j <= n; j++) { DR[j] = 3j } // Initializing DR (row zero)

previous = 0; // In general: the value of D[i-1, j-1.
for (i1 = 1; 1 <=m; i++) {
DR[O] = i; // Initialization of column zero

for (j =1; j <m; j++) {
if (P[i] == T[iD {
newDij = previous;
} else {
newDij = min(DR[j], previous, DR[j-1]1);
}
previous = DR[j];
DR[i] = newDij;

2

2.a

We initialize the array in D[0:m,0:n] just like we did in 2@Xin zeroth row and
zeroth column), and initialize the rest of the array to -lnicate that no value is
calculated for this sub-problem (0O is a possible calculatdde).

/** Finds the value in the table from the given indexes.
* Called from outside with (m,n).
* @param i the i index (m)
* @param j the j index (n)

public int EdDist(i,j) {

//checks if the value have been previously calculated.
if (O[i,3] >= 0 {
return D[i,j];
} else {
//check if P[i] and P[j] are equal
if (P[i] == T[iD {
//sets the value in the table to the one diagonaly up to the right
D[i,j] = EdDist[i-1,j-1];
} else {
//sets the value in the table to the minimum of the left, the one
//above and the one up to the right pluss one.
D[i,j] = min(EdDist[i-1,j], EdDist[i-1,j-1], EdDist[i,j-1]1) + 1;
return D[i,j];

Note The recursion always stops because of the initialization.

3

We simply look at all parts of T that can possibly be a match. A&t by
comparing thgP+K first letters of T with P, and do it as in Exercise 1 above.
We then take away the first character of T, and repeat the gsao#il there are
less thanP)| - K letters left in T. The reason that we look at parts of T ofgén

|Pl+ K is that this is the longest parts that can possibly contammagch and edit-
distance at most K. We can stop when less fRanK charcter are left in T, as no
shorter interval of T can have ED smaller than K to P. To avatligg the same
match twice, we, in each step, only register matches thasstathe beginning of
the current interval. If we look at the second example fromeRercise (lag"and
"varelager"with K=1), we get the following comparisons:

Compare “lag” with “vare”: No match with ED = 1 or 0
Compare “lag” with “arel”: No match with ED = 1 or 0
Compare “lag” with “rela”: No match with ED = 1 or 0
Compare “lag” with “elag”: One match with ED = 1 (“elag”)
Compare “lag” with “lage”: One match with ED = 0 (“lag”)

and two with ED = 1 (“la” and “lage”)
Compare “lag” with “ager”: One match with ED = 1 (“ag”)

Compare “lag” with “ger” : No match with ED = 1 or 0
Compare “lag” with “er” : No match with ED =1 or 0
Last one, as |[P|] - K = 2.

We'll show two of the steps below

elag
01234
0| 01234
11111123
a2l 22212
g3]33321 Can be traced back to “elag”
lage
01234
0| 01234
11110123
a2 21012
g3]32101 Can be traced back to “la”, “lag”, and “lage”

4

4.a

In general one can just take the largest coin possible, lhtstiange currencies
we have to check every possible coin of the n awailable to us.

4.b

/** Finds the number of coins.
* Tf we want to find which coins, we would need another table,
cv for instance, and set cv[j] = v[i] when updating c[j].

* @param K the amount.

* @param V the coin denominations available (V[i:n]).
* @param n the amount of different coins.

:‘:/
public int Change(X, V, n) {
CL0] = 0;
for (j =1; j <K; j+t) {
C[j] = MAXINT; // infinity
for (i = 1; i <= n; i++) {
// j >= V[i] avoids indices below zero (index out of bounds)
if ((J >= V[i]) && ((C[j - V[il]l + 1) < C[jD {
C[31 = C[j - V[il]l + 1;
}
3
3
return C[K]
}
C
4.d

Like before the double foor loop is the dominating source wf time in this
algorithm, so in general we would end up with a run time of @)k*One could
argue that the run time would be closer@ = n). In any given example run of
the code n would be a (rather smal) constant and therforedignificant to the
run time, providing a run time o®(k), but we need to include the n for general
purposes.

