
INF4130: Dynamic Programming 
September 2, 2014 

DRAFT version 

• In the textbook: Ch. 9, and Section 20.5 
 

• Chapter 9 can also be found at the home page for 

INF4130 
 

• These slides were originally made by Petter 

Kristiansen, but are adjusted by Stein Krogdahl. 
 

• The slides presented here have got a slightly different 

introduction than the one in the textbook: 
 

• I (SK) think the one used here is easier to understand 

(but that might indeed be a matter of taste!): 



Dynamic programming 

 
 

Dynamic programming was formalised by Richard Bellmann (RAND 

Corporation) in the 1950’es. 

 

– «programming» should here be understood as planning, or 

making decisions.  It has nothing to do with writing code. 

 

– ”Dynamic” should indicate that it is a stepwise process. 

 

 



We start with an example:  

Searching for similar strings (Ch. 20.5) 
This is relevant e.g. for research in genetics 

 

A string P is a k-approximation of a string T if T can be converted to P by a 
sequence of maximum k of the following opertions: 

 

Substitution  One symbol in T is changed to another symbol. 

Addition   A new symbol is inserted somwhere in T. 

Removing   One symbol is removed from T. 

 

 

The Edit Distance, ED(P,T ), between two strings T and P is the smallest 
number of such operations needed to convert T to P  (or P to T!). 

 

 

Example. 

logarithm  alogarithm  algarithm  algorithm    (Steps: +a, -o, a->o) 

       T                                                            P 

 

        Thus ED(”logarithm”, ”algorithm”) = 3 



Finding the edit distance 

• Given two strings T and P of length m and n respectively.     

• We want to find ED(P, T). 

• We will use a two-dimentional matrix D, and we hope to fill it in so that: 

      D [i, j ] = ED( P [1: i ], T [1: j ] ). The size of this instance is  i + j 

• We imagine that the string P is written downwards along the left edge, and that 

T is written from right to left above the matrix: 

 

 

 

 

 

 

 

 
 

• The problem with the smallest size occur when i = j =0 (the size is 0).  Then 

ED is obviously  0, as filled in above. 

• We can also easily fill in for the cases where i = 0 or j = 0 (T or P is empty, that 

is: row 0 and line 0). Why should these be filled as indicated above? 

 

0 1 … j -1 j                 n 

0 0 1 j -1 j 

1 1 

... 

i -1 i -1 

i i ? 

m 

P 

T 
The matrix D: 



Finding the edit distance 
See discussion of a similar problem in Ch. 9.4 

From previous slide: Given two strings T and P of length m and n respectively.   

• We want to find ED(P, T). 

• We will use a two dimentional matrix D, and hope to fill it so that: 

                             D[i, j ] = ED( P [1: i ], T [1: j ] ).  

• Thus, the answer for the full strings P and T will occur in D[m,n]  

 

It turns out that to find the value D[i, j ] we only need to look at the entries 

                       D [ i -1, j -1], D [ i , j -1], and D [ i -1, j ] 

which all have smaller sizes than D[i, j].  There are two cases: 
 

Case 1: If P [ i ] = T [ j ], then D [ i, j ] = D [ i -1, j -1] (see figure below) 

 

 

 

 

 

 

 

 

  

 

0  1 i 

a P[0: i  ] 

a T[0: j  ] 

0  1 j 

=
 

Why is it not possible to obtain a better ED? 



A. Substitusjon – change T [ j ] to P [ i ] 

 

 

 

 

 

B. Addition of T [ j ] at the end of T – corresponds to removing the last symbol 

P [i ] of P 

 

 

 

 

 

C. Remove T [ j ] from T. 

 

 

0 i 

b n n e P[1: i  ] 

a n n f T[1: j  ] 

0 j 

0 i 

b n n e P[1: i  ] 

a n n f T[1: j  ] 

0 j 

0 i 

b n n e P[1: i  ] 

a n n f T[1: j  ] 

0 j 

≠
 

≠
 

≠
 

ED [ i, j ]  would be  

  D [ i -1, j -1]  +1 

(ED between the gray 

areas plus 1) 

 

 

ED[ i, j ] would be  

     D[ i -1, j ] +1  

(ED between the gray 

areas plus 1) 

ED[ i, j ] would be  

    D[ i , j -1] + 1 

(ED between the gray 

areas plus 1). 

Case 2: T [ j ] is not equal to P [ i ].   
We choose the best of the following three possibilities (but why is this enough?): 



Computing edit distance 

Thus, a recursive expression for D[ i, j ] is: 

 

 

 

 

 

  

 

 

  

 

0 1 … j -1 j n 

0 0 1 j -1 j 

1 1 

... 

i -1 i -1 

i i 

m 

When fully filled in, we 

will find the edit 

distance between T 

and P in D[n,m] 

 

……………………………… 
 

if P[i] = T[j] 

otherwise 

substitution addition in T   Deletion in T 

We will fill in the entries of the matrix in the order from smaller to 

larger sizes, starting with size 0.  



Computing edit distance 
 function EditDistance ( P [1:n ], T [1:m ] ) 

  i ← 0 

  j ← 0 

  for i ← 0 to n do D[ i, 0 ] ← i 

  for j ← 1 to m do D[ 0, j ] ← j 

  for i ← 1 to n do 

   for j ← 1 to m do  

    If P [ i ] = T [ j ] then 

           D[ i, j ] ← D[ i -1, j - 1 ]  

    else 

           D[ i, j ] ← min {  D[i -1, j - 1] +1,   D[i -1, j ] +1,   D[i, j - 1] +1  }  
    endif 

   endfor 

  endfor 

  return( D[ n, m ] ) 

 end EditDistance 

 

Note that this algorithm does not go through the 

instances strictly in the order from smaller to larger ones.  

In fact, after the initialization we use the following order of 

the pairs (i, j): 

(1,1) (1,2) … (1,m) (2,1) (2,2) … (2,m) (3,1) (3,2) … (n,m) 

This is OK as also this order ensures that the smaller 

instances are solved before they are needed to solve a 

larger instance.  An order strictly following increasing size 

would also work fine, but is slightly more complex to 

program (following diagonals). 



Example 

a n e 

0 1 2 3 

0 0 1 2 3 

a 1 1 0 1 2 

n 2 2 1 0 1 

n 3 3 2 1 1 

e 4 4 3 2 1 

T 

P 

j 

i 

D 

del T del T 

ins T 



Computing edit distance 

a n e 

0 1 2 3 

0 0 1 2 3 

a 1 1 0 1 2 

n 2 2 1 0 1 

n 3 3 2 1 1 

e 4 4 3 2 1 

T 

P 

Example 

j 

i 

D 

del T del T 

ins T 



Generally about dynamic programming - 1 

• Dynamic programming is typically used to solve optimazation 

problems.  That is, problems that can have a number of «feasible» 

solutions, but where we want to find the «best» – by optimizing the 

value of a given objective function. 
 

• Each instance of the problem must have an integer size. Typically the 

smallest (or simplest) instances have size 0 or 1, that can easily be 

solved. 
   

• For each problem instance A of size n there is a set of instances B1, 

B2, … ,Bm, all with sizes less that n, so that we can find an (optimal) 

solution of A if we know the (optimal) solution of the Bi-problems. 

 

     Example: 

0 1 … j -1 j 

0 0 1 j -1 j 

1 1 

... 

i -1 i -1 

i i 

The values of the 

yellow area is 

computed when 

the gray value is 

to be computed 



Generally about dynamic programming - 2 

• In the textbook (page 265) the solution to the instance A is called S, 

and that of each Bi is called Si. The way to find S from the Si-s is 

written:  

                             S = Combine(S1, S2, …, Sm) 

 

 

       For our example problem: 

 

 

 

 

 

 

 

 if 

 otherwise 

 initialization 



Generally about dynamic programming - 3 

 

• Dynamic programming is useful if the total number of smaller 

instances (recursively) needed to solve an instance A is so small that 

the answer to all of them can be stored in a table. 

 

• For dynamic programming to be useful, the solution to a given 

instance B will be used in a number of problems A with size larger 

than that of B. The main trick is to store solutions for later use. 

 
0 1 … j -1 j 

0 0 1 j -1 j 

1 1 

... 

i -1 i -1 

i i 



When to use dynamic programming? 

• Thus, if we compute and store (in a table of a suitable format), the 

solutions to all relevant  instances of a given size before looking at 

instances of larger sizes, we will always know the arguments to the 

Combine-function when we need them for computing the solution of 

an instance of larger size. 

 

• We start by solving the smallest instances, and then look at larger 

and larger instances (all the time storing the solutions). 

0 1 … j -1 j 

0 0 1 j -1 j 

1 1 

... 

i -1 i -1 

i i 



Another view 
• As indicated on the previous slide, Dynamic Programming is useful if the 

solution to a certain instance is used in the solution of many instances of 

larger size. 

• In the problem C below, an instance is given by some data (e.g two strings) 

and by two intergers i and j. The corresponding instance is written C(i, j).  

Thus the solutions to the instances can be stored in a two-dimentional table 

with dimensions i and j. 

• The size of an instanstance C(i, j) is j – i 

• Below, the children of a node N indicate the instances of which we need the 

solution for computing the solution to N. 

• Note that the solution to many instances, e.g. C(3,4), is used multiple times, 

and that all terminal nodes have size 0. 

 

 



• If the number of solutions to different smaller instances that are needed to 

find the soluton to a certain instance may very big (e.g. exponential in the 

size of the instance), then the resulting algoritm will usually not be practical. 

 

• Instead, this number should at least be polynomial in the size of the 

instance, and usually it is rather small.  

 

 

 

 

 

C(m,n) 

Number of solutions needed 

 

 

 

 

 

Sketch indicating the situation when the solution of one instance needs 

the solution of many different smaller instances. 



Bottom up (traditional) and top down (memoization) 

 

Dynamic Programming (bottom up) 

• Is traditionally performed bottom-up. All relevant smaller instances 
are solved first, and the solutions are stored in a table. 

• Works best when the answers to smaller instances are needed by 
many larger instances. 
 

«Top-Down» dynamic programming  (called Memoization) 

• A drawback with (traditional) dynamic programming is that one 
usually solve a number of smaller instances that turns out not to be 
needeed for the actual (larger) instance you originally wanted to 
solve. 

• We can instead start at this actual instance we want to solve, and 
do the computation top-down (usually recursively), and put all 
solutions into the same table as above (see later slides).  

• The table entries then need a special marker «not computed», 
which should be the initial value of the entries. 



a n e 

0 1 2 3 

0 0 1 2 3 

a 1 1 0 1 2 

n 2 2 1 0 1 

n 3 3 2 1 1 

e 4 4 3 2 1 

T 

P 

j 

i 

D 

del T del T 

ins T 

 

«Top-Down» dynamic programming   
”Memoization” 

You only have to compute the colored entries below 

 



New example: Optimal Matrix Multiplication 

Given the sequence  M
0
, M1, …, M

n -1
 of matrices.  We want to compute the 

                             product:   M0 · M1
 · … · M

n -1.  

Note that for this  multiplication to be meaningful the length of the rows in Mi must 

be equal to the length of the columns Mi+1   for i = 0, 1, …, n-2 
  

Matrix multiplication is associative: (A · B) · C  =  A · (B · C)  

(but not symmetric, since  A · B  generally is different from  B · A ) 
  

Thus, one can do the multiplications in different orders.  E.g., with four matrices it 

can be done in the following five ways: 
  

 (M
0
 · (M

1
 · (M

2
 · M

3
))) 

(M
0
 · ((M

1
 · M

2
) · M

3
)) 

((M
0
 · M

1
) · (M

2
 · M

3
)) 

((M
0
 · (M

1
 · M

2
)) · M

3
) 

(((M
0
 · M

1
) · M

2
) · M

3
) 

 

The cost (the number of simple (scalar) multiplications) of these will vary a lot 

between the differnt alternatives.  We want to find the the one with as few scalar 

multiplications as possible. 



Optimal matrix multiplication - 2 

Given two matrices A and B with dimentions:  

     A is a  p × q  matrix, 

 B is a  q × r  matrix.  

 

The cost of computing A · B  is  p · q · r , and the result is a  p × r   matrix 
 

Example 

 Compute A · B · C, where 

 A is a 10 × 100 matrix, B is a 100 × 5 matrix, and C is a 5 × 50 matrix. 
 
Computing D = (A · B) costs 5,000 and gives a  10 × 5 matrix. 
Computing D · C   costs 2,500. 
Total cost for  (A · B) · C  is thus  7,500. 

 
Computing E = (B · C) costs 25,000 and gives a 100 × 50 matrix. 
Computing A · E   costs 50,000. 
Total cost for A · (B · C) is thus 75,000. 

 

We would indeed prefer to do it the first way! 

 



Optimal matrix multiplication - 3 

Given a sequence of matrices M0, M1, …, Mn -1.  We want to find the 

cheapest way to do this multiplication (that is, an optimal 

paranthesization). 
  

From the outermost level, the first step in a parenthesizaton is a partition 

into two parts:        (M
0
 · M

1
 · … · M

k
) · (M

k + 1
 · M

k + 2
 · … · M

n-1
) 

If we know the best parenthesizaton of the two parts, we can sum their 

cost and get the cost of the best parameterization with this outermost 

partition. 
  

Thus, to find the best parenthesizaton of M0, M1, …, Mn -1, we can simply 

look at all the n-1 possible outermost partitions (k = 0, 1, n-2), and 

choose the best. But we will then need the cost of the optimal 

parenthesizaton of all instances of smaller sizes. 
   

And we shall say that the size of the instance Mi, Mi+1, …, Mj  is  j - i. 
 

We therefore generally have to look at the best parenthesizaton of all 

intervals Mi, Mi+1, …, Mj , in the order of growing sizes. 
 

We will refer to the lowest possible cost for Mi, Mi+1, …, Mj as mi,j. 

 



Optimal matrix multiplication - 4 

Let d0, d1, …, dn be the dimensiones of the matrices M0, M1, …,Mn-1, 

so that matrix Mi has dimension di × di+1  

 

As on the previous slide: 

Let mi,j  be the cost of an optimal parenthesizaton of Mi, Mi+1, …, Mj. 

Thus the value we are interested in is m0,n-1 

 

The recursive fomula for mi,j will be: 
 
 
 
 
 

Note that all the values mk,l we need here to compute mi,j are for 

smaller instances. That is:  l - k < j - i). 

 

 

10 allfor  , 0,  nim ii
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0 0 0 0 0 0 

15,750 2,625 750 1,000 5,000 

7,875 4,375 2,500 3,500 

9,375 5,375 7,125 

11,875 10,500 

15,125 

Example 
 

m1,4 = min(d
1
d

2
d

5
 + m(1,1) + m(2,4), 

d
1
d

3
d

5
 + m(1,2) + m(3,4), 

d
1
d

4
d

5
 + m(1,3) + m(4,4)) 

 

= min(35 · 15 · 20 + 0 + 2,500, 

35 · 5 · 20 + 2,625 + 1,000, 

35 · 10 · 20 + 4,375 + 0) 

 

= min(13000, 7125, 11375) 

 

=7125  

Example: Optimal matrix multiplication 

Second index: j First index: i 

The values mi,j: 

Size is 0 

Size is 1 

Size is 5 
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Optimal matrix multiplication 
Remembering the best partitions 

Tabel c: Remembering the 

optimal partition points. 

The optimal partition point 

of  M
1
 · M

2
 · M

3
 · M

4 
is  

after M
2
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Optimal matrix multiplication 
Remembering the best partitions 



c 
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1
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2
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0
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3
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4
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5
)) 

Optimal matrix multiplication 

The optimal parenthesizaton is thus: 



Optimal matrix multiplication 

 

function OptimalParens( d[0 : n – 1] ) 

 for i ← 0 to n-1 do  

  m[i, i] ← 0 

 for diag ← 1 to n – 1 do  

  for i ← 0 to n – 1 – diag do 

   j ← i + diag 

   m[i, j] ← ∞   // Relative to the scalar values that can occur 

   for k ← i to j – 1 do  

    q ← m[i, k] + m[k + 1, j] + d[i] · d[k + 1] · d[j + 1] 

    if q < m[i, j] then  

     m[i, j] ← q 

     c[i,j] ← k 

    endif 

 return m[0, n – 1] 

end OptimalParens 

 



Yet another example: Optimal search trees 
(Not in the curriculum for 2013, but maybe for 2014?) 

0 

1 

2 

3 

Pat 

Joe 

Ann 

Ray 

Ann Joe Pat Ray 

p0 p1 p2 p3 

q0 q1 q2 q3 q4 

3 3 3 2 2 1 2 2 2 

Average search time:   3p0 + 2p1 + 1p2 + 2p3 + 3q0 + 3q1 + 2q2 + 2q3 + 2q4 

The sum of 

the p’s and 

q’s is 1 



Optimal search trees 

• To get a managable problem that still catches the essence of the general 

problem, we shall assume that all q-es are zero (that is, we never search for 

values not in the tree) 

• A key to a solution is that a subtree in a search tree will always represent an 

interval of the values in the tree in sorted order (and that such an interval 

can be seen as an optimal seach instance in itself) 

• Thus, we can use the same type of  table as in the matrix multiplication 

case, where the value of the optimal tree over the values from intex i to 

index j is stored in A[i, j], and the size of such an instance is j - i 

• Then, for finding the optimal tree for the an interval with values Ki, …, Kj we 

can simply try with each of the values Ki, …, Kj  as root, and use the best 

subtrees in each of these cases (which are already computed). 

• To compute the cost of the subtrees is slightly more complicated than in the 

matrix case, but is no problem. 

 

 

 

 

 

 

Kk 

Ki , …, Kk -1 Kk+1 , …, Kj 

Try with k= i, i+1, …, j 
The optimal values and 

form for these subtrees 

are already computed, 

when we here try with 

different values Kk at 

the root 



Dynamic programming in general:  
We fill in differnt types of tables «bottom up» 

(smallet instances first) 



Dynamic programming 
Filling in the tables 

• It is always safe to solve all the smaller instances before any larger 
ones, using the defined size of the instances. 
 

• However, if we know what smaller instances are needed to solve a 
larger instance, we can deviate from that.  The important thing is that 
the smaller instances needed to solve a certain instance J is 
computed before we start solving J. 
 

• Thus, if we know the «dependency graph» of the problem (which 
must be cycle-free, see examples below), the important thing is to 
look at the instances in an order that conforms with this dependency.  
This freedom is often utilized to get a simple computation (see earlier 
slide). 

 

 



Dynamic Programming 
using memoization 

«Top-Down» dynamic programming  (Memoization) 
 

• A drawback with bottom up dynamic programming is that you solve a 
lot of smaller instances whose answers are never used. 
 

• We can instead do the computation recursively from the top, and 
store the (really needed) answers of the smaller instances in the 
same table as before. Then we can later find the answers in this table 
if we need the answer to the same instance once more. 
 

• The reason we do not always use this technique is that recursion in 
itself can take a lot of time, so that a simple bottom up may be faster. 
 

• For the recursive method to work, we need a flag «NotYetComputed» 
in each entry, and if this flag is set when we need that value, we 
compute it, and save the result (and turn off the flag, so the recursion 
from here will only be done once). 
 

• The «NotYetComputed» flag must be set in all entries at the start of 
the algorithm. 



• It is always safe to solve all the smaller instances before any larger 
ones, using the defined size of the instances. 
 

• However, if we know what smaller instances are needed to solve a 
larger instance, we can deviate from that.  The important thing is that 
the smaller instances needed to solve a certain instance J is 
computed before we start solving J. 
 

• Thus, if we know the «dependency graph» of the problem (which 
must be cycle-free, see examples below), the important thing is to 
look at the instances in an order that conforms with this dependency.  
This freedom is often utilized to get a simple computation. 

 

 

Dynamic programming 
using memoization 

 

At most the 

entries with a 

green dot will 

have to be 

computed 


