The sum of heights in a perfect binary tree of \boldsymbol{n} nodes is $O(n)$

Observation: A perfect binary tree of height h has:

- $n=n(h)=2^{h+1}-1$ nodes,

$$
\left(1+2+4+\ldots+2^{k}=2^{k+1}-1\right)
$$

- sum-of-heights $\Sigma_{h}=n-h-1$.

We explain the observation with a small inductive proof. The induction is on h, the height of the tree. We first show that the observation holds for $h=0$ (the inductive basis). We then assume that the observation holds for $h=k$, and show that this implies that it holds for $h=k+1$ (the inductive step).

Basis:

Let $h=0$, this is the binary tree consisting of a single node; its sum-of-heights is zero (we count edges). The observation holds, we have:

- $n=2^{h+1}-1=2^{0+1}-1=2-1=1$,
(one node)
- $\Sigma_{h}=n-h-1=1-0-1=0$.
(sum-of-heights is zero)

Step:

We now assume that the observation holds for $h=k$, and show that this implies that it holds for $h=k+1$. The assumption gives the number of nodes and sum-of-heights for a tree of height k :

- $n=2^{k+1}-1$,
- $\Sigma_{h}=n-h-1=2^{k+1}-1-k-1$.

We then move one step up, to a tree of height $k+1$, by adding a new row of 2^{k+1} leafs. A tree of height $k+1$ has the same number of non-leafs as the number of nodes in a tree of height k. Each such non-leaf is now one level higher up the tree than in the tree of height k. We get:

- $n^{\prime}=\left(2^{k+1}-1\right)+\left(2^{k+1}\right)=2^{k+2}-1$, (adding 2^{k+1} leafs)
- $\Sigma_{h}^{\prime}=\left(2^{k+1}-1-k-1\right)+\left(2^{k+1}-1\right)$
$=2^{k+2}-1-k-1-1$
$=\left(2^{k+2}-1\right)-(k+1)-1$,
and the observation holds for $h=k+1$.

We know, of course, that the height of a perfect binary tree of n nodes is $O(\log n)^{\dagger}$, so that the sum-of-heights is $n-O(\log n)-1=O(n)$, which is what we really wanted to prove.

[^0]
A leftist heap of \boldsymbol{n} nodes has a right path of at most $\lfloor\log (n+1)\rfloor$ nodes

Observation: If the right path of a leftist heap has r nodes, then the heap has $n=n(r) \geq 2^{r}-1$ nodes.

We again apply a small inductive proof, this time on r, the number of nodes in the right path. We first show that the observation holds for $r=1$; we then assume that it holds for $r=k$, and show that this implies that it holds for $r=k+1$.

Basis:

Let $r=1$. The observation holds, the tree has at least $2^{1}-1=1$ node.

Step:
We now assume that the observation holds for $r=k$, and show that this implies that it holds for $r=k+1$.

A leftist heap with a right path of $k+1$ nodes consists of a root with one left and one right subtree, both subtrees must by definition be leftist. The right subtree must have a right path of k nodes for our tree to have a right path of $k+1$ nodes. The left subtree must have at least k nodes on its right path; otherwise the root of the left subtree would have a null path length shorter than the null path length of the right subtree. Therefore, by the assumption, the number of nodes in both subtrees is at least $2^{k}-1$. This, plus the root, gives us $n \geq\left(2^{k}-1\right)+\left(2^{k}-1\right)+1=2^{k+1}-1$ nodes, as wanted.

If a heap with right path of r nodes has $n \geq 2^{r}-1$ nodes in total, it follows that a heap of n nodes has a right path of at most $\lfloor\log (n+1)\rfloor$ nodes, which is what we really wanted to prove.

[^0]: ${ }^{\dagger}$ To be exact, the height of complete or perfect binary trees of n nodes is $\left\lceil\log _{2}(n+1)\right\rceil-1$, if we count edges.

