
INF 4130: Execises to Matchings and Flow 
October 2014 

With answers 
Notice: The words "vertex" and "node" means the same in this note. 

Exercise 1 
Solve Exercise 14.4 in the textbook (B&P) (and sketch a data structure for Exercise 14.5). 

The exercise is to show that the Hungarian Algorithm can be implemented in time O(n3) for a bipartite graph 
 G = (X, Y, E), with |X| = |Y| = n.  
 
If we think about the algorithm, without studying the code on pages 422-423, it consists of an outer loop where 
we repeatedly find and apply augmenting paths. Applying an augmenting path increases the size our matching 
with one edge (two vertices, one from X and one from Y). We can therefore at most iterate through this outer 
loop n times.  
Inside the outer loop we build a tree, edge by edge, in our search for an augmenting path; or rather, we build the 
tree two and two edges at the time (one matched and one unmatched), unless we find an augmenting path. The 
order in which we add edges to the tree is arbitrary, what is important is that we can add a new pair of edges in 
time O(1). We can do that if we 1) have a flag in each vertex that says whether or not the vertex is part of the tree, 
and 2) have a pointer in each vertex that points to the vertex with which it is matched (or null if it is unmatched). 
We also need some way to keep vertices in a set, where insertion and removal can be done in time O(1), a linked 
list is suitable. This set, let us call it R, is used to represent the front of the tree we grow – vertices that are part of 
the tree, that we not yet have followed edges out from. This set R initially contains only the unmatched vertex r 
in X we choose to start from – the root. The step is to take a vertex out of R, and follow all edges out from that 
vertex, each such edge can either: 
  
• Go to a vertex already in the tree. We do nothing.  
• Go to a matched vertex outside the tree. We expand the tree with this vertex and the vertex with which it is 

matched, and insert the latter one in R (not the middle vertex).  
• Go to an unmatched vertex outside the tree. We have an augmenting path and our tree-building stops.  
 
These operations can now be done in time O(1). Since there are no more than n2 edges, finding an augmenting 
path (i.e. building the tree) only takes time O(n2) (each time). All of this gives us a total running time for the 
algorithm of O(n3). 
  
PROC Hungarian (G = (X,Y,E))   // |E| can be up to n2 
{  
  M = ∅; // Den tome mengden 
  WHILE <not finished> // not perfect matching, possibly new augmenting paths  
  {  
     P = <new augmenting path>;    // Or terminate if none is found 
 
 
     M = M ⊕  P; // |M| = |M| + 1  
  }  
}  
 
CLASS Vertex  
{  
   Boolean isInTree = FALSE;  
   Vertex matchedWith = null;  
   Boolean proc isMatched { matchedWith != null; }  
   Vertex previous, next; // for the linked list (R)  
   Vertex parentInTree  
   …  
} 



 
Exercise 2 
Solve Exercise 14.6 in the textbook. 

We start with the graph given in the exercise, at the top of the figure to the right.  
We number the vertices from left to right x1, x2, …, x5 and y1, y2, …, y5.  We start by 
growing a tree from x5, and immediately get an augmenting path (of one edge) if we 
look at the edge (x5, y4). Remember that an edge with unmatched vertices at both 
ends is a (simplest possible) augmenting path. 

After this augmentation has been done, we can start building a tree from for instance 
x4, and one possibility is then that we find the augmenting path x4-y3-x3-y2 (dotted 
lines in graph number two). 

Applying this augmenting path we get the third graph, and if we then build a tree 
from x2, we sooner or later find the augmenting path indicated by the dotted lines in 
graph number four. Applying that augmenting path results in the perfect matching of graph number 
five. 

 
Exercise 3 
Assume |X| = |Y|. Then show that if we have found a subset S of X with |Γ(S)| < |S|, we can also easily 
find a subset of T of Y with |Γ(T)| < |T|. 

This is actually easy to show. Assume we a subset S of X such that Γ(S) has fewer vertices than S, as 
shown in the figure below. By the definition of Γ(S) no edge can go between S and T = Y - Γ(S). 
Therefore Γ(T) must be a subset (not necessarily proper) of X - S, and thereby be smaller than T. 

 

Exercise 4 

Question 4.a 
Show that, for general graphs, any “node cover” (a subset of the nodes that “covers” all the edges) will 
never have fewer nodes than there are edges in a matching. 
 
Assume that a graph G has a matching M, and a node cover NC.  Then each edge in M must have at 
least one of its end nodes in NC (otherwise NC did not cover all edges).  The end nodes of an edge in 
M must be separate from the end nodes of any other edge in M.  Thus the number of  nodes in NC 
must be at least as large as the number of edges i  

Question 4.b 
Look at some examples with bipartite graphs, and observe that in such graphs you can always find a 
matching and a node cover of the same size. (It is in fact not difficult to prove this by looking at the 
situation when the Hungarian stops after having built alternating trees from all unmatched node in X, 
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and no augumenting path is found. The above fact can be used to prove that a certain match is as large 
as possible, also for cases with |X| ≠ |Y|). 
 
 
 
 
 
 

 

As an example, we can look at the graph from Exercise 3. A cover could be x1, y4 and y5, which is the 
union of  Γ(T) and Γ(S).  This also indicates how a node cover can be found when the matching 
algorithm stops.  A matching with three edges is easy to find, and we then know that this has as many 
edges as possible. 

Question 4.c 
Find an example showing that, in general graphs, one cannot always find a node cover and a matching 
of the same size. 
 
Finding a graph where the maximum matching and the minimum vertex cover are of 
different size is easy. The canonical example of a non-bipartite graph, the odd loop, 
does the trick. In a C5, for instance, the largest matching has two edges, while the 
smallest vertex cover has three nodes.  

Exercise 5 
We are given the following graph G, and given matching M. You shall use the maximum matching 
algorithm for general graphs to find a maximum matching for G, by starting with M.  Start at node f as 
the root, then look at the edge f-c getting also c-h into the tree. Then look at edges h-g and h-i, which 
will both increase the tree by two nodes each.  

Which nodes are now red and blue (assuming that the root f is red)?   

Then look at the unmatched edge out of m.  What will happen then? Proceed with choices so that you 
end up finding an augumenting path between d and f (even though one between b and f or j and f is 
closer by).  Show the resulting matching after you have "used" this augumenting path. Finally, decide 
whether this matching can be increased further. 
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Thus, the size of the matching is increased by one.  To see whether it can be increased  further, we 
must repeat the tree-building process from all unmatched nodes (that is, from j and from b). We would 
then observe that no situation like the one in node d in last step (finding an edge from a red to an 
uncolored node) would occur, and the matching is thus as large as we can get it.  As there are only two 
unmatched nodes left, we could also see this by observing that there is no augumenting path between j 
and b. 

Exercise 6 
To study the max flow algorithm, go through the example in Figure 14.9 in detail (B&P). See 
introduction at the bottom of page 439. Note that there are many typos in these graphs in early editions 
of the book, but most of them should now be corrected.  Also note that the first graph in the left 
column is N (and not Nf ), and that in the right column step 6 has the final flow, while the he last 
graph is N itself with the (original) capacities , and where the cut is displayed with dotted edges. 

Left to the class 

Known typos in early editions of the textbook are: 
Step 1:  Edge 4-7 in Nf should be dotted. 
Step 2—7: Edge 4-7 shoud be reversed in all Nfs. 
Step 2: Inner edges in the flow graph should be removed. 
Step 2: Edge 0-3 in Nf should not be dotted. 
Step 7: Vertex 5 in N should have a double circle, and an edge 2-5 with flow 1 should be added 

to the flow graph. 
Step 7:  The sets should be X = {0,1,2,3,5}, and Y = {4,6,7}. 

 
The figure with typos corrected is included at the end of this document.  
 

Exercise 7 (Question 7.c – 7.f can be left to the students) 
Study figure 14.10 on page 444 of the text book (B&P). (Note that there are typos in at least some 
editions of the book: The edge (x1, y2) in the upper graph should be removed.) We now look at the 
duality between finding a maximum matching in the upper graph, and finding a maximum flow in the 
lower network (graph). 
 
Question 7.a 
Look at the following lemma, and explain why it is correct (Hint: This has also been commented on in 
the lectures, and it relies on the way the algorithm works):  
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When “using” the found 
augumenting path (above), the 
large red node R (made from 
merging the nodes h, g, k, i and m in 
an earlier step), must now be 
unwrapped, so that we can see that 
the correct alternating path through 
it (from the d end) is:    
           g, k, m, i, h. 
The figure to the left shows the 
result of “using” the path. 



Lemma In a network with integer capacities one can always find a flow that is both maximum 
and integer, and the Ford-Fulkerson-algorithm will always find such a flow. 
 

In other words:  If the capacities are integer, we never have to split a flow so that for instance ½ goes 
down one edge and ½ down another to achieve a maximum flow. This means that if all capacities are 1, 
we get a maximum flow for the network with either full (1) or no (0) flow in each edge. Such a flow 
induces a subset of the edges: those with full flow. 

FordFulkerson never splits an integer flow into non-integer flows, and proves optimality by showing a 
minimum cut with the same capacity as the flow. 

Question 7.b 
Use the lemma to explain that finding a maximum matching in the upper graph in Figure 14.10 is the 
same as finding a maximum flow in the lower network. 

With capacity 1, flow is either 0 or 1. A flow of 1 corresponds to the edge being part of the matching.  

Question 7.c 
Assume that you in Figure 14.10 have the matching {(x2, y1), (x4, y3), (x5, y5)}, and show what flow f 
this corresponds to in the lower network. 

Left to the students or the class 

Question 7.d 
Draw N(f) (the f-derived network) for the flow from 6.c and check that looking for an f-augmenting 
path from s to t in this graph corresponds to looking for a (matching) augmenting path in the upper 
graph, with the given matching. 

Left to the students or the class 

Question 7.e 
Use an f-augmenting path found (for instance (x1, y1, x2, y4) in the graph and (s, x1, y1, x2, y4, t) in 
the network) to augment the matching/flow, and check that these operations are duals of each other. 
Verify that you end up in the situation shown in the lower network in figure 14.10 (where flows are 
indicated). 

Left to the students or the class. 

Question 7.f 
Draw N(f) for this new flow, and show that the flow is a maximum flow by showing a cut with this 
capacity (4). Then use the method from Exercise 4 above to find a vertex cover of four vertices 
covering all edges in the upper graph, thereby showing that the matching is a maximum matching. 
Finally show how the cut and this vertex cover are related. 

Left to the students or the class. 

Exercise 8 (if you have time)  
Show that the following three conditions on undirected graphs are equivalent: 

- The graph is bipartite 
- The graph is two-colourable 
- The graph has no odd cycles 
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