
INF	4130	Exercise	set	6,	2016	
w/solutions	

Exercise	1	
Solve	exercise	6.19	in	Mark	Allen	Weiss	Algorithms	and	Datastructures	in	Java	(the	INF	2220	book).	

	

Exercise	2	
Solve	exercise	6.25	in	MAW.	

We	 are	 technically	 allowed	 to	 construct	 a	 normal	 binary	 heap	 (using	 the	 normal		
buildHeap()-method	 that	 percolatesDown	 all	 subtree	 roots,	 starting	 at	 the	 bottom.)	 Convince	
yourself	that	this	is	the	case.	The	following	method,	however,	constructs	a	tree	that	is	more	leftist:		

2	

11	

17	12	

18	

5	

8	

15	

4	

9	

10	18	

31	

6	

11	

21	

The	following	trees	are	merged	

The	result	is	as	follows,	after	merging	and	swapping,	the	original	right	path	marked	with	red.	
	

2	

11	

17	12	

18	

5	

8	

15	

4	

9	

10	18	

31	

6	

11	

21	

The	time	complexity	is:		

𝑛
2
∙ 𝑂 1 +	

𝑛
4
∙ 𝑂 2 +

𝑛
8
∙ 𝑂 3 + ⋯ = 𝑂 𝑛 	.	

.	

We	omit	the	O’s	and	write	
𝑛
2
∙ 1 + 	

𝑛
4
∙ 2 +

𝑛
8
∙ 3 + ⋯	

	 ⇕	 Let	𝑛 = 2/,	this	is	worst	case	–	full	trees	
2/

2
∙ 1 + 	

2/

4
∙ 2 +

2/

8
∙ 3 + ⋯	

	 ⇕	 	
2/01 ∙ 1 + 	2/02 ∙ 2 + 2/03 ∙ 3 + ⋯	

	 ⇕	 Summation	form	

2/04 ∙ 𝑖
/01

461

	

	 ⇕	 The	old	Σ = 2Σ − Σ	ploy…	

24
/

462

− 2/0 /01 (𝑘 − 1)	

	 ⇕	 	

1	 2	 3	 4	 5	 6	 7	 8	

Insert	 the	 nodes	 into	 a	 queue.	
(Numbers	 indicate	 initial	 place	
in	queue,	not	priority	[key].)	

1	

2	3	 4	 5	 6	 7	 8	

Merge	 1	 and	 2	 (leftist	manner,	
maintain	 heap	 property!)	 and	
insert	at	end	of	queue.	

Merge	3	and	4	and	insert.	

6	

5	

7	

8	

1	

2	

3	

4	

5,	6	and	7,	8		(5.key	<	6.key)	

6	

5	

7	

8	

3	

4	

1	

2	

(1,2)	and	(3,4)	

7	

8	

6	

5	

(5,6)	and	(7,8)	

3	

4	

1	

2	

(1,2,3,4)	and	(5,6,7,8)	

7	

8	

6	

5	

3	

4	

1	

2	

1	

2	

3	

4	5	 6	 7	 8	

24
/

462

− 2(𝑘 − 1)	

	 ⇕	 The	old	Σ = 2Σ − Σ	ploy,	again…	
(2/<1 − 4) − 2(𝑘 − 1)	

	 ⇕	 	
2(2/ − 2) − 2(𝑘 − 1)	

	 ⇕	 𝑛 = 2/, 𝑘 = log 𝑛	
2(2ABCD − 2) − 2(log 𝑛 − 1)	

	 ⇕	 	
2(𝑛 − 2) − 2(log 𝑛 − 1)	

	 ⇕	 	
2𝑛 − 4 − 2 log 𝑛 + 2 = 2𝑛 − 2 log 𝑛 − 2 = 𝑂 𝑛 	.	

	

Exercise	3	
Solve	exercise	6.30	in	MAW.	

This	should	be	obvious	(“one	can	easily	see…”),	but	we	give	a	short	 induction	proof.	(The	trees	are	
constructed	in	an	inductive	manner	that	lends	itself	well	to	this	proof	technique.)	

Basis:			 B1	has	B0	as	a	child	(subtree)	from	the	root.	

Step:		 Assume	Bi	has	B0,...,B(i-1)	subtrees	of	the	root.	 	 	 	 	 	
	 Must	show	that	B(i+1)	has	B0,...,Bi	as	subtrees	of	the	root.	

B(i+1)	 is	constructed	by	connecting	a	Bi	to	the	root	of	another	Bi,	therefore	B(i+1)	will	consist	of	one	Bi	
that	we	connected	to	the	root	of	 the	other	Bi,	plus	the	subtrees	that	already	are	connected	to	the	
root	 	of	 the	other	Bi	 (the	 root	one),	 these	are	 (by	 the	assumption):	B0,...,B(i-1).	 Therefore	B(i+1)	must	
have	the	subtrees	B0,...,Bi.	

Exercise	4	
Write	a	non-recursive	implementation	of		merge()for	leftist	heaps.	

We	do	this	kind	of	merge	with	a	two	pass	method.	

1) The	nodes	 in	 the	 right	paths	of	 the	heaps	can	be	viewed	as	 lists.	 the	 root	 is	 the	head,	 the	
.right	pointers	in	the	nodes	is	next.	
	

The	lists	are	merged	(elements	in	lexicographic	order).	Always	choose	the	smallest	and	copy	
into	a	new	tree	(a	new	list).	
	

2) Traverse	 the	new	path	 (list),	 from	the	end	towards	 the	root	 (we	need	a	pointer	 this	way	–	
doubly	linked	lists).	Check	that	the	leftist-property	holds	(null	path	lengths	of	children),	swap	
left	and	right	children	if	property	is	violated.	

	 	

Rough	pseudo	code	can	be	something	like	this:	

function merge(h1,h2)
 var list result
 while h1 <> nil and h2 <> nil
 if h1.key <= h2.key
 append h1.first to result // assuming .first works
 h1 = h1.right
 else
 append h2.first to result
 h2 = h1.right
 if h1 <> nil
 append h1 to result
 if h2 <> nil
 append h2 to result

 var elem node
 elem = result.last
 while elem <> result.first
 if elem.left.npl < elem.right.npl
 swapChildren(elem);
 elem = elem.parent // assuming a parent pointer

 return result
end

Exercise	5	
Professor	 Pinocchio	 claims	 that	 the	 height	 of	 an	 N-node	 Fibonacci	 heap	 is	 O(log	 N).	 Prove	 the	
professor	wrong	by	showing	that	for	every	positive	integer	N,	there	is	a	sequence	of	Fibonacci	heap	
operations	constructing	a	heap	that	is	one	long	chain	of	N	nodes.	

Try	using	the	applet	on		

http://www.cs.yorku.ca/~aaw/Jason/FibonacciHeapAnimation.html

to	construct	this	chain,	and	to	get	a	feel	for	Fibonacci	heaps.	

A	kind	of	induction	is	also	at	the	basis	of	this	construction.	We	build	our	chain	by	using	the	structure	
of	binomial	trees	as	model.	

Our	basis	is	a	tree	consisting	of	two	nodes.	We	can	construct	this	tree	by	inserting	three	nodes	in	an	
empty	heap,	and	the	run	deleteMin.	

The	step	in	our	construction	(induction)	consists	on	inserting	three	nodes	with	a	lower	key	than	the	
nodes	already	in	the	heap,	name	them	a,	b,	c	 (sorted	by	key,	 increasing	order),	and	run	deleteMin,	
this	 results	 in	a	 tree	with	 two	branches,	 the	 root	 is	b,	 one	branch	 is	 the	 tree	we	 started	with,	 the	
other	branch	is	c.	Now	erase	c.	Repeat	as	many	times	as	necessary.	

	

	[end]	

