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INF 4130 Exercises, Sept. 6 and 9, 2016 
w/solutions 

Exercise 1 
1.1 (One may go through e.g. Exercise 1.2, 1.3, before looking at this more theoretical Exercise 1.1)  

We shall here look closer at the argument for why the recurrence formula given in Chapter 20.5 
(and many places in the slides) is correct, so that the described algorithm will correctly solve the 
edit distance problem. 
 
An argument for this is given in the textbook at page 644, about 12 lines from bottom.  A central 
sentence here is: “We can assume without loss of generality that the sequence of operations 
involving the first i-1 characters of P and the first j-1 characters of T are operated on first”. 
However, this is, at least to the current writer, not obvious, and we shall look at another 
argument for proving the formula. We shall look separately at case 1 and case 2 (see slides), and 
show that: 
  
Case 1 (P[i] =T[j]):  If D[i-1, j-1] is optimal (for the corresponding smaller problem), then the 
computed value for D[i, j] is optimal for that problem. 
 
Case 2 (P[i] != T[j]):  If D[i-1, j-1, ], D[i, j-1], and D[i-1, j] are all optimal (for the corresponding 
smaller problems), then the computed value for D[i, j] is optimal for that problem. 
 
As a basis for the proof, we shall assume that a transformation with as few operations as possible 
(that is, with edit distance number of steps) can always be written in the following form: 
  
  l o g a r i t h m 
a l   g o r i t h m 
-------------------- 
+   -   * 
 
Here ‘+’ means an insertion,’-‘ means a deletion, and ‘*’ means a substitution.  Give a proof for 
the recurrence relation using this assumption. 

Answer: 
There are two cases to consider,  Case 1: P[i] = T[j] and Case 2: P[i] != T[j].  We are 
doing case 1 below, but not Case 2. However Case 2 can be handled in much the same 
way, and the students are recommended to write down a proof also for that case. 
 
A proof for Case 1(P[i] = T[j]) can  run as follows:  We assume that the correct ED 
between P[1:i-1] and T[1:j-1])  occurs in D[i-1, j-1], and from this we want to conclude 
that the ED between P[1: i] and T[1: j]) is also equal to D[i-1, j-1].  It is obvious that it 
cannot be larger (as we can easily construct  a transformation between P[1: i] and T[1: j]) 
with this length), so the problem is to show that it cannot be smaller either. 
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To prove this we assume the opposite (that is, ED(P[1: i], T[1: j]) != D[i-1, j-1] ), and will 
show that this leads to a contradiction.  From this, and the above comment) we can also 
conclude that ED(P[1: i] ,T[1: j]), say k, is smaller than D[i-1, j-1].  Thus, there is a 
transformation T from P[1: i]  to T[1: j]) with k steps. 
  
As the transformation T is minimal, it can be written at the form indicated above.  We will 
then consider two cases: 
 
Case A:  The letters P[i] and T[j] will be positioned in the same (last) column, like this: 

  
. . . . . . . . P[i] 
. . . . . . . . T[j] 
-------------------------- 
+‘s, -‘s and *‘s           k in total  
 
Here, all the single edit-operations must happen to the left of the last column, and by using 
these k operations we could obviously also find a transformation from P[1: i-1] to T[1: j-1] 
with length k.  However,  k < D[i-1, j-1], and this is against the assumption that D[i-1, j-1] 
was the shortest transformation between P[1:i-1] and T[1:j-1] . 
 
Case B: In a setup like above of the transformation T, P[i] and T[j] will not be positioned 
in the same column, but e.g. like this: 
   
. . . . . . . .  x   y   z  P[i] 
. . . . . . . . T[j] 
-------------------------------- 
                 ?   -   -   -         
  
Again, the number of edit-steps from P[1: i]  toT[1: j]) is k, which is assumed to be 
smaller than D[i-1, j-1].  We can also see that the number of edit steps (in this special case, 
but we try to generalize) to the left of  x and T[j]  is either k-3 or k-4, depending on 
whether x is equal to T[j] or not.  However, from the setup above, we can also find 
another transformation from P[1:i] to T[1:j] as follows: 
  
 . . . . . . . .  x   y   z   P[i] 
 . . . . . . . .              T[j] 
------------------------------------ 
                  -   -   -         
Also this transformation will have k-3 or k-4 steps to the left of the x-column, which 
means that we can find a transformation from P[1:i-1] to T[1:j-1]  with k or k-1 steps. 
However,  k < D[i-1, j-1], and again this is against the assumption that D[i-1, j-1] was the 
optimal distance from P[1: i-1] to T[1: j-1] . 
 
 
 

1.2 Run the algorithm (on paper) with two similar words, e.g., "algori" og "logari", and with two 
identical words. 
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        l o g a r i 
      0 1 2 3 4 5 6 
     -------------- 
  0 | 0 1 2 3 4 5 6 <- Initialization  
a 1 | 1 1 2 3 3 4 5 
l 2 | 2 1 2 3 4 4 5 
g 3 | 3 2 2 2 3 4 5 
o 4 | 4 3 2 3 3 4 5 
r 5 | 5 4 3 3 4 3 4 
i 6 | 6 5 4 4 4 4 3 
     -------------- 
      ^ 
      Initialization 
 
        l i k e 
      0 1 2 3 4 
     ---------- 
  0 | 0 1 2 3 4 
l 1 | 1 0 1 2 3 
i 2 | 2 1 0 1 2 
k 3 | 3 2 1 0 1 
e 4 | 4 3 2 1 0 
     ---------- 
 

1.3 Show how to implement the algorithm using only one column (or row) plus a few 
additional variables. 
 
Answer:  
We want to calculte the values in the table is it is described above, we assume it has 
dimensions D[0:m,0:n]. We index it with D[i,j], and want the value of D[m,n].  
 
We calculate row by row from the top down, in our algorithm we now use an array 
DR[0:n] that we initialize with 0, 1, 2, ..., n. During execution this array will contain values 
from row i in  DR[0:j], and values from row i-1 in DR[j+1:n] 
We also need two new variables, "newDij" og "prevoius". The program looks like this: 
 
for j = 0 to n do { DR[j] = j }  // Initializing DR (row zero)  
previous = 0     // In general: the value of D[i-1, j-1]  
for i = 1 to m do {  
   DR[0] = i     // Initialization of column zero 
   for j = 1 to m do { 
      if P[i] == T[j] then newDij = previous  
      else newDij = min(DR[j], previous, DR[j-1])  
      previous = DR[j] 
      DR[i] = newDij  
   }  
} 
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1.4 Solve the problem given in the last sentence of section 20.5 on page 645.  That is:  In the slides 

we originally wanted to find an algorithm for searching through a string T, and look for substrings  
S = T[p], T[p+1], … , T[q] of T similar to a given string P.  We can assume that we want to find the 
first substring of T whose edit distance to P is less than or equal to a given K (or report that no 
such substring occurs).  
 
Answer: 
The trick is to initialize row zero (along the direction of T) with only zeroes.  This has the effect 
that we allow a new substring S of T with small enough ED to P to start anywhere in T (but see 
below).  We look at the following example: 
 
T =  a b a e g b c d b a c d g a . . .  
P =  a   b   c   d 
K = 1 
       a  b  a  e  g  b  c  d  b  a  c  d  g  a  .  .  . 
    ---------------------------------------------------- 

0 0  0  0  0  0  0  0  0  0  0  0  0  0  0  .  .  . 
            |             \  

a   0  0  1  0  1  1  1  1  1  1  0  1  1  1  0  .  .  . 
                     \            | 
b   1  1  0  1  1  2  1  2  2  1  1  1  2  2  1  .  .  . 
                        \           \ 
c   2  2  1  1  2  2  2  1  1  2  2  1  2  3  2  .  .  . 
                           \           \ 
d   3  3  2  2  2  3  3  2  1  2  3  2  1  2  3  .  .  . 
 
We can here observe that we get 1 (≤K) two times in the last row, and for these we can find the 
corresponding subsequence S of T by going backwards from each of the 1-values in the last row, 
as shown in the piucture (and as we did for the simple edit distance case).  Thus we see that 
these are  S = gbcd  and  S = acd  respectively, and we can also see what the correct edit 
operation is (even if this requires a little thinking!).  
 
One might object to the above argument for initializing the top row with only zeroes (which was: 
“we then allow a new substring of T to start anywhere in T”) by saying that we might then get 
false small values in the bottom row, as the top row along the found substring is only zeroes, 
instead of  0, 1, 2, …  as we usually have when computing the edit distance.  However, there can 
be no such influence as the backwards path we found from the lower row describes the influence 
we have used, and this path do not reach the top row until the start of S. 
 
When executing this algorithm it is natural to fill column after column (starting each time with a 
zero at the top), and when we get K or less in the last row entry and we only want the first 
occurrence in T, we can stop and find the corresponding substring S of T. 
 
We can obviously also do this with only one array of the same lengh as P plus a few variables, as 
in Exercise 1.3 above. If we then want all occurences of legal S-strings in T, we could then, during 
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the search, simply remember at what indices in T we get edit distance ≤ K, and then afterwards 
go back to these places in T and find the corresponding substrings S. 
 
Example, time usage: How much time would this algorithm use to search through our entire 
genome (about 3*109 letters), for a string that is e.g. 100 = 102  letters long.  Then we would have 
to compute the recurrence formula 3*1011  times.  Assuming a machine (with caching etc.) using 
an average of 10 ns to fetch data from the store, we may assume 100 ns = 10-7 seconds for each 
computation of the recurrence formula.  Thus, a full search would take 3*1011   * 10-7 = 3*104 
seconds, which is about eight hours.  Thus, this is doable, but the biologists usually also need 
some extra “weight values” in the recurrence formula, and they usually want to search for longer 
strings than 100 letters (often more than 1000 letters).  Thus, doing it straight-forward as above 
usually takes too much time.  On can to same extent optimize the above algorithm, but for many 
real cases one still has to introduce special tricks to speed up the process, which usually also has 
the bad effect that the search becomes approximate. 
 
For more information, see e.g. https://en.wikipedia.org/wiki/Human_genome.  We will also later 
have a guest lecture by Torbjørn Rognes from the Bio-Informatics group about the algorithms 
they are using. 

Exercise 2 
Look into memoization – using a table as in standard dynamic programming, but with an algorithm 
following the recursive formula top-down. The trick is now that each recursive call first looks into the 
table, and checks if the answer to the current sub-problem is already calculated.  If it is, this value is 
used, otherwise  we have to do recursive calls to solve the necessary smaller problems. 

Write such an algorithm for exercise 20.19. 

 
The array D[0:m,0:n] is just like in 20.19, initialize it the same way, initialize the rest of the array 
to -1 to indicate that no value is calculated for this sub-problem (0 is a possible calculated value).  
 
 
 
 
function EdDist(i,j): int {             // Called from outside with (m,n)  
   if D[i,j] >= 0 then return D[i,j] 
   else {  
      if P[i] == T[j] then D[i,j] = EdDist[i-1,j-1]  
      else D[i,j] = min(EdDist[i-1,j], EdDist[i-1,j-1], EdDist[i,j-1]) + 1 
      return D[i,j] 
   }  
} 
  
Note that the recursion always stops because of the initialization. 

https://en.wikipedia.org/wiki/Human_genome
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