
INF	4130	Exercise	set	2,	2016		
	

We	start	with	a	 few	short	exercises	on	algorithm	running	 times,	and	 running	 time	analysis.	As	you	
know	we	 usually	 use	O-notation	 (more	 correctly,	 asymptotic	 notation)	 for	 running	 times.	 A	 short	
note	on	the	course	web	page	describes	four	variants	of	asymptotic	notation:	O,	Θ,	Ω	and	o.	

Exercise	1	
a) Show	that	n+3	is	O(n).	
b) Show	that	2n	log	n	is	O(n2)	.	
c) Is	2n+1		=	O(2n)	?	

d) Is	10n	+16n
3

2
	=	O n2 	?	

Exercise	2	 	
a) What	do	we	know	about	the	running	time	of	an	algorithm	if	it	is	O(n!)	?			
b) What	do	we	know	about	the	running	time	of	an	algorithm	if	it	is	Ω(n)	?	
c) What	do	we	know	about	the	running	time	of	an	algorithm	if	it	is	Θ	(2n)	?	
d) What	do	we	know	about	the	running	time	of	an	algorithm	if	it	is	O(n2)	?	
e) The	statement	“This	algorithm	has	a	running	time	of	at	least	O(n2).”	may	seem	odd.	Does	it	make	

sense?		

	

We	 now	 continue	with	 a	 few	 exercises	 on	 string	 search,	 partially	 from	 the	 textbook.	 Spend	 some	
time	repeating/discussing	why/how	the	different	shift	strategies	of	Knuth-Morris-Pratt	and	simplified	
Boyer-Moore	(Horspool)	work.	

Exercise	3	(Exercise	20.3	in	Berman	&	Paul)	
Simulate	CreateNext	page	637-8,	use	the	pattern	“abracadabra”.	

Exercise	4	
Calculate	 the	 array	 Shift[a:z]	 for	 the	 patterns	 P	 =	 "announce",	 and	 P’	 =	 "honolulu"	 -	 simulate	
CreateShift	spage	639.	

Exercise	5	
Draw	uncompressed	suffix	trees	for	the	strings	"BABBAGE"	and	"BAGLADY".	And	check	if	"BAG"	is	a	
common	substring.	Can	you	make	do	with	only	one	tree?	



	
Extra	
NB:	some	background	knowledge	on	regular	languages	and	NFAs	and	DFA	is	needed.	

As	a	general	problem	setting	we	may	want	to	search	for	a	string	matching	a	given	regular	expression	
R	in	a	longer	string	S.	We	may	then	reformulate	the	problems	as	searching	for	a	string	matching	the	
regular	 expression	 “.*R”	 at	 the	 start	 of	 S.	 Here	 “.”	 Means	 any	 symbol	 in	 our	 alphabet,	 and	 the	
asterisk	means	that	what	comes	before	 it	may	be	repeated	zero	or	more	times.	So	“.*”	 just	means	
that	anything	can	come	before	the	string	we	really	want	(expressed	by	R),	including	the	empty	string.	

We	may	 solve	 the	problem	as	 follows:	 first	 construct	 an	NFA	 (non-deterministic	 finite	 automaton)	
corresponding	to	“.*R”.	This	can	be	done	intuitively,	or	by	a	so-called	Thompson-construction.	Then	
we	 transform	 this	 non-deterministic	 machine	 into	 a	 DFA	 (deterministic	 finite	 automaton)	 in	 the	
standard	way.	

This	DFA	is	easily	transformed	into	a	normal	computer	program	that	reads	S	in	linear	time,	and	every	
time	we	arrive	in	a	final	state	for	the	DFA,	we	know	that	we	have	read	something	that	matches	with	
R.	

QUESTION:	Why	is	this	method	not	as	fast	as	it	might	seem?	What	limits	it´s	running	time?	When	will	
it	be	fast?	

	

	

[end]	


