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UNIVERSITY of OSLO 

Faculty of Mathematics and Natural Sciences 

Exam in:  INF 4130/9135: Algorithms: Design and efficiency 

Date of exam: 14th December 2015  

Exam hours: 09:00 – 13:00 (4 hours) 

Exam paper consists of: 6 pages  

Appendices: None 

Permitted materials: All written and printed 

 

Make sure that your copy of this examination paper is complete before answering. 

You can give your answers in English or in Norwegian, as you like. 

 

Read the text carefully, and good luck! 

Assignment 1  Dynamic programming (20 %) 

We have a rectangular grid (or a matrix) S with m x n squares (where m ≥ 1 and n ≥ 1).  The 

individual squares are referred to as S[i, j], where S[1, 1] is the upper left square, S[m, 1] is 

the lower left one, S[1, n] is the upper right one, and S[m, n] is the lower right square. We 

shall look at paths from the upper left square to the lower right one, where each step along the 

path are either a single move downwards or to the right. Such paths are called complete paths. 

See figure below.   

 

Each square S[i, j] also has a positive (non-zero) integer “cost” C[i, j].  We can thus also   talk 

about the cost of a complete path, defined as the sum of the costs in all the squares it passes 

through (including S[1, 1] and S[m, n]). The cost values are given in an integer array  

“C[1..m, 1..n]” (and when programming you can generate arrays e.g. as follows: “new integer 

array A[d..e, f..g]”).  The task here is to find the minimal cost that a complete path can have 

over all complete paths. You shall use dynamic programming to find this cost.   
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A rectangular grid with a complete path. An integer (the cost C[i, j]) is 

given for each square S[i, j], but these are not shown in this figure.  

Square S[2, 4] 

Square S[m, n] 
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1.a 
As we shall use dynamic programming, we need some type of table to store the intermediate 

results. Describe the table T you want to use for the above problem, and what the entries of T 

should contain, in relation to the original problem. 

 

1.b 
Here you should first write down the recurrence relation you want to use to fill table T. Then, 

you should specify exactly the initializations you want to do, so that you afterwards can fill in 

the table T in a bottom up fashion. 

 

1.c 
Write a program that fills in the table in a bottom up fashion. Make sure to also include the 

initializations you want.  The program should be written in a suitable (and understandable) 

language and you shall write the program as a “method” (or “procedure” or “function”) that 

receives the intergers m and n, and the array C as parameters.  The method should be named 

“minCost”, and it should only compute the cost of a minimal path (not the path itself), and it 

should return this cost as its result. The method itself is responsible for generating the  

table T. 

 

1.d  
We now introduce a new element into the problem, which is that, in addition to m, n and C, 

an integer F (“forbidden”) is given.  Also, a new rule is introduced: 

Rule: If the cost C[i, j] is equal to F, then no complete path is allowed to pass through 

square S[i, j]. That is: Any such path will simply not qualify as a complete path. 

Thus, there may in some instances be no complete paths at all through the grid (and this is 

true e.g. if C[1,1] = F). In such a case the value for the “minimum cost of a complete path” is 

defined to be zero. 

Your task here is to answer the questions 1.a and 1.b again, but for this new situation.  It is 

enough to specify what you will now do differently than in 1.a and 1.b. 

 

1.e 
We consider using memoization to solve the above problems.  We wonder whether there are 

instances where we, by using memoization, will end up looking at fewer entries in the table T 

than we will when filling the table bottom up. You should answer this question both for the 

situation in 1.a and for the one in 1.d. Explain. 

Assignment 2  Shortest Path (15%) 

We shall use the A*-algorithm to find the shortest path in a grid (Remember that the 

A*-algorithm requires the heuristic to meet certain constraints, and that Dijkstra´s algorithm 

is a special case without any heuristic.) 

 

2.a 

Given the following (undirected) grid graph, we want to find the shortest path from the start 

node A to the goal node I with the A*-algorithm. Edge lengths and heuristic values for the 
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nodes are indicated in the grid. Your task is to show what happens in each step of the 

algorithm. 

B

1

C

7

D

10

F

5

G

8

H

11

J

4

K

7

L

15

6 3

4

3 9

3

2 41

1 42

6 3

5

1 9

3

I

 

A

 
g = 0

h = 12

B

 
g = 6

h = 9

C

 h = 8

D

 h = 11

E

 h = 7

F

 h = 4

G

 h = 8

H

 h = 5 h = 0

 
 

As an example showing how you shall describe what happens during the A*-algorithm, we 

give the table below. However, note that this table describes what happens in the first few 

steps of Dijkstra’s algorithm when it searches for the shortest distance from A to I.  

 

The important elements to describe after each step is what nodes reside in the priority queue, 

and the priorities of these nodes.  In the Action part of each line we indicate what node will 

be taken out of the priority queue and what nodes will change priority, in the following step.  

To get a unique order we decide that neighbours of a node are treated alphabetically, and that 

the FIFO-principle is used if nodes in the priority queue have equal priorities.  

 

Step 
Priority queue 

Action 
Node Priority 

    

1 A 0 A is dequeued (gets inserted in the tree) 

2 B 6  

 D 1 D is dequeued 

3 B 6  

 E 6  

 G 3 G is dequeued 

4 B 6  

 E 6 E’s priority is changed from 6 to 5 

 H 4 H is dequeued 

5 B 6  

 E 5 E is dequeued 

…                                … … … 

 

 

Your task is to fill in a similar table for all the steps of the A*-algorithm using the 

heuristic indicated in the grid graph above. In the column “Priority” you shall show the 

priority relevant to the A*-algorithm, but also how this priority is the result of adding two 

values, by giving these values. The first few g-values (the actual distance from node A) are 

indicated in the nodes. 
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2.b 

We still want to find the shortest path from the start node A to the goal node I in the same 

grid, but now with a slightly adjusted heuristic. The heuristic values in the figure below are 

ever so slightly adjusted compared the ones used in question 2.a. 
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Again, your task is to fill in a table similar to the one in question 2.a with the new 

heuristic indicated in the figure above.  
 

2.c  
Comment on the usefulness of the heuristics used above. Your comments should discuss the 

special heuristics used in 2.a and 2.b, but might also include more general considerations.  

Assignment 3  Find algorithms (15 %) 

We look at the following situation: Two schools A and B agree that some of their pupils 

should have a “net-friend” at the other school.  Therefore n pupils are chosen at each school, 

and a party is held for all the 2*n pupils so that they should get to know each other.  

Afterwards, each pupil p makes a list with k(p) pupils picked from the n pupils at the other 

school that he/she would like to have as net-friends. The number k(p) of pupils on this list is 

chosen individually, in the rage from 1 to n. Each pupil p also gives a number m(p) (in the 

range from 1 to k(p)), and this is the maximum number of net-friends that he/she would like 

to have.  These lists and all the numbers are given to the school administrations. 

The administrations of the two schools decide that they should only make a net-friend pair of 

two pupils if both of them want the other as a net-friend. 

 

3.a 
We first assume that the number m(p) is 1 for all pupils p (that is: Each pupil should have at 

most one net-friend).  Specify an algorithm that the administrations can use to decide whether 

it is possible to find a net-friend for all the 2*n pupils under these conditions, and if so, finds  

a net-friend to each of the 2*n pupils.   You can refer to algorithms in the curriculum, and you 

should explain why your method will work for this case. 
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3.b 
We now assume that the values of m(p) can be higher than 1. Your task now is to describe 

how you can then solve the problem by transforming it to a problem discussed in the 

curriculum.  Describe the necessary transformation, and explain why this solves the problem.  

You may indicate the idea of the transformation by sketching a simple example of a 

transformed instance. 

Assignment 4   Undecidability (10 %)  

Which of the following languages are undecidable? Prove your answer. 

 

4.a 

L = {M1, M2 | Turing machines M1 and M2 will, when started with blank tapes, write the 

same symbol in step number n, for all n} 

 

4.b 
L = {M1, M2 | Turing machines M1 and M2 will, for any (may be different) inputs, write 

different symbols in step number n, for all n} 

Assignment 5   NP-completeness (10 %) 

The input in each of the following languages is a set S, positive integer weights w(s) for each 

element s of S, and a positive integer N. Determine the complexity of the following problems 

and prove your answers. 

 

5.a 
Decide if there is a way to choose 100 elements of S so that their values add up to N. 

 

5.b 
Decide if there is a way to choose any number of elements of S so that their values add up  

to N. 

Assignment 6   General knowledge (15 %) 

Provide a short answer or explanation to each of the following. 

 

6.a 
What is achieved by representing problems as formal languages? 

 

6.b 
What is achieved by proving that a certain problem belongs to a certain class? 

 

6.c 
What is achieved by defining the Turing machine? 
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6.d 
What difficulties are involved in using average-case complexity? 

 

6.e 
What limitations exist in speeding up solutions to problems by using parallel machine? 

Assignment 7   Triangulation (15 %) 

We are given the following five points in the plane. Distances are indicated by the arrows. 
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7.a 

Draw all triangulations of the five points. Omit symmetries and rotations. 

7.b 

Which triangulation from 7.a is the Delaunay triangulation? Give a short justification/proof! 

Hint: Possible angles are 18,4°, 26,6°, 45°, 63,4°, 90°, and 135°. (This is after all not an 

exercise in trigonometry.) 

7.c 

Draw the Voronoi diagram for the five points. 
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