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PROBABILITY AND
AVERAGE COMPLEXITY
OF ALGORITHMS

When analyzing the complexity of an algorithm we intend to use repeatedly
with varying inputs, the average complexity is often as important as the worst-
case complexity. In this situation, we would tend to favor one algorithm over an-
other based on average performance. For example, although quicksort has
quadratic worst-case performance, we often use it in practice because it performs
well on average.

The utility of an algorithm is not always captured by its worst-case performance, in which '
case it becomes important to determine its average complexity. '

189



190 B PARTI: Introduction to Algorithms

The average behavior of an algorithm only makes sense in the presence of a
probability distribution on the inputs of size n. The particular probability distri-
bution used will depend on the particular environment in which the algorithm is
used and is often taken to be the uniform distribution (that is, all inputs equally
likely). The average behavior of an algorithm is often difficult to analyze and re-
quires advanced techniques from probability theory. In this text, we limit our-
selves to a discussion of algorithms that we can analyze using the elementary
probability techniques discussed in Appendix E [formulas from this appendix are
referenced as (E.i.j)].

® 6.1 Expectation and Average Complexity

The definition of the average behavior of an algorithm given in Chapter 2 infor-
mally used some concepts from elementary probability theory. In this chapter,
we use the formal mathematical concepts discussed in Appendix E to formulate
precisely what is meant by the average complexity of an algorithm.

DEFINITION 6.1.1 Average Complexity Let .# denote the set of all inputs of size n to a given al-
gorithm. For I € .7, let 1(I) denote the number of basic operations performed by
the algorithm on input /. Given a probability distribution on .7, the average com-
plexity A(n) of an algorithm is the expected value of 7; that is,

A(n) = H1l. (6.1.1)

Average behavior depends on the probability distribution on 7.

Often there is a natural way to assign a probability distribution on .. For ex-
ample, when analyzing comparison-based sorting algorithms, we typically as-
sume that each of the n! permutations (orderings) of a list of size n is equally
likely to be input to the algorithm. The average complexity of any comparison-
based sorting algorithm is then the sum of the number of comparisons generated
by each of the n! permutations divided by #!. In practice, it is not feasible to ex-
amine each one of these n! permutations individually, as »n! simply grows too
fast. Fortunately, there are techniques that enable us to calculate this average
without resorting to permutation-by-permutation analysis.
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ig‘i‘ 6.2 Techniques for Computing Average Complexity

Computing the average complexity of an algorithm frequently requires deep re-
sults from probability theory that are beyond the scope of this text. However, the
relatively elementary techniques that follow suffice for our analysis of the aver-
age behavior of most of the algorithms we discuss in this text. To compute A(n),
we can apply one or some combination of the following formulations for A(n)
based on the characteristics of the algorithm we are analyzing. Each formulation
assumes that .7 is finite.

Formulation I A(n) = Hd = S t()P(D). (6.2.1)

€7,

Formula (6.2.1) is simply Definition (E.3.5) of the expected value E[X] with
X =1,s5=1and S = 7. Because it is usually too cumbersome to examine each
element in .# individually, this formulation is rarely used directly.

Formulation II  Let p; denote the probability that the algorithm performs exactly i basic oper-
ations; that is, p, = P(7 = i). Then

W(n)

A(n) = H1 = D ip; (6.2.2)

i=1

Formula (6.2.2) is a special case of Formula (E.3.7), with X = Tand x = i. Note
that Formulas (6.2.1) and (6.2.2) are the same as the formulas (2.5.3) and
(2.5.4), respectively, given in Chapter 2.

Formulation Il Let g, denote the probability that the algorithm performs at least i basic opera-
tions; that is, g, = P{7t = i}. Then

w(n)
A(n) = E = ;q,-. (6.2.3)

Formula (6.2.3) follows easily from Formula (6.2.2) (see Exercise 6.19)
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Formulation IV k
Given that 7= D 1, then

i=1

k

A(n) = E[1] = D H1). (6.2.4)

i=1
Formula (6.2.4) is Formula (E.3.12) with X = 7and X, = 1.
Formulation V. Gjyen that Y is a random variable defined in 7, then

A(n) = E(1] = D EzlY = y]P(Y = y), (6.2.5)

where the summation is taken over all y such that P(Y = y) > 0.

Formula (6.2.5) is Formula (E.4.6) with X = 7.

8 To determine which of the formulations of A(n) are best suited to a given algorithm, we
f usually use one or more of the following three techniques:

a=g 1. Partitioning the algorithm

Y 2. Partitioning the input space

#§ 3. Recursion

Partitioning the algorithm refers to breaking down the steps in the algorithm
into k stages. If 7, denotes the random variable on .#, mapping each input onto

k
the number of basic operations performed in stage i, i =1, ..., k, then 7 = Ei= T
and Formulation IV applies. The partitioning is useful when each 7, can be effec-
tively computed when i =1, ..., k.

Partitioning the input space is appropriate wheén the inputs of size n to
the algorithm can be partitioned into disjoint sets by using a naturally defined

random variable Y and where the quantities E[7| Y = y], P(Y = y) occurring in
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Formula (6.2.5) are effectively computable. Typically, Y involves mapping an
input to some sort of integer constraint, such as the position in a list of size n
where a maximum element occurs. Then A(#n) is computed using (6.2.5).

Often we can find a recurrence relation expressing A(n) in terms of one or
more of the values A(m) with m < n. Of course, if the algorithm itself is written
recursively, then the recurrence relation is usually easy to find. In general, find-
ing a recurrence relation for A(n) involves using the techniques of partitioning
the algorithm or the input space.

F% 6.3 Average Complexity of LinearSearch

In Chapter 2, we informally showed that the average complexity of LinearSearch
is n/2 + 1/2, under the assumptions that the search element X is in the list
L[0:n — 1] and the list consists of distinct elements, with each element equally
likely to be X. We now calculate the average complexity of LinearSearch under
these assumptions, but we assume that the search element X occurs in the list
with probability p. Using the notation for conditional probability given in the Ap-
pendix E, this assumption becomes

P(X=L[i]l XisinthelistL) = 1/n, i=0,..,n— 1.
We will calculate A(n) using Formula (6.2.2). For 1 =i =< n, p, is equal to the

probability that X is the ™ list element L[i — 1]. Hence, from Formula (E.2.3)we
have

p;=P(X=L[i — 1]IXis in the list L)P(X is in the list L)
(L, -2 _ _
—<n>p— " i=1,..,n—1.

LinearSearch performs n comparisons when X = L[n — 1], or when Xis not in
the list L. Thus, p, = p/n + 1 — p. Substituting these values of p; into Formula

(6.2.2) yields
1(%) + 2(%) + ot (n - 1)(;’;—) + n(% +1- p)

(1+2+ -+ n)(%) +n(l = p) (6.3.1)

_ <—”("2+ ”)(%) +n(l - p) = (1 - %)n + —’2’—.

A(n)

I
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If we set p = 1 in Formula (6.3.1), we obtain the formula A(n) = (n + 1)/2 derived in Chapter 2
for the average complexity of LinearSearch when X'is assumed to be in the list.

6.3.1 Average Complexity of LinearSearch with Repeated Elements

We now determine the average behavior A(n,m) of LinearSearch for lists L[0:n — 1]
of size n having m distinct elements drawn from a given fixed set S = {s,.5,, ... .5, },
where the search element X € S. For purposes of computing A(#n,m), we assume that
L[i] has an equal probability 1/m of being any elementin S,/ = 0,1, ... ,» — 1. Hence,
the probability that X does not occur in position i is (m — 1)/m, i = 0,1, ...,
n — 1. It follows that the probability that X is not in the list is ((m — 1)/m)" and the
probability that X is in the listis 1 — ((m — 1)/m)".

Clearly, the p,in Formula (6.2.2),i = 1,2, ... ,n — 1, is the probability that the
first occurrence of the search element X is in position 7, and p, is the probability
that X does not occur in the first » — 1 positions. Thus, we have

- {((m—l)/m) _l(l/m) }f.ISIS}'Z— 1, (63.2)
((m=1)/m)"! ifi = n.

Substituting Formula (6.3.2) into a suitably interpreted Formula (6.2.2) gives us

w(n) n— - i— _ n-—
A(nm) = ;ipi = (Z‘;z(mm 1) 1(%)) + (mm 1) ' (633)

We now employ Formula (B.2.11) from Appendix B, which states that

""E‘Z,X,._l (= DX -+
i=1 (I—X)z

By replacing x by (m — 1)/m in this formula and substituting the result in For-
mula (6.3.3), we obtain

Arm) = [(l/m) (n—1)((m— 1)/m)nm~_2n((m - /m)" " + 1] N (m’; 1>n-1

-l () ()
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If we hold m constant, then ((m — 1)/m)" approaches zero as n approaches e, so
that A(n,m) ~ m. In particular, we have A(n,m,.,) € O(my,.,) = O(1), and thus
A(n,mg,.4) has constant order. This behavior is very different from the linear av-
erage behavior A(n) of LinearSearch for lists of distinct elements.

B 6.4 Average Complexity of InsertionSort

Because InsertionSort is a comparison-based algorithm, we can assume without
loss of generality that inputs to InsertionSort are permutations of {1,2, ... ,n}. We
also assume that each permutation is equally likely to be the input to Insertion-
Sort. Unlike our analysis of LinearSearch, we cannot compute A(n) = E[1] directly
by applying Formula (6.2.2). Instead, we partition the algorithm InsertionSort
into n — 1 stages. The ™ stage consists of inserting the element L[/] into its
proper position in the sublist L[0:i — 1], where the latter sublist has already been
sorted by the algorithm. Let 7, denote the number of comparisons performed in
stage i, so that t= 1, + -~ + 7, _, and, by Formula (6.2.4),

A(n) = E[1] = E[t;] + E1,] + - + E1,_4]. (6.4.1)

We now calculate E[t],i =1, ...,n — 1, using Formula (6.2.2). We have

i

Htl = D jP(t = j). (6.4.2)

j=1

Our assumption of a uniform distribution on the input space implies that
any position in L[0:7] is equally likely to be the correct position for L[i]. Thus, the
probability that L[] is the j*" largest of the elements in L[0:/] is equal to 1/(i + 1).
If L[] is the j*" largest, where j < i, then exactly j comparisons are performed by
InsertionSort when placing L[{] in its correct position. If L[7] is the (i + 1) largest
(that is, the smallest), then exactly i comparisons are performed by InsertionSort
when placing L[{] in its correct position. It follows that

1
P(r,=j) = y J=1,..,10 -1,

! (6.4.3)
P(r,=i)=i+l, i=1,..,n—1

Substituting Formula (6.4.3) into (6.4.2) and simplifying yields

i

j i 1
- + =4+ 1-——— i=1,..,n—1 (644
7] <2i+1) i+1 2 i+ 1 " 49

j=1
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Substituting Formula (6.4.4) into (6.4.1), we have

A(n) = f(é . ;1—;)

=1

=(n—l)g+(n—1)—<%+%+ +711-)

=(n- 1)2 + 1 — H(n),

where H(n) is the harmonic series 1 + 1/2 + -+ + 1/n ~ Inn. In particular, A(n)
€ O(n?). Note that the average complexity of InsertionSort is about half that of its
worst-case complexity, since the highest-order terms in the expressions for these
complexities are n?/4 and n?*/2, respectively.

Average Complexity of QuickSort

As with InsertionSort, we assume that input lists L[0:#n — 1] to QuickSort are all
permutations of {1,2, ... n}, with each permutation being equally likely. We par-
tition QuickSort into two stages, where the first stage is the call to Partition and the
second stage is the two recursive calls with input lists consisting of the sublists on
either side of the proper placement of the pivot elerhent L[0]. Thus, 7= 7, + 1,,
where 7, is the (constant) number n + 1 of comparisons performed by Partition
and 7, is the number of comparisons performed by the recursive calls. Hence,

A(n) = E1] = E[t]] + E[5,] = n + 1 + E[1,) (6.5.1)

We compute E[7,] using Formulation V by introducing the random variable Y that
maps an input list L[0:# — 1] into the proper place for L[0] as determined by a call
to Partition. The uniform distribution assumption on the input space implies that

1
P(Y=i)=— i=0,..,n-1 (6.5.2)

If Y =1, then the recursive calls to QuickSort are with the two sublists L[0:i — 1]
and L[i+1:n — 1]. Our assumption of a uniform distribution on the input space
implies that the expected number of comparisons performed by QuickSort on the
sublists L[0: — 1] and L[i + 1:n — 1] is given by A(7) and A(n — i — 1), respec-
tively. Hence,

EHoly=il=A@G) +A(n—i—=1), i=0,..,n—1. (6.5.3)
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Combining Formulas (6.2.5), (6.5.1), (6.5.2), and (6.5.3), we have
n-—1
A(n) = (n+ 1) + D E[1,IY = {|P(Y = i)
i=0

n

S )+ S (A +AG =i - 1))<1>
;0 (6.5.4)
=(n+1)+ ;(A(O) + A(l) + -+ A(n — 1)),

init. cond. A(0) = A(1) = 0.

Recurrence relation (6.5.4) is an example of what is sometimes referred to as
a full history recurrence relation, because it relates A(n) to all of the previous val-
ues A(i), 0 =i = n — 1. Fortunately, with some algebraic manipulation, we can
transform (6.5.4) into a simpler recurrence relation as follows. The trick is to first
observe that

nA(n) = n(n+ 1) + 2(A(0) + A(1) + — + A(n - 2) + A(n — 1)).  (6.5.5)
Substituting # — 1 for 7 in Formula (6.5.5) yields
(n—1)A(n—1) =n(n—1) + 2(A(0) + A1) + — + A(n — 2)).  (6.5.6)
By subtracting Formula (6.5.6) from (6.5.5), we obtain
nA(n) — (n — 1)A(n — 1) = 2n + 24(n — 1). (6.5.7)

Rewriting Formula (6.5.7) by moving the term involving A(n — 1) to the right-
hand side and dividing both sides by n(n + 1) yields

A(n) =A(n— 1) 4 2

. (6.5.8)
n+1 n n+1
Letting t(n) = A(n)/(n + 1) changes Formula (6.5.8) to
t(n) =t(n —1) + 2 (6.5.9)
n) = - . .5.
n+1
Recurrence relation (6.5.9) directly unwinds to yield
1 1 1
I(l’l) = 2(‘;’ + Z + - + m)
(6.5.10)

=2H(n+ 1) - 3,
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where H(n) is the harmonic series. Thus, ¢(n) ~ 2lnn, so that the average com-
plexity A(n) of QuickSort satisfies

A(n) ~ 2nlnn. (6.5.11)

In particular, QuickSort exhibits O(nlogn) average behavior, which is order opti-
mal for a comparison-based sorting algorithm.

5

B 6.6 Average Complexity of MaxMin2

We analyze the algorithm MaxMin2 given in Chapter 2 as our third example. For
convenience, we repeat the pseudocode for MaxMin2 here.

Emm% procedure MaxMin2(L[O:n — 1], MaxValue, MinValue)
¢ nput:  L[0:n — 1] (a list of size n)
Output: MaxValue, MinValue (maximum and minimum values occurring in L[0:n — 1])
MaxValue « L[0]
MinValue « L[0]
fori<1ton —1do
if L[/] > MaxValue then
MaxValwe « L[i]
else
if L[/] < MinValue then
MinValue « L[]
endif
endif
endfor
end MaxMin2

--------------- 2B NS AEPINANSE S INTAIVFIFNEAISEINAIBGINRAIDSIPII845 599NV FEINIAIBESIFISTINSE N BT

As observed in Chapter 2, the best-case complexity of MaxMin2 isn — 1, and
its worst-case complexity is 2(n — 1). Recall that the algorithm MaxMin3 has
best-case, worst-case, and average complexities all equal to[3n/21 — 2. Thus, to
complete our comparison of MaxMin2 and MaxMin3, we need to compute the av-
erage complexity of MaxMin2. Unfortunately, it turns out that the average com-
plexity of MaxMin2 is closer to its worst-case complexity than to its best-case
complexity.

When analyzing the average complexity of MaxMin2, we again assume that
the inputs are permutations of {1,2, ... ,n} and that-each permutation is equally
likely. Observe that n — 1 comparisons involving MaxValue are performed for any
input permutation. An additional comparison involving MinValue is performed
for each iteration of the loop in which MaxValue is not updated. If we let D
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denote the random variable that maps the input permutation to the number of
times that MaxValue is updated, then we have

tT=n—1+(n—-1-D)=2n-2-D. (6.6.1)
Using Formula (6.6.1), the average complexity of MaxMin2 is given by
A(n) = E[1] = 2n — 2 — E[D]. (6.6.2)

We compute the expected number of updates E[D] by partitioning the input
space using the random variable M that maps an input permutation wof {1, ... ,n}
to nt(n). Applying formula (6.2.5)), we obtain

n

E[D] = Y E[DIM = i]P(M = i). (6.6.3)

i=1
The assumption of a uniform distribution on the input space implies that the
maximum element is equally likely to occur in any position. Thus, we have

1
PM=i)=— i=1...n (6.6.4)

Analogous with the notation A(n) used for E[7],the notation «(n) is used for
E[D] to facilitate the expression of a recurrence relation for E[D]. Clearly, we have

EDIM=n]=a(n—-1) + 1, (6.6.5)

because permutations of {1, ... , n} with ©t(n) = n are in one-to-one correspondence
with permutations of {1, ... , » — 1}, and the maximum is updated for such per-
mutations 1 exactly one more time than it was updated on n(1), ..., m(n — 1). On
the other hand, for permutations n such that nt(n) = i # »n, we have

EDIM=i]l=a(rn—-1), i€{l,..,n— 1}, (6.6.6)

because the maximum is not updated on n(n), and (for a fixed i) such permuta-
tions are again in one-to-one correspondence with permutations of {1, ... ,» — 1}.
Hence, combining Formulas (6.6.3) through (6.6.6), we have

a(n) = (%)(a(n -1 +1)+ ((n—-1)/n)a(rn—-1)

6.7
a(n — 1) + 1/n, init. cond. (1) = 0. (6.6.7)
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Recurrence relation (6.6.7) unwinds directly to yield

1 1
tgt o= H) -1 (6.6.8)

N[»—-

a(n) =

where H(n) is the harmonic series. By combining Formulas (6.6.2) and (6.6.8),
we obtain the following formula for the average complexity A(n) of MaxMin2:

A(n) =2n—-2 —a(n) =2n— H(n) — 1. (6.6.9)

Because H(n) is approximately equal to Inn, A(n) is approximately equal to
2n — Inn — 1. In particular, A(n) ~ W(n) for MaxMin2.

Average Complexity of BinarySearch and
SearchBinSrchTree

To compute the average complexity A(n) of the algorithm BinarySearch given in
Chapter 2, we choose the three-branch comparison of the do case statement as
the basic operation. Let p denote the probability that the search element X is on
the list. Given that X is on the list L[0:# — 1], we assume that it is equally likely
to occur in any of the n positions. Given that the search element is not on the
list, we assume that it is equally likely to occur in any of the following n + 1
intervals:

X<ILO}LO]<X<I[l],..,L[n—-2]<X<Ln-1],X>Ln - 1]

In Figure 6.1, we show the implicit search tree T for BinarySearch with an
input list L[0:7] of size 8. Note that Tis a 2-tree having » internal nodes (squares)
corresponding to the elements of L[0:#n — 1] and » + 1 leaf nodes (triangles) cor-
responding to these n + 1 intervals. Thus, the probability that X occurs on the list
and is equal to any given element L[7] is p/n,i = 0, ..., n — 1, and the probability
that X occurs in any one of the #» + 1 intervalsis (1 — p)/(n + 1).

Given a search element X, BinarySearch follows a path in the tree from the
root to a node of T corresponding to X, or to a leaf node if X is not in the list.
Thus, the average complexity A(n) is given by

A(n) = (g)(IPL(T) +n) + <1 _:p)@PL(T). (6.7.1)

n 1
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Implicit search tree
for BinarySearch
with an input list

L[0:7] of size 8. The
index of the list
element that is

compared to the
search element is
shown inside each
node. Leaf nodes
correspond to
unsuccessful
searches.
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Employing Proposition 4.2.7 and substituting LPL(T) — 2 for IPL(T) in Formula
(6.7.1), we obtain

A(n) = (%)(LPL(T) —n) + (; = ’;)LPL(T)

p l-p
==+ —=|L - p.
(n n+1)PL(T) P

(6.7.2)

The implicit search tree for BinarySearch is a 2-tree that is full at the second-
deepest level (see Exercise 6.23). Hence, by Theorem 4.2.8,

LPL(T) = |Llog,L| + 2(L — 2l&:t))
=[Llog,L] =[(n + 1)log,(n + 1)]. (6.7.3)
Substituting the expression for LPL(T) given in Formula (6.7.3) into (6.7.2), we
obtain

A(n) = (3 P (6.7.4)

i — 1)[(;1 + 1)log,(n + 1)] — p.

The lower-bound estimate for A(»n) in Formula (6.7.4) looks somewhat for-
midable, but it is easily seen to be asymptotic to the worst-case complexity; that
is, A(n) ~ W(n) = rlogz(n + l).|. Furthermore, suppose we restrict attention to
successful search, so that p = 1 in Formula (6.7.4). Then we have A(n) =
(I/n)r(n + 1)log,(n + 1)1 = 1. In other words, for large n, the average complex-
ity of BinarySearch for successful searching is no more than 1 less than its worst-
case complexity.
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Theorem 6.7.1

Another algorithm whose average behavior can be calculated using leaf path
length is SearchBinSrchTree given in Chapter 4. The average complexity A(n) of
SearchBinSrchTree depends on the probability distribution on the set of input
trees, as well as probabilities associated with the identifiers. The analysis of the
average complexity A(n) of SearchBinSrchTree over the set of all binary search
trees is difficult. In any case, it is probably more interesting to analyze the aver-
age behavior A(T,n) of SearchBinSrchTree for a given fixed tree T and a given set of
probabilities associated with the identifiers.

Suppose, then, that Tis a fixed input search tree (pointed at by Root), whose
internal nodes correspond to a fixed set of n identifiers, or keys (K, K|, ... ,
K, _ ). Note that T contains » + 1 implicit leaf nodes, corresponding to the n + 1
intervals

IpX <Ky, [Ky<X<K,,...,]I

n—1

K, ,<X<K,_,[;X>K _,.

Given T, the average behavior A(T,n) of SearchBinSrchTree (either version) de-
pends on the probabilities py,p,, ... ,p, _, assigned to the internal nodes, and the
probabilities ¢,,9,, ... ,q, assigned to the implicit leaf nodes of the search tree. As-
sume now that all the p/s are equal, and all the g;'s are equal. If p denotes the prob-
ability that X is one of the n keys K, ... ,K, _, then p, = p/nforalli e {0, ...,
n — 1} and q= (1 = p)/(n+ 1) forallje {0, ... ,n}. Under these assumptions, we
can show that

A(T,n) = LPL(T)———~~% — p. (6.7.5)

(L+p/n)
n+1

Applying Theorem 4.2.8 to Formula (6.7.5) yields the following theorem:

Let Tbe any binary search tree (with external implicit leaf nodes added) for keys
K, ..., K _,, where p, = p/n for each i € {0, ... , n — 1}, and q = (1 — p)/
(n + 1) for eachj € {0, ... ,n}. Then,

A(Tpn) = [(n+ Dllogy(n + 1)+ 2(n + 1 - 2“082(n+1)l)]<.—1n++p/.1 ”) —

P (6.7.6)

= [log,(n + 1)](1 + ;1-) —p € Q(logn).

-

Moreover, the first inequality in Formula (6.7.6) is an equality if and only- ifT
is a 2-tree that is full at the second deepest level. |
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An important and natural problem is to determine an optimal search tree T
in the sense that T minimizes A(T,n) over all binary search trees containing »
identifiers. Theorem 6.7.1 completely characterizes optimal binary search trees
for the case where p, = p/nfor eachie {0,...,n — 1} and ;=(1-pl(ntl) for
eachje {0, ..., n}. Thatis, a binary search tree Tis optimal for these probabilities
if and only if it is full at the second deepest level. In Chapter 9, we will use the
technique of dynamic programming to solve the more difficult problem of find-
ing an optimal search tree for general probabilities p, and q;

A binary search tree without the implicit external leaf nodes added is full at the second deepest
level if and only if the associated 2-tree with the external leaf nodes added is full at the second
deepest level. Thus, Theorem 6.7.1 could be restated for binary search trees without the external
leaf nodes added.

L
& 6.8 Searching a Link-Ordered List

Suppose we have a list L[0:n — 1] of records having multiple fields, and we wish
to maintain a sorting of L with respect to more than one of these fields (keys).
Maintaining multiple sortings is usually done using auxiliary tag arrays or link
arrays. For a given key field, a tag array Tag[0:n — 1] has the property that the
sorting of L is given by

L[Tag[0]], L[Tag[1]], ... , L[Tag[n — 1]].

In the linked-list implementation, we assume that a variable Head contains
the index of the smallest element in L with respect to the given key field. Then
the link array Link[0:n — 1] has the property that the sorting of L is given by

L{Head), L[Link[Head)), L[Link[Link[Head)]), ... , L{Link" ™ '[Head]),
where Link™ denotes the m-fold composition of Link (Link® is the identity func-

tion). Link[i] = —1 indicates the end of the list. In Figure 6.2, we show a sample
list L[0:11] and its associated array Link[0:11].
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FIGURE 6.2

Alist L[0:11]
maintained in order
using an auxiliary
array Link[0:11]

i 0 1 2 3 4 5 6 7 8 9 10 11
L 17 11 44 23 7 4 14 55 21 56 9 15
Link 8 7 2 10 4 11 9 3 -1 1 0
Head = 5

We now consider the problem of searching for an occurrence of a given ele-
ment in L having a given key value X. The tag array Tag[0:n — 1] facilitates effi-
cient searching using a binary search. Using the link array Link[O:n — 1], we
cannot efficiently use a binary search because we have no way to directly deter-
mine the middle list element. Accessing the middle element L[Link"? ~ [Head]]
requires (n/2) — 1 accesses of the array Link. In fact, it can be shown that any al-
gorithm for searching L requires n accesses to the array Link in the worst case.
We now describe an algorithm ProbeLinSrch for searching L whose average com-
plexity belongs to O(\/;).

The algorithm ProbeLinSrch uses an algorithm LinkOrdLinSrch for searching a
link-ordered list. LinkOrdLinSrch is a variant of the straightforward analog of a
linear search for link-ordered lists. LinkOrdLinSrch is based on the fact that if we
use the array Link to make a search for the occurrence of X in L in sorted order,
then we can terminate the search whenever we compare X to a list element that
is larger than X. LinkOrdLinSrch returns the index of an occurrence of X in the list
L, or it returns — 1 if X is not in list L. For convenience in the following discus-
sion, we identify the record L[i] with its key field.

= function LinkOrdLinSrch(L[0:n — 1], Link[O:n — 1], Head, X)

Input:  L[0:n — 1] (array of n list elements)
Link[O:n — 1] (array pointing to sorted order of L[0:n — 1])
Head (index of smallest element in L)
X (search element)
Output: Returns index of occurrence of X'in L, or —1 if Xis notin L
| « Head
while X > L[/] do
i « Link[i]
if i = —1 then return(— 1) endif
endwhile
if X = L[/] then
return(/)
else
return (—1)
endif
end LinkOrdLinSrch
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To analyze LinkOrdLinSrch, we note that the number of updates for the index
variable 7 in LinkOrdLinSrch is at most 1 less than the number of comparisons
of X with a list element in L. Thus, we choose comparisons of X to list elements
as our basic operation. Clearly, the best-case and worst-case complexities of
LinkOrdLinSrch are B(n) = 2 and W(n) = n + 1, respectively.

To compute the average complexity of LinkOrdLinSrch, we make the usual
assumption that each list element is distinct. We also assume that each element
is equally likely to be X and that X falls into each of the n + 1 “gaps”:
X < L[Head], L[Head] < X < L[Link[Head]], ... , L[Link" ~ *[Head]] < X <
L[Link" ~ '[Head]], X > L[Link" ~ '[Head]] with equal probability. Let A (n) and
A (n) denote the expected number of comparisons for successful and unsuc-
cessful searches, respectively. Then, if p denotes the probability that X occurs
on the list, we have

A(n) = pA(n) + (1 — p)A,(n). (6.8.1)

We can derive Formula (6.8.1) directly from the definition of conditional expec-
tation, and it is actually a special case of (E.4.5)).

To compute A (n), we assume that for each i between 1 and #, the probabil-
ity that X occurs in position i is 1/#, given that X is in the list. In addition, 7 + 1
comparisons of X to a list element are performed when X = L[Link' ~ }[Head]],
1 =i = n. Hence,

2+3++n+n+1 1+2+- +n
Ai(n) = = +1
* n n

(6.8.2)

To compute A, (n), we assume that for each i between 1 and n + 1, the prob-
ability that X occurs in the " gap is 1/(n + 1), given that X is not in the list. In
addition, notice that i + 1 comparisons of X to a list element are performed
when X is in the ® gap, 1 = i < n, and n comparisons are made when
X > L[Link" ~ '[Head]]. Hence,

A.(n) 2434+ +n+1 1
n) = _
“ n+1 n+1
(6.8.3)
_n+2 _ 2
2 n+1

Using Formulas (6.8.2) and (6.8.3), we have A (n) ~ n/2 and A (n) ~ n/2. Thus, it
follows from Formula (6.8.1) that A(n) ~ n/2.

ProbeLinSrch is a variant of LinkOrdLinSrch in which we first scan the list ele-
ments L[0], ..., L[l_\/;_l — 1] for a better starting point than Head. Note that the
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index i is a feasible starting point for our search if X = L[i]. If there is no feasible

starting point in index positions 0, ... , [Vnl - 1, then ProbeLinSrch invokes
LinkOrdLinSrch with Probe = Head. Otherwise, ProbeLinSrch invokes LinkOrdLin-
Srch with Probe equal to the best feasible starting point found.

To illustrate, consider the lists L[0:11] and Link[0:11] shown in Figure 6.2.
Given a search element X, we first determine the best feasible starting point Probe
among L[0], L[1], L[2] = L[L\/EJ — 1]. For example, when X is 23, 3, or 46,
then Probe is 0, 5, or 2, respectively.

“m% ,,,,,,, . function ProbeLinSrch(L[0:n — 1], Link[O:n — 1], Head, X)
: nput:  L[0:n — 1] (an array of list elements)
Link[O:n — 1] (an array pointing to sorted order of L[0:n — 1])
Head (index of smallest element in L)
X (search element)
Output: returns index of occurrence of Xin L, or —1 if X'is not in L
Probe « Head
Max « L[Head]
: // look for the best feasible starting point (if any) between 0 and LVn) -1
fori=0toVnl - 1do
: Temp « L[i]
if Max < Temp .and. Temp < X then
Probe « i
Max « Temp
endif
endfor
return(LinkOrdLinSrch(L[0:n — 1], Link[O:n — 1], Probe, X)
end ProbelinSrch

Clearly, the best-case and worst-case complexities of ProbeLinSrch are given
by B(n) = L\/;J +2and Wn) =n+1+ L\/;J respectively. To determine the
average complexity A(n), it is useful to consider a generalization of ProbeLinSrch
in which the first k list elements L[0], ..., L[k — 1] are probed for a feasible start-
ing point. In the generalized version, k is an additional input parameter to
ProbeLinSrch, and the ordinary version of ProbeLinSrch corresponds to the special

case where k = [ V). In the following discussion, we continue to refer to the
generalized version as simply ProbeLinSrch. .

We assume that the list elements are distinct and that the search element X
is on the list. Further, we assume that X is equally likely to be any of the list ele-
ments. Let x, = L[Link! ~ ![Head]] denote the M-smallest list element, i =1, ..., n.
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Let Y denote the random variable that maps the input (L[0:n — 1],X) onto m
where X = x . By Formula (6.2.5) we have

A(n) = iE[rIY =mlP(Y =m) = 1 iE[ﬂY =m]. (6.8.4)

m=1 m=1

To compute E[7] Y = m], note that ProbeLinSrch has three stages: Stage 1 consists
of the for loop that determines the probe element, stage 2 consists of the while
loop in LinkOrdLinSrch, and stage 3 consists of the final comparison made
by LinkOrdLinSrch. For m € {1, ... ,n}, let B denote the random variable that
maps an input X such that X = x_ onto the number of comparisons performed by
LinkOrdLinSrch during stage 2 with input X. Then we have

Hrly=m]l=k+1+HB,], m=1,..n (6.8.5)

Given any m € {1, ... ,n}, we now calculate E[f,] using Formula (6.2.3). Let
q; = q,(m) denote the probability that LinkOrdLinSrch performs at least i compar-
isons during the second stage. Note that g, = 0 when i > m because the worst-case
number of comparisons m occurs when a better start than Head was not found
among L[0], ..., L[k — 1] during stage 1. For 2 < i = m, LinkOrdLinSrch performs
less than i comparisons precisely when one of the elementsx,_ _ ., ,, X, _ . 3 -, X,
belongs to L[0], ..., L[k — 1]. Thus, the probability g, that at least / comparisons are
performed is the probability that each of the list elements L[0], ... , L[k — 1] be-
longs to the set of n — i + 1 complementary elements t0 X, _; , 5 X, _; 4 35 =+ » Xy
Because the total number of ways to choose such a sequence L[0], ..., L[k — 1] is
(n — i + 1)® and the total number of ways to choose a sequence L[0], ..., L[k — 1]

from x, x,, ..., x, is n'® (where x¥ = x(x — 1)...(x — k + 1)), we have

(n—i+1D)®  (n—i+ 1)k
gi= g S (6.8.6)

The inequality in (6.8.6) follows from Formula A.15 from Appendix A. Using
Formula (6.2.3), we have

BBl = Sa= S

i=n—-m+1 (6.8.7)
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As we showed in Chapter 3, S(n,k) = > i*is a polynomial in 7 of degree
i=1

k + 1 with a leading coefficient of 1/(k + 1). Hence, Formula (6.8.7) implies

n
k+1

E(B,] =

+0(1), m=1,..n (6.8.8)

Substituting Formula (6.8.8) in (6.8.5), we have

n
k+1

Etly=m]=k+ 1+ EB, =k + +0(1), m=1,..,n (6.8.9)

Because the upper-bound estimate k + »n/(k + 1) + O(1) for E[t] Y = m]
given in Formula (6.8.9) is independent of m, substituting the estimate into
(6.8.4) yields

n
k+1

A(n) = +k+ 0(1). (6.8.10)

Using calculus, it is easy to verify that n/(k + 1) + k achieves a minimum value
of 2V/7 — 1 at the point k = Vn - 1, which is approximately V). Hence, using
k= L\/;J in ProbeLinSrch gives us the following from (6.8.10):

A(n) = 2V7n + 0Q1). (6.8.11)

Because A(n) = B(n) = Vn) + 1, Formula (6.8.11) implies that A(n) € (V7).

Choosing a value of k that minimizes n/( + 1) + k does not automatically guarantee that this
minimizes A(n), because Formula (6.8.10) is an inequality rather than an equality. However, it does

give us an idea of why L\/nl is the choice for k used in the design of ProbeLinSrch. Moreover, our
estimate of A(n) is pretty sharp, since Vn < Am < 2Vn + O1).

Closing Remarks

Probability theory is an important basic tool in the analysis of algorithms. Cur-
rently, the probabilistic analysis of algorithms is a very active area of research, as
is introducing probabilistic techniques into the program logic of algorithms.
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Algorithms that are not completely deterministic but use random choices as part
of the program logic are called probabilistic algorithms (see Chapter 24). These al-
gorithms use probabilistic techniques as a design strategy as opposed to merely
an analysis tool.

References and Suggestions for Further Reading

For a more advanced treatment of probabilistic algorithm analysis, see the
following:

Coffman, E. G., Jr., and G. Lueker. Probabilistic Analysis of Packing and Parti-
tioning Algorithms. New York: Wiley, 1991.

Hofri, M. Probabilistic Analysis of Algorithms. New York: Springer-Verlag, 1987.
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EXER Section 6.1 Expectation and Average Complexity

For these exercises, we often refer to Appendix E for propositions and formulas.

6.1 Consider the sample space S corresponding to rolling two dice; that is,
S = {(r,r,) I r,r, € {1,...,6}}. Assume that the first die is fair but the sec-
ond die is loaded, with probabilities 1/10, 1/10, 1/10, 1/10, 1/10, and 1/2
of rolling a 1, 2, 3, 4, 5, and 6, respectively.

a. Give a table showing the probability distribution for rolling these dice.
b. Compute the probability that at least one of the dice comes up 6.

c. Compute the conditional probability that the sum of the dice is 10
given that the loaded die does not come up 4.

6.2  Consider the random variable X = r, + r, defined on the sample space S
given in Exercise 6.1.

a. Compute the density function f(x) = P(X = x) and verify that it is a
probability distribution on the sample S, = {2, ... ,12}.

b. Calculate the expectation E[X].
6.3 Repeat Exercise 6.2 for the random variable X = max {r,, r,}.

6.4 Let Sbe the sample space consisting of the positive integers. For a fixed p,
0 < p < 1, show that the function P(i) = (1 — p)*~!p is a probability distri-
bution on S.
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6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

Consider the sample space S corresponding to rolling three fair dice; that

is, S = (r,,ryr3) | 7,115 € {1, ... ,6}}. Calculate the expectation E[X] for

each of the following random variables X:
a. X=r +r,+r,

b. X=r +r,

c. X =max {r,r,r,}

Give an alternative derivation of the expectation of a binomial distribu-
tion using Proposition E.3.2. (Hint: Let X, be the random variable whose
value is 1 if there was a success in the " trial and 0 otherwise.)

Verify that the expectation of the geometric distribution (see Appendix E)
with probability p of success is 1/p.

Verify the following formula, which was used in the derivation of the
variance of the geometric distribution with probability p of success:

0 2—__
SR - p)lp=5E
k=1 14

Calculate the variance of the random variables given in Exercises 6.2 and
6.3. ¢

Calculate the variance of the random variables given in Exercise 6.5.

a. Two random variables X and Y defined on a sample space S are inde-
pendent if the events X = x and Y = y are independent for every xand y.
Show that if X ,X,, ... ,X _ are pairwise independent random variables,
then

VX, + X, + -+ X)) =V(X)) + V(X,) + - + V(X,).

b. Employing the formula given in part (a), calculate the variance of the
binomial distribution with p and n. (Hint: Let X, be the random variable
whose value is 1 if there was a success in the " trial and 0 otherwise.)

Prove Proposition E.1.1.
Prove Propositions E.3.1 and E.3.2.

Verify that the probabilities given by Formula {E.3.3) satisfy the three ax-
ioms for a probability distribution on {0,1, ... ,n}.

Verify that P, defined by (E.4.1) satisfies the three axioms for a probabil-
ity distribution on F.
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6.16 Given a discrete random variable X, show that the probability density
function f(x) = P(X = x) determines a probability distribution on
S, = {x:f(x) # 0}.

6.17 Show that Formula (E.2.5) of Proposition E.2.1 reduces to Formula
(E.3.7) when X = Y.

6.18 a. Forevents A and B, show that P(AUB) = P(A) + P(B) — P(ANB)

b. State and prove a generalization of formula in part (a) to n
sets A, ..., A

n

Section 6.2 Techniques for Computing Average Complexity

6.19 Derive Formula (6.2.2) from Formula (6.2.1).

6.20 Derive Formula (6.2.3) from Formula (6.2.2).

Section 6.3 Average Complexity of LinearSearch

6.21 Calculate the average complexity A(n) of LinearSearch assuming that both
of the following two assumptions about the input list L[0:n — 1] and
search element X hold:

The probability that X occurs in the list is 2/3.

Given that X occurs in the list, X is twice as likely to occur in the first half
of the list (positions 0 through [ #/2]—1) as in the second half. Further, if
X occurs in the first half of the list it is equally likely to occur in any posi-
tion in the first half. A similar assumption is made about the second half.

Section 6.4 Average Complexity of InsertionSort

6.22 a. Give pseudocode for a recursive version InsertionSortRec of InsertionSort.

b. Obtain a recurrence relation for the average complexity A(n) of Inser-
tionSortRec.

c. Solve the recurrence relation obtained in (b), and compare it to the for-
mula for A(n) given in Section 6.4.
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Section 6.5 Average Complexity of QuickSort

6.23

Suppose that we sort a list L[0:#n — 1] by first determining an element of
maximum value, placing it at position #n, and then calling QuickSort with
the (possibly altered) list L[0:n — 2]. Analyze the average complexity of
the resulting sorting algorithm, and compare it to QuickSort.

Section 6.6 Average Complexity of MaxMin2

6.24

Write a program to empirically test the average performance of MaxMin2,
and compare this performance to MaxMin3.

Section 6.7 Average Complexity of BinarySearch and SearchBinSrchTree

6.25

6.26

6.27

*6.28

Show that permutations mn:(1, ..., n}—{1, ..., n} such that n(n) = i # n are
in one-to-one correspondence with permutations of {1, ..., n — 1}.

Show that the implicit search tree for BinarySearch is a 2-tree that is full at
the second deepest level. ’

Derive Formula (6.7.5), which expresses A(T,n) in terms of the leaf path
length of T, and use it to prove Theorem 6.7.1

Compute the average complexity A(n) of SearchBinSrchTree over the set of
all binary search trees T. Assume that each binary tree search T is equally
likely to be the input tree to SearchBinSrchTree. Also assume that X is one
of the keys in the search tree and that X has an equal chance of being any
of the n keys.

Section 6.8 Searching a Link-Ordered List

6.29

6.30

6.31

Show that the algorithm for searching a link-ordered list of size » that
simulates binary search would perform » index updates in the worst case.

Generalize Exercise 6.29 by showing that any comparison-based algo-
rithm for searching a link-ordered list of size n requires n index updates in
the worst case.

Show that Formula (6.8.1) can be derived directly from the definition of
conditional expectation and is actually a special case of (E.4.5).



DIVIDE-AND-CONQUER

The divide-and-conquer paradigm is one of the most powerful design strategies
available in the theory of algorithms. The paradigm can be described in general
terms as follows. A problem input (instance) is divided according to some crite-
ria into a set of smaller inputs to the same problem. The problem is then solved
for each of these smaller inputs, either recursively by further division into

, smaller inputs or by invoking an ad hoc or a priori solution. Finally, the solution

- for the original input is obtained by expressing it in some form as a combination
of the solution for these smaller inputs. Ad hoc solutions are often invoked
when the input size is smaller than some preassigned threshold value. Examples
of a priori solutions (solutions known in advance) include sorting single-element
lists or multiplying single-digit binary numbers.

8.1 The Divide-and-Conquer Paradigm

The divide-and-conquer design strategy can be formalized as follows. Let Known
denote the set of inputs to the problem whose solutions are known a priori or by
ad hoc methods. The procedure Divide_and_Conquer calls two procedures, Divide
and Combine. Divide has input parameter / and output parameters [, ..., I_, where

237
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FIGURE 8.1

An example of a
divide-and-conquer
algorithm in which
both the divide and
combine steps are
hard.

Reprinted by permission
of Johnny Hart and
Creators Syndicate, Inc.

25

m may depend on I. The inputs I, ..., I, must be smaller or simpler inputs to the

> Tm

problem than I but are not required to always be a division of I into subinputs.

Combine has input parameters J, ... , J, and output parameter J. Combine is the
procedure for obtaining a solution J to the problem with input / by combining the
recursively obtained solutions J|, ..., J, to the problem with inputs I, ..., I .

procedure Divide_and_Conquer(], J) recursive
Input:  / (an input to the given problem)
Output: J (a solution to the given problem corresponding to input /)
. if | € Known then
assign the a priori or ad hoc solution for / to J
else
Divide(l, 1,, ..., 1) //m may depend on the input/
for/ < 1tomdo
Divide_and_Conquer(l, J,)
endfor
Combine(/,, ..., J,,J)
endif
end Divide_and_Conquer

PR
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Often the work done by an algorithm based on Pivide_and_Conquer resides
solely in one of the two precedures Divide or Combine, but not both. For example,
in the algorithm QuickSort, the divide step (a call to Partition) is the heart of the
algorithm, and the combine step requires no work at all. On the other hand, in
the algorithm MergeSort, the divide step is trivial and the combine step (a call to
Merge) is the heart of the algorithm. Sometimes, both the divide and combine
steps are difficult (see Figure 8.1).

For most divide-and-conquer algorithms, the number m of subproblems is a
constant (independent of any particular input ). Divide-and-conquer algorithms
in which m is a constant equal to 1 are referred to as simplifications. The binary
search algorithm is an example of a simplification.

B.C. by johnny hart




CHAPTER 8: Divide-and-Conquer B 239

One useful technique to improve the efficiency of a divide-and-conquer al-
gorithm is to employ a known ad hoc algorithm when the input size is smaller
than some threshold. Of course, the ad hoc algorithm must be more efficient
than the given divide-and-conquer algorithm for sufficiently small inputs.

For example, consider the sorting algorithm MergeSort, which has ®(nlogn)
average complexity. The sorting algorithm InsertionSort, which has @ (n?) average
complexity, is much less efficient than MergeSort for large values of n. However,
due to the constants involved, InsertionSort is more efficient than MergeSort for
small values of n. Thus, we can improve the performance of MergeSort by calling
InsertionSort for any input list whose size is not larger than a suitable threshold.
Finding the optimal value for a threshold is often done empirically in practice.
Empirical studies are needed because the best choice of a threshold depends on
the constants associated with the implementation on a particular computer. For
example, empirical studies have shown that for MergeSort, calling InsertionSort
with a threshold of around » = 16 is usually optimal.

Symbolic Algebraic Operations on Polynomials

Algebraic manipulation of polynomials is an essential tool in many applications.
Therefore, the need arises to design efficient algorithms to carry out basic arith-
metic operations on polynomials, such as addition and multiplication, as effi-
ciently as possible. Given a polynomial P(x) = a, _ x"~! + - + a;x + a, it is
important to differentiate between the pointwise and the symbolic representa-
tion of P(x). The pointwise representation of P(x) is simply a function that maps an
input point x to the output point P(x). Thus, given two polynomials P(x) and
Q(x), their pointwise product is the function PtWiseMult(P, Q) that maps an input
point x to the output point P(x) * Q(x).

The symbolic representation of a polynomial P(x) =a, _ x" '+ - +ax + a,
is its coefficient array [a,, a4, ... , a, _ ,]. Thus, given two polynomials
Px)=a,_x"" '+ - +ax+a,andQ(x) =b,_ x""'+ -+ + bx+ by, their
symbolic product is the coefficient array [c,, ¢, ..., ¢, , , - ,] of the product poly-
nomial P(x)Q(x) given by

= D ab0<i=m-1,0<jsn—-1,k=0,...,m+n—2 (82.1)

i+j=k

For example, the symbolic product of P(x) = 3x?* + 2x — 5 having coefficient
array [—5, 2, 3] and Q(x) = x> — x + 4 having coefficient array [4, —1, 0, 1] is the
polynomial 3x®> + 2x* — 8x> + 10x* + 13x — 20 having coefficient array [—20, 13,
10, -8, 2, 3].
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The symbolic representation of the product is particularly important for de-
termining various properties of the product polynomial. For example, the func-
tion PtWiseMult does not lend itself to taking the derivative of the product
polynomial, whereas it is a simple matter to compute the symbolic representa-
tion of the derivative of a polynomial that is represented symbolically. Similar
comments hold for other operations on polynomials such as root finding, inte-
gration, and so forth. Throughout the remainder of this chapter, when discussing
algebraic operations on polynomials, we implicitly assume that we are perform-
ing these operations symbolically.

8.2.1 Multiplication of Polynomials of the Same Input Size

An algorithm DirectPolyMult based on a straightforward calculation of Formula
(8.2.1) has complexity ®(mn) (where we choose multiplication of coefficients
as our basic operation). We now describe a more efficient algorithm for
polynomial multiplication based on the divide-and-conquer paradigm. We first
assume that m = n. Setting d = [n/2], we divide the set of coefficients of
the polynomials in half, with the higher-order coefficients a, _,,a, _,, ... ,a,in
one set and the lower-order coefficients ofa, _,,a,_,, ..., a, in the other. Set-
ting P(x) =a,_x*"'+a, x?"2+ - +ax+a,andP,)(x) =a,_x" "4 1+
a,_x""4724 e 4 a,, x + a, we obtain

n

P(x) = X*Py(x) + P,(x).

A similar division of the set of coefficients of Q(x) yields polynomials Q, (x) and
Q,(x) having input size of at most d such that

Q) = XQ(x) + Qi(x).

A straightforward application of the distributive law yields

P(X)Q(X) = XZdPZ(X) QZ(X) + Xd(Pl (X) Q2(x) (8.2.2)
+ Py(x)Qi(x)) + P(x)Qi(x).

Note that polynomials P, (x) and Q, (x) both have input size 4, and polynomi-

als P,(x) and Q,(x) both have input size either 4 or 4 — 1. When P, (x) and Q,(x)
both have input size 4 — 1, we add a leading coefficient of zero to each so
they have input size d. Thus, the problem of multiplying P(x) and Q(x) has
been reduced to the problem of taking four products of polynomials of input size
d = [n12]together with two multiplications by powers of x and three additions.
It turns out that the resulting divide-and-conquer algorithm based on Formula
(8.2.2) still has quadratic complexity. However, there is a clever way of combin-
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ing the split polynomials that uses only three polynomial multiplications instead
of four, based on the following simple identity:

P(x)Q(x) = xP,(x) Q, (x) + (P, (x) + P,(x))(Q, (x) + (823)
Q,(0) — P,(0)Q,(x) = P,(x)Q,(x) + P,(x)Q, (x).

Formula (8.2.3) yields the divide-and-conquer algorithm PolyMultI for poly-
nomial multiplication. PolyMultl calls a “split pea” procedure, Split(P(x), P, (x),
P,(x)), which inputs a polynomial P(x) (of input size n) and outputs the two
polynomials P,(x) and P,(x). We write PolyMultl as a high-level recursive func-
tion whose inputs are the polynomials P(x) and Q(x) and whose output is the
polynomial P(x)Q(x). We will not be explicit about how the coefficients of the
polynomials are maintained (linked lists, arrays, and so forth). We will also as-
sume that we have well-defined procedures for multiplying a polynomial by x'.
For example, if the polynomial is maintained by an array of its coefficients, then
this amounts to shifting indices by i and replacing the first i entries with zeros.
We abuse the notation slightly by writing x'P(x) to mean the result of calling such
a procedure. Also, for convenience we simply use the symbol + to denote the
addition of two polynomials.

ooooooooo

function PolyMult1 (P, Q, n) recursive
Input:  Px)=a,_x"" '+ +ax+a,, Qx)=b,_x""'+ - +bx+b,
(polynomials)
. n (a positive integer)
Output: P(x)Q(x) (the product polynomial)
if n = 1 then
return(ab,)
else
d «In/21
Split(P(x), P, (x), P,(x))
SpIit(Qe), Q,(x), Q,00)
RX) « PolyMult1(P,(x), Q,(x), d)
S(x) « PolyMult1(P,(x) + P,(x), Q,(x) + Q,(), d)
T(x) « PolyMult1 (P,(x), Q,(x), d)
return(x29R(x) + x4(S(x) — R(x) — T(x)) + T(x))
endif
end PolyMult]

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

When analyzing PolyMultl, we choose coefficient multiplication as our basic
operation and thus ignore the two multiplications by powers of x. However, the
procedure referred to earlier for multiplying a polynomial by x' has linear com-
plexity and does not affect the order of complexity of PolyMultl. We also assume
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that n is a power of 2 because we can interpolate asymptotic behavior using
©®-scalability (see Appendix D). Since PolyMult] invokes itself three times with »
replaced by 4 = n/2, the number of coefficient multiplications T(n) performed by
PolyMult] satisfies the following recurrence relation:

T(n) = 3T<g>, n>1, init.cond.T(1) =1.  (8.2.4)

It follows from a simple unwinding of Formula (8.2.4) that T(n) € ©(n'°823)
[see also the discussion following Formula (3.3.12) in Chapter 3]. Because log,3
is approximately 1.59, we now have an algorithm for polynomial multiplication
whose ©(n!'°¢23) complexity is a significant improvement over the @(n?) com-
plexity of DirectPolyMult. In Chapter 22, we develop an even faster polynomial
multiplication algorithm using the powerful tool known as the Fast Fourier
Transform.

8.2.2 Multiplication of Polynomials of Different Input Sizes

In practice, we often encounter the problem of multiplying two polynomials
P(x) and Q(x) of different input sizes m and n, respectively. If m < n, then we
could merely augment P(x) with n — m leading zeros, but this would be quite
inefficient if » is significantly larger than m. It is better to partition Q(x)
into blocks of size m. For convenience, we assume 7 is a multiple of m—that is, n
= km for some positive integer k. We let Q,(x) be the polynomial of degree m
given by

Qi(X) = bim 1 X" by X" e+ bi-vym+1 X + bi-1ym [ € {1, ..., &}
Clearly,
Q(x) = Q)X ™Y + Qo (XD + -+ QX)X + Qi(%).
It follows immediately from the distributive law that
P(x)Q(x) = P(x) Qu()x™ ™V + P(x) Q-1 (x)x™*72 + - + P(x) Q (x).

Applying these ideas, we obtain the algorithm PolyMult2 for multiplying two
polynomials P(x) and Q(x). PolyMult2 is efficient even if the degree m — 1 of P(x)
is much less than the degree n — 1 of Q(x). If n is not a multiple of m, we compute

the largest integer k such that n > km and augment P(x) with n — km leading
Zeros.
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""* """" :  function PolyMult2(P(x), Q(x), m, n)
toInputt PO =a,_ xTT'+ - +ax+ay, Q) =b
. (polynomials)
n, m (positive integers) //n = km for some integer k
Output: P(x)Q(x) (the product polynomial)
ProdPoly(x) « 0 //initialize all coefficients of ProdPoly(x) to be O
fori < 1tokdo
QW) =b,_x""'+b, X" 2+ +8B
endfor
fori« 1tokdo
ProdPoly(x) « ProdPoly(x) + x¢ = UmPolyMult1(P(x), Q(x), m)
endfor
return(ProdPoly(x))
end PolyMult2
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X"+ e+ bx + by

n

(i - \)m

The complexity of PolyMult! for multiplying two polynomials of degree
m — 1 is @(m'°823). Since PolyMult2 invokes PolyMultl a total of k = n/m times,
each time with input polynomials of degree m — 1, it follows that the com-
plexity of PolyMult2 is

n mlogﬁ

O (km'"e3) = ®( ) = @ (nm'°80/2),

B 8.3 Multiplication of Large Integers

Computers typically assign a fixed number of bits for storing integer variables.

- Arithmetic operations such as addition and multiplication of integers are often
carried out by moving the integer operands into fixed-length registers and then in-
voking arithmetic operations built into the hardware. However, for some impor-
tant applications, such as those occurring in cryptography, the number of digits
is too large to be handled directly by the hardware in this way. Such applications
must perform these operations by storing the integers using an appropriate data
structure (such as an array or a linked list) and then using algorithms to carry
out the arithmetic operations. When analyzing the complexity of such algo-
rithms, the size n of an integer A is taken to be the number of digits of A. Any
base b = 2 can be chosen for representing an integer. We denote the /™" least sig-
nificant digit of U (base b) by u,,i = 0,1, ... ,n — 1; that is,

n—1
U= D ulb. (8.3.1)
i=0
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8
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8.4

The classic grade-school algorithm for multiplying two integers U and V of
size n clearly involves n? multiplications of digits. Viewing the right-hand side of
Formula (8.3.1) as a polynomial in & leads us to a divide-and-conquer strategy
for computing UV based on a formula analogous to Formula (8.2.3). Although
similar to the multiplication of polynomials, addition and multiplication of large
integers include the additional task of handling carry digits. The design details of
the resulting © (#'°823) algorithm MultInt are left to the exercises.

Multiplication of Matrices

=1i,j = n — 1, recall that the

Given two n X n matrices A = (a;) and B = (b;), 0
= (cy), where

product AB is defined to be the n X n matrix C

n—1

Cij = za,-kbkj. (8.4.1)
k=0

The straightforward algorithm based on this definition clearly performs »3
(scalar) multiplications. In 1969 Strassen devised a divide-and-conquer algo-
rithm for matrix multiplication of complexity O(n'°827) using certain algebraic
identities for multiplying 2 X 2 matrices.

The classic method of fnultiplying 2 X 2 matrices performs 8 multiplications
as follows:

AB = [aoo ameoo bm] _ [aooboo + aoibio  agobor + agiby (8.4.2)

ayp anllby by aoboo + anbyy  abo + an by

Strassen discovered a way to carry out the same matrix product AB using only
the following seven multiplications:

my = (ago + ayy) (boo + byy)

my = (a0 + ay1)boo

my = ago(boy — byy)

my = ay;(byo — boo) (8.4.3)
ms = (ago + ao1) (b11)

mg = (a1 — dgo) (boo + bo)

m; = (ap, — ayy) (byo + byy)

The matrix product AB is then given by

m; +my —ms +m;, m;+ ms
m, + my m, +my; —m, +m

AB = ] (8.4.4)
6
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Consider now the case of two n X n matrices where, for convenience, we as-
sume that n = 2% We first partition the matrices A and B into four (n/2) X (n/2)
submatrices, as follows:

A___[Aoo AOI]’ B:[BOO Bm} (8.4.5)
A An By, By

The product AB can be expressed in terms of eight matrix products as follows:
AB = [AOOBOO + AOlBIO AOOBOI + AOIBII:I. (8.4.6)
AIOBOO + AllBIO AIOBOI + AllBll
Thus, in complete analogy with the 2 X 2 case, we can carry out the matrix prod-
uct AB using only the following seven matrix multiplications:

M, = (Ao + A1) (Boo + Biy)

M, = (Ao + A1) Boo

M; = Aoo(Bo; — Bpy)

My = A (Bio — Boo) (8.4.7)
Ms = (Ago + A1) (B11)

Mg = (Ao — Aoo) (Boo + Bor)

M; = (Ao, — A1) (Byo + Byy)

As in the case of 2 X 2 matrices, the matrix product AB is then given by

M+ M, — Ms+M, M+ M,

AB = .
M2+M4 M1+M3—M2+M6

(8.4.8)

Formulas (8.4.7) and (8.4.8) immediately yield Strassen’s algorithm, a
divide-and-conquer algorithm based on expressing the product of two n X n ma-
trices in terms of seven products of (n/2) X (n/2) matrices. The complexity of
Strassen’s algorithm clearly satisfies the recurrence relation

T(n) = 77(9 n>1, init.cond.T(1) =1.  (8.4.9)

By unwinding Formula (8.4.9), we see that T(n) € ®(n'°827) [see also the discus-
sion following Formula (3.3.12) in Chapter 3]. Because log,7 is approximately
2.81, we now have an algorithm for matrix multiplication with complexity of
O (n'°827), which is a significant improvement over the ®(n3) complexity of the
classical algorithm for matrix multiplication.
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Strassen’s identities (8.4.3) and (8.4.4) involve a total of 18 additions (or
subtractions). Winograd discovered the following set of identities, which leads to
a method of multiplying 2 X 2 matrices using only 15 additions or subtractions
but still doing only seven multiplications:

my = (ayo + ay = ago) (b1 = boy + boo)

My = dgoboo

my = ag byo

my = (ago = ay0) (b11 — boy) (8.4.10)
ms = (a0 + ay,) (bor — boo)

mg = (o — a0 + oo — a11) by,

m; = ayy(boo + by — boy — byo)

The matrix product AB is then given by

my + ms my, + m, + ms + mq

AB = (8.4.11)

m[+m2+m4—m7 m1+m2+m4+m5‘

Although Formulas (8.4.10) and (8.4.11) involve a total of 24 additions or
subtractions, it can be verified that a total of only 15 distinct additions or sub-
tractions are needed. Thus, we obtain an improvement of three less additions or
subtractions over Strassen’s identities while keeping the number of multiplica-
tions at seven.

Selecting the k" Smallest Value in a List

Our next illustration of the divide-and-conquer paradigm is actually an instance
of simplification. Given a list L[0:n — 1] and an integer k, 1 =< k < n, we consider
the problem of finding the k™ smallest value in L. When k = 1 or k = n, this prob-
lem coincides with the problem of finding the minimum or maximum value in L,
respectively. When z is odd and k = (n + 1)/2, we are finding the median value
in L, whereas for n, even the median value is obtained by averaging the two val-
ues corresponding to k = n/2 and t = n/2 + 1. Since linear algorithms exist for
finding the maximum or minimum value in L, we hope to find a linear algorithm
for a general value of k. In fact, we first design a linear average-behavior algo-
rithm Select for the general problem by using the procedure Partition that formed
the basis of QuickSort, together with a strategy analogous to a binary search. Un-
fortunately, as did QuickSort, Select has quadratic worst-case performance. How-
ever, by modifying the algorithm, we can obtain a rather more complicated
algorithm, Select2, having linear worst-case complexity. Because of its linear
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average performance and its simplicity compared with Select2, Select is more often
used in practice.

8.5.1 The Algorithm Select

The k™ smallest value in the list L[0:n — 1] would appear in index position
t=k— 1if L[0:n — 1] were sorted (in increasing order). It is convenient to use
t as the input parameter to both Select and Select2. In particular, the output pa-
rameter is the value that would be in position ¢ if L[0:n — 1] were sorted.

Given L[0:n — 1] and an index position ¢, suppose an initial call to the pro-
cedure Partition with L[0:n — 1] returns the value j = position, so that in the re-
arranged list (which we still denote by L), L[i] = L[j] for 0 =i <j, L[i{] = L[] for
j <i=n— 1, and the pivot element L[j] has the value of the original L[0].
Hence, in the rearranged list, the value in index position j is the value that
would appear in this position if the original L were sorted (this was the basis of
QuickSort). So we're done if ¢ = j. Because each elementin L[0:;j — 1] is not larger
than each elementin L[j + 1:n — 1], it follows that if t < j, we are looking for the
value that would appear in position ¢ of L[0;j — 1] if the latter sublist were
sorted. Using similar reasoning, if ¢t > j, then we are looking for the value that
would appear in position ¢ of L[j + 1:xn — 1] if the latter sublist were sorted. The
recursive algorithm Select is based on these simple observations.

procedure Select(L[O:n — 1], low, high, t, x) recursive
Input:  L[O:n — 1] (an array of size n), low, high (indices of L[0:n — 1}])
t (a positive integer such that low < t < high)
Output: x (the value that would appear in index position t if L [low:high] were sorted in
increasing order)
Partition(L[0:n — 1], low, high, position)
case
it = position: x « L[position]
it < position: Select(L[0:n — 1], low, position — 1, t, x)
it > position: Select(L[0:n — 1], position + 1, high, t, X)
endcase
end Select

In Figure 8.2, we illustrate the action of Select for a sample list of size 7.

We now analyze Select for a list of size n, where we assume that low = 0 and
high = n — 1. We use the list comparisons generated by calls to the procedure
Partition as our basic operation. Let W(n, t) and A(n, t) denote the worst-case and
average complexities of Select restricted to inputs where the parameter ¢ is
fixed. Hence,

W(n) = max{W(n, t)|[0 =t=n -1}, (8.5.1)
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FIGURE 8.2

Action of Select
with t = 4.

Original index 0 1 2 3 4 5 6 7
List list element 22 9 23 52 15 19 47 4o

call Partition(L[0:6],position)

Output index 0 1 2 ©) 4 5 6 7
List list element 15 9 19 22 52 23 47 4o
OQutput value of position = 3

call Partition(L[4:6),position)

Output index 0 1 2 3 4 5 ) 7
List list element 15 9 19 22 47 23 52 +m
Output value of position = 6

call Partition(L[4:5].position)

Output index 0 1 2 3 4 ) 6 7
List list element 15 9 19 22 23 47 52 468
Output value of position = 5

call Partition(L[4:5).position)

Output index 0 1 2 3 @ 5 6 7
List list element 15 9 19 22 23 47 52 +o0

Output value of position = 4

x=23

and assuming each t is equally likely,

S A(n 1)

A(n) = ——— (8.5.2)

Because Partition has complexity n + 1 for a list of size n, and because there
exists an input list whose size is only narrowed by 1 with each call to Partition,
we have

Wnty=(n+1)+n+n-1)+ - +2

_(n+ 1)2(n+2) —1eo().

(8.5.3)

Thus, Select has the same quadratic worst-case behavior as QuickSort.
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When analyzing the average performance of Select, we assume, as usual, that
the inputs to Select are all permutations of 1, ... , n, and that each permutation is
equally likely. We now show by the strong form of induction on 7 that

A(n, t) =4n, forallnandallt€{0,...,n — 1}. (8.5.4)

Since A(1,0) = 2, Formula (8.5.4) is true for n = 1 and ¢ = 0. Assuming that

(8.5.4) holds for all pairs m, t witht € {0, ... , m — 1} and m < n, we show that
(8.5.4) also holds fornand all t € {0, ... , n» — 1}. Let t be any integer such that 0
= t = n — 1. Our assumption that all permutations of 1, 2, ... , n are equally

likely to be input to Select implies that after executing the call to Partition with
L[0:n — 1], each value O, ... ,n — 1 is equally likely to be the output value of the
parameter position. There are three cases to consider, depending on whether
position is less than, equal to, or greater than ¢.

For convenience, let i = position. If t = i, then Select terminates after a single
call to Partition, so that n + 1 comparisons are performed. If t < i, then Select calls
itself recursively looking for x in the sublist L[0:i — 1], so that the average num-
ber of comparisons done in this case is given by

n+1+ A(,t) =n+ 1+ 4/ (byinduction hypothesis). (8.5.5)

Finally, if ¢+ > i, then Select calls itself recursively looking for x in the sublist
L[i + 1:n — 1], so that the average number of comparisons performed in this case
is given by

n+l1+An—i—-1,t—i—-1)sn+1+4n-i—1)
(by induction hypothesis). (8.5.6)

Using inequalities (8.5.5) and (8.5.6), we obtain

1 t—1
A(n,t):-’;[n+1+2(n+1+A(n—i—1,t—i—1))
i=0

+ nil (n+ 1+ A(, t))]
ak (8.5.7)

t—1

1
=-’;[n(n+l)+ An—i—=1,t—i—-1)
0

=
n—1

+ 3 A(i,t)]Sn+1+%{§ (n—i—1)+ "2_11' .

i=t+1 i=t+1

As a function of ¢, the right side of the inequality in Formula (8.5.7) is max-
imized when ¢ = [ (n — 1)/21 Now assume that # is odd (the proof when 7 is
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even is similar). Then using (8.5.7) and rewriting the term inside the last square
bracket yields

n—1 4 n—1 (n—1)/2
A(n, 1) sA(n, )s n+1+ —[2(2:‘ - > z)}
2 ) n i=1 i=1
4 n—1 n—1
=n+1+—|n(n—-1)— + 1
n{ 2 2

Sn+1+%n(n_l)_(n_Tl)z]=n+l+%[(n—1)(71-”;1)}

n+l+%(n—l)(3n+l>}=n+l+(n—l)(3n+l)s4n.

n

This completes the inductive proof of (8.5.4).

It follows immediately from Formulas (8.5.2) and (8.5.4) that A(n) < 4n. Be-
cause Select performs at least one call to Partition for any input, both A(n, t) and
A(n) are at least n + 1, so that we have

n+1=A(n), A(n,t) =4n,forallnandallt € {0, .. ,n — 1}. (8.5.8)

Hence, A(n), A(n, t) € O(n).

K3

We have shown A(n, § = A(n, (0 — 1)/2) = 4n and concluded that A(n) = 4n. However, a similar
induction argument can be used to show that A(n, 0) = 2(n + 1), which is a reduction by about
half of our 4n upper bound. With A(n) being the average of A(n, &) over all t € {0, ..., n — 1}, we
might expect to obtain a better upper bound for A(n). In fact, we can show that A(n) =< 3n, but we
leave verification of this stronger inequality to an exercise.

8.5.2 A Version of Select with Linear Worst-Case Complexity

We now describe another version of Select, called Select2, which has linear
worst-case complexity. The idea is to do a little more work choosing a pivot el-
ement before calling Partition so that the subsequent recursive calls (if any) are
always with sublists whose size is reduced by a fixed ratio r. The following
Proposition will then show that we should expect linear behavior in such a
situation. In our analysis of Select2, we assume distinct list elements.
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Proposition 8.5.1 syppose r is a number such that 0 < r < 1. Also, suppose that the worst case
of a recursive algorithm satisfies the recurrence

W(n) = W(rn) + f(n), where f(n) € O(n).
Then W(n) € ©(n), that is, W(n) has linear complexity.

Proof

To prove Proposition 8.5.1, we unwind the recurrence as follows:

W(n) = W(rn) + f(n)
= W(r*n) + f(n)( +7r)
.. iterate until rk < 1/n
sWQ) + ) +r+r2+ - +r+ )
=WQ) + f(n)/( —r) € ON). |

Note that in the algorithm Select, the first element in a list is always chosen as the
pivot element in the call to Partition. This fixed choice of the pivot element leads
to quadratic worst-case complexity because it is possible that the list is only nar-
rowed down by 1 in our recursive calls to Select. What is needed is a choice of a
pivot element that guarantees that the recursive calls will narrow the size of the
list by a fixed ratio, which would lead to linear worst-case behavior by analogy
with Proposition 8.5.1. Of course, choosing the median element in a list as a
pivot element would narrow the list by about 1/2. However, finding the median
element is a special case of the problem at hand. We will settle for a pivot ele-
ment pm, called a pseudomedian, which will be good enough to narrow the list by
about 7/10, so that the recursive call will have W(7n/10) worst-case complexity.
Because determining pm will turn out to have W(n/5) + 6n/5 complexity, we
expect a recurrence relation of the form

W(n) = W(7n/10) + W(n/5) + 6n/5 + n + 1
= W(7n/10) + W(2n/10) + 11n/5 + 1,

which is not exactly of the form W(n) = W(rn) + f(n) stated in Proposition 8.5.1,
but it is close enough to still yield linear worst-case complexity.

To compute the pseudomedian pm, we assume for convenience that # is
an odd multiple of 5, where n = 59 and ¢q is odd. We then break up the list
L{0:n — 1] into g = n/5 sublists L[0:4], L[5:9], ..., L[n — 5:n — 1], each of size 5,
and determine the median of each sublist. The total number of comparisons re-
quired to determine these ¢ medians m, m,, ..., m, is 6n/5, since the median of
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a five-element list can be found in six comparisons (see Exercise 8.20). The
pseudomedian pm is the median of these 4 medians and is found by calling our
recursive procedure Select2 with the list of medians m, m,, ..., m, and k =
(g + 1)/2 (k is the median position of these medians). The worst-case complex-
ity of finding pm is then W(n/5) + 6n/5. Now in the worst case, a recursive call to
Select2 is made with a list on one side or the other of pm. But as Figure 8.3 illus-
trates, pm must lie in the interval from b(q) to n — b(q) — 1, where b(q) =
3(q — 1)/2 + 2 = the number of points inside each of the indicated “pseudorec-
tangles.” In Figure 8.3, the five-element sublists are arranged (in our mind’s eye)
so that each sublist is sorted in increasing order (from left to right) and so that
the medians are also sorted in increasing order (from top to bottom). This is done
for analysis purposes only and is not done by the algorithm Select2. Each list ele-
ment in the upper-left pseudorectangle is strictly smaller than pm, and each
element in the lower-right pseudorectangle is strictly larger than pm.

FIGURE 8.3

The pseudomedian
pm must lie in the
interval from b(g) to
n—1 - b(q).

q=nl5

b(q)=3(g—1)/2+2

o o o o]0 o O O O
o o o oo O O O O
e o o o g e o6 o o
o o o O oo O O O
O o o O oo O O O
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Hence, the size of the sublist searched in the recursive call is at most

r{g) =n—>bq) —1=59g—[3((g — 1)/12) +2]—1=7q/2 —3/2 <7Tn/l0.
Thus, it follows that W(#x) for Select2 satisfies the recurrence

W(n) < W(7n/10) + W(2n/10) + 11n/5 + 1, init. cond. W(1) = 0.

A straightforward induction shows that W(xn) < 24n (see Exercise 8.21).

The following pseudocode for the recursive procedure Select2 follows from
our discussion and is similar to that for the procedure Select. However, in Select2
the procedure Partition is replaced by the procedure Partition2, which uses the
input parameter Pivot as the pivot element (by interchanging L[low] with L[Pivot]
and then invoking Partition). Also, the procedure MedianOfFive returns in the
output parameter M[0:g — 1] the medians of the five-element sublists of
L[low:high].

sasead).........  procedure Select2(L[0:n — 1], low, high, t, X) recursive
Input:  L[0:n — 1] (an array of distinct list elements), low, high (indices of L[0:n — 1])
t (a positive integer such that low =< t < high)
Output: x (the value that would appear in position t if L[low:high] were sorted in
increasing order)
if high — low + 1 = 5 then

use ad hoc method to find x
: endif
q « (high — low + 1)/5
: MedianOfFive(L[0:n — 1], low, high, M[0:q — 1])
: Select2(M[0:qg — 1],0,q — 1, (g — 1)/2, Pivot) //so that PseudoMedian = Pivot
. : Partition2(L[0:n — 1], low, high, Pivot, position)
case

it = position: x « L[position]

it < position: Select2(L[0:n — 1], low, position = 1, t, x)
: it > position: Select2(L[0:n — 1], position + 1, high, t, x)
: endcase

. end Seleat2
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% 8.6 Two Classical Problems in Computational Geometry

We now use the divide-and-conquer technique to solve two fundamental
problems in computational geometry: the closest-pair problem and the convex
hull problem. Although both problems can be posed for points in Euclidean
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d-dimensional space for any 4 = 1, we limit our discussion of the solutions to
these problems to the line and the plane (4 = 1 and 2, respectively).

8.6.1 The Closest-Pair Problem

In the closest-pair problem, we are given n points P, ... , P, in Euclidean d-space,
and we wish to determine a pair of points P; and P;such that the distance be-
tween P, and Pi is minimized over all pairs of points drawn from P, ..., P,. Of
course, a brute-force quadratic complexity algorithm solving this problem is ob-
tained by simply computing the distance between each of the n(n — 1)/2 pairs
and recording the minimum value so computed. Actually, to avoid round-off
problems associated with taking square roots, it would be best to work with the
square of the distance, which we assume throughout the discussion (and which,
by abuse of language and notation, we still refer to as simply the distance d).

Using divide-and-conquer, we now design an O(nlogn) algorithm for the
closest-pair problem. This turns out to be order optimal because there is a
Q(nlogn) lower bound for the problem. We describe the algorithm informally be-
cause the actual pseudocode, though straightforward, is somewhat messy to
fully describe.

To motivate the solution to the problem in the plane, we first consider the
problem for points on the real line. Of course, we can solve the problem on the
line by sorting the points using an O(nlogn) algorithm, and then simply making
a linear scan of the sorted points. However, this method does not generalize to
the plane. To find a method that does generalize, let m be the median value of
the n points. Using the algorithm Select2 described in Section 8.5 we can compute
m in linear time. We divide the points x,, ..., x, into two subsets of equal size, X
and X,, with one subset comprising points less than or equal to the median, and
other subset comprising the remaining points (a linear scan determines the divi-
sion). Let d, and 4, be the minimum distances between pairs of points in X, and
X,, respectively. Either d = min{d|, 4,} is also the smallest distance between any
pair drawn from x,, ..., x, or there is a pair x; € X, and x; € X, having a strictly
smaller distance than 4. However, it is clear that the interval (m — 4, m] contains
at most one point of X,, and the interval (m, m + d] contains at most one point
of X,.In linear time, we can determine if the only possible pair having closer dis-
tance than 4 actually exists. Thus, for n = 2%, the complexity W(n) of the algo-
rithm satisfies the recurrence.

W(n) = 2W(n/2) + n, init. cond. W(1) = 0,
which unwinds to yield W(n) € O(nlogn).

The divide-and-conquer solution just described for points on the real line
generalizes naturally to a divide-and-conquer solution in the plane by dividing the
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npoints (x,,,), ..., (x,,¥,) into sets X, and X, on either side of line x = m, where m
is the median of the x-coordinates of the points. The sets X, and X, can be deter-
mined with O(nlogn) complexity by sorting the points by their x-coordinates. We
then recursively find the minimum distances 4, and 4, between pairs of points in
the sets X, and X,, respectively. Again, either d = min{dl, d,} is also the smallest dis-
tance between any pair drawn from (x,y,), ..., (x,,y,), or there is a pair (x,y,) €

X, and (x;» yj) € X, having a strictly smaller distance than d. Also, if there is such a
pair, then (x,, y,) lies in the strip S, determined by the lines x = m — d and x = 4,
whereas (x; ¥) lies in the strip S, determined by the lines x = dand x = m + 4.
However, unlike the case for the line, we can no longer be sure that there is at
most a single pair of points to examine. Indeed, all the points (x,,y,), ... , (X, ¥,)
might be in the strip § = S, U S, between the linesx = m — dand x = m + d, so
that we would have to examine a quadratic number of pairs, which is no better
than the brute-force solution. However, the following proposition, whose proof
we leave as an exercise, comes to our rescue.

Proposition 8.6.1 Consider a rectangle R in the plane of width 4 and height 24. There can only
be at most six points in R such that the distance between each pair of these
points is at least d. O

The following Key Fact follows from Proposition 8.6.1 and the definition of 4.

For each point (x, y) € X, (1 S, there are at most five points in X, S, R, where R is
& the rectangle with corner pomts x,y—-d),x,y+d),(x+dy— d) (x + d, y + d) (see
§ Figure 8.4).

The Key Fact allows us to check less than 57 pairs to determine whether or
not there is a pair (x, y,) € X, N S, and (x,¥)) € X, M S, having distance less
than d. To understand this, note that we can require our recursive calls deter-
mining X, d, and X,, d, to return X, and X, sorted by their y-coordinates, which
then can be merged using no more that » — 1 comparisons by the procedure
Merge (discussed in Chapter 2). Thus, as we scan through the pointsin X, M1 S, in
increasing order of their y-coordinates, a corresponding pointer can also scan
the points in X, M S, in slightly oscillatory increasing order of their y-coordi-
nates, checking at most 5# pairs. More precisely, suppose P, ..., P, (respectively,
Q,, ... , Q) are the points in X, (N S, (respectively, in X, M S,). We first scan
X, M S, until we find a point (if any) such that 4 added to its y-coordinate is at
least as large as P,’s y-coordinate. If we find such a point Q, then we leave a
pointer Q at Q,, and using Proposition 8.6.1, we need only check Q, and the next
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FIGURE 8.4

ForP € X;M S,
rectangle R of width
d and height 2d is
shown where
distances from P,

to points in X, M
S,M Rneed to

be checked.

four points X, (1 S, to determine if 4 needs updating. We then move to point P,
and resume the scan of X, N S, starting at Q,, this time looking for a point whose
y-coordinate is at least as large as P,’s y-coordinate. We repeat this process until
all of X, M S, is scanned, and less than 5x pairs of points will be examined for
updates to the current smallest distance. Because we make at most » — 1 com-
parisons when merging X, and X,, we see that the combine step in our divide-
and-conquer algorithm performs less than 6n comparisons altogether. Hence,
the worst case W(n) of the algorithm satisfies

W(n) < 2W(n/2) + 6n, init. cond. W(1) = 0.

which shows that W(n) € O(nlogn).

When implementing this algorithm, there are various degenerate cases that
have to be handled. For example, it might happen that some (or even all) of the
points are on the line x = m. We leave the implementation details to the exercises.
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FIGURE 8.5

A small rubber
band stretched and
released around
pegs at points in
the plane
determines the
convex hull of these
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8.6.2 The Convex Hull Problem

Given any subset S of the Euclidean plane, S is called convex if, for each pair of
points P, P, € S, the line segment joining P, and P, lies entirely within the set S.
Given a set of n points (x,,y,), ..., (x,, y,) in the plane, the convex hull of these
points is the smallest convex set containing them. In other words, the convex
hull of the points is contained in any convex set containing the points. There is a
nice physical interpretation of the convex hull. Consider placing pegs (or golf
tees) at each of the n points (x, y,), ..., (x,, y,). Stretching a small rubber band
around the entire set of points and releasing the band determines the boundary
of the convex hull (see Figure 8.5).

Given the points (x,,y,), ..., (x,, y,) in the plane, the convex hull problem is
to determine a minimal subset of these points P, ..., P,, P, , , = P, such that the
boundary of the convex hull of the points (x,, y,), ..., (x,, y,) consists of the line
segments joining P,and P, ,,1 = 1, ..., k. Note that no three consecutive points
in the (circular) list P, ..., P,, P, , , = P, are collinear.

The divide-and-conquer algorithm for computing the convex hull that we
now describe begins in the same way as the closest-pair algorithm; namely, we
divide the n points (x,, y,), ... , (x,, y,) into sets X, and X, on either side of line
x = m, where m is the median of the x-coordinates of the points. We then re-
cursively determine the convex hulls CH(X,) and CH(X,) of X, and X,, respec-
tively. The initial condition for the recursion is a set of one, two, or three
points, because the convex hull in these cases is a point, a line segment con-
necting the two points, and a triangle connecting the three points (unless they
are collinear), respectively. It then becomes a question of how to merge the
convex hulls CH(X,) and CH(X,) into the convex hull CH(X, U X, ). The an-
swer is to determine the upper and lower support line segments of CH(X,) U
CH(X,), as illustrated in Figure 8.6.
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FIGURE 8.6

Upper and lower
support line
segments of

CH(X,) U CH(X,).

CH(X,)

CH(X,)

X=m

R

To determine the support line segments, we introduce the notion of a turn
determined by an ordered triple of points (P, P,, P,) in the plane. We have a left
turn, no turn, or right turn, respectively, as determined by the determinant
shown in Figure 8.7. This determinant corresponds to twice the “signed area”
determined by the triple of points (P,, P,, P,).

We now use the notion of turns to determine the upper support line seg-
ment. Suppose CH(X,) is givenby P, ..., P,, P, , , = P, and CH(X,) is given by
Qs -, Q, Q, . = Q, where both sequences are in clockwise order (that is, we
make right turns as we pass through the sequences). Let P, be the point in
X, with the largest x-coordinate (if there are two such points, we take the point
with the smaller y-coordinate). Consider the sequence of turns determined by
(P, Q, Qj+ ),J =1,...,m where we set Q,,, , = Q, for convenience. Then the
right-hand endpoint of the upper support line segment is the point Q,, where the
turns go from left turns or no turn to a right turn; thatis, (P, Q, _,, Q,) isa left
turn or no turn, and (P, Q, Q, , ,) is a right turn. Now consider the sequence of
turns (Q,, PJ Pj _,J=1,...,k,where we set P, = P, for convenience (that is, we
go around CH(X,) in counterclockwise order). Then the left-hand endpoint of
the upper support line segment is the point P, where the turns go from right
turns or no turn to left turns. This determines the upper support segment. The
lower support segment is obtained similarly.
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FIGURE 8.7 Py = (x5, y3)

The indicated
determinant
determines whether Py = (Xy ¥y) (X2 ¥2)
the triple (P,, P,, P;) Py = (X2, ¥2)
is a left turn, no
turn, or right turn;
that is, the turn
whether g 71 ) f= ) f= )
determinant is
positive, zero, or (P, Py, P3) aleft turn (Py, Py, P3) no turn (Py. Py, P3) arxight turn
negative,
respectively.
....................................... X, y, 1 X, »n 1 X, vy 1

Py = (x3,¥3) Py = (x5, y3)

X oy 1 >0 X ¥y 1 =0 X3y, 1 | <0

x5 y3 1 X3 y3 1 X3 y; 1

Given the two support line segments, it is a simple matter to eliminate the
points in CH(X,) U CH(X,) that are not in CH(X, U X, ) and to return the se-
quence of points in CH(X, U X, ) in clockwise order. It is also easy to verify that
the algorithm has O(nlogn) complexity. As with the closest-pair problem, when
implementing the convex hull algorithm, various degenerate cases have to be
handled. We leave the implementation details to the exercises.

Other O(nlogn) algorithms for determining the convex hull are not based on
divide-and-conquer. Two of the most commonly used of these are the Graham
scan and the Jarvis march. The references at the end of the chapter provide a dis-

‘ cussion of these and other convex hull algorithms. We point out there is a

'- ) Q(nlogn) lower bound for the convex hull problem in the plane because sorting
can be reduced to this problem (see Exercise 8.32). Hence, the divide-and-
conquer algorithm and the algorithms of Graham and Jarvis all have optimal
order of complexity.

L]
i“’-" 8.7 Closing Remarks

Since Strassen’s result for matrix multiplication appeared in 1969 researchers
have been trying to improve the basic method. They look for identities that
perform fewer multiplications when multiplying matrices of a certain fixed
size m and then use this reduction as the basis of a divide-and-conquer algo-
rithm. The algorithm uses decomposition into m? blocks of size n/m, where, for
convenience, it is assumed that n = m* for some positive integer k. It has been
shown that for 2 X 2 matrices, at least seven multiplications are required. Thus,
divide-and-conquer algorithms, which use as their starting point a method of
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multiplying two m X m matrices using less than the number of multiplications
used by Strassen’s method, require that m be larger than 2.

Nearly ten years after Strassen discovered his identities, Pan found a way to
multiply two 70 X 70 matrices that involves only 143,640 multiplications (com-
pared with more than 150,000 multiplications used by Strassen’s method), yield-
ing an algorithm that performs O(n?7°°) multiplications. Improvements over
Pan’s algorithm have been discovered, and the best result currently known (due
to Coppersmith and Winograd) can multiply two n X n matrices using O(n*37¢)
multiplications. However, all these methods require n to be quite large before
improvements over Strassen’s method are significant. Moreover, they are very
complicated due to the large number of identities required to achieve the savings
in the number of multiplications. Hence, the currently known order of com-
plexity improvements over Strassen’s algorithm are mostly of theoretical rather
than practical interest.

The subject of computational geometry has a vast literature and is an active
area of research. We refer you to the references at the end of this chapter for fur-
ther reading on this important topic.
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Section 8.1 The Divide-and-Conquer Paradigm

8.1

8.2

8.3

8.4

Design and analyze a divide-and-conquer algorithm for finding the max-
imum element in a list L[0:n — 1].

Design and analyze a divide-and-conquer algorithm for finding the max-
imum and minimum elements in a list L[0:# — 1].

Suppose we have a list L[0:n — 1] representing the results of an election,
so that L[{] is the candidate voted for by personi,i =0, ...,n — 1. Design
a linear algorithm to determine whether a candidate got a majority of the
votes—that is, whether there exists a list element that occurs more than
n/2 times in the list. Your algorithm should output a majority winner
if one exists. Note: One way to solve this problem is to determine the
median value in the list, because that value is the only candidate for
the majority value. This solution can be done in linear time using Select 2
from Section 8.5. You are to design a different algorithm to solve the
problem.

Design a version of QuickSort that uses a threshold. Do some empirical
testing to determine a good threshold value.

Section 8.2 Symbolic Algebraic Operations on Polynomials

8.5

8.6

8.7

8.8

Give pseudocode and analyze the procedure DirectPolyMult, which is based
directly on Formula (8.2.1).

Repeat Exercise 8.5 for a version of DirectPolyMult in which the polynomi-
als are implemented by storing the coefficients in

a. an array
b. a linked list
c. Consider the sparse case.

Give pseudocode for a version of PolyMult] in which the polynomials are
implemented by storing the coefficients and the associated powers of the
polynomials in a linked list.

When analyzing PolyMultl, we choose coefficient multiplication as our
basic operation. This ignores the two multiplications by powers of x. Show
how the procedure for multiplying a polynomial by x' can be imple-
mented with linear complexity. Taking this operation into account, verify
that the order of complexity of PolyMult] remains unchanged.
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8.9

Show that the divide-and-conquer algorithm for multiplying two polyno-
mials based on the recurrence relation (8.2.2) has quadratic complexity.

Section 8.3 Multiplication of Large Integers

8.10

8.11

8.12

Design and analyze an algorithm MultInt for multiplying large integers.

a. Design an algorithm for adding two large integers implemented using
arrays.

b. Repeat part (a) for linked list implementations.

Give pseudocode for the algorithm Multint you designed in Exercise 8.10
for the following two implementations of large integers.

a. arrays

b. linked lists

Section 8.4 Multiplication of Matrices

8.13
8.14

8.15

8.16

8.17

Verify Formula (8.4.4).
Verify Formula (8.4.11).

Verify that the evaluation of Formulas (8.4.10) and (8.4.11) together re-
quire 15 distinct additions or subtractions, which is 3 less than what is
performed when using Strassen’s identities.

Give pseudocode for the procedure Strassen, which implements Strassen’s
matrix multiplication algorithm. Assume that the input matrices A and B
are both n X n matrices, where » is a power of 2.

Demonstrate the action of the procedure Strassen in Exercise 8.16 for the
following input matrices:

2 0 1 1 0 2 1 1

3 0 0 4 0 1 0 -1
A= B =

3 =4 5 7 3 0 5 0

0 1 2 3 6 1 4 0.
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Section 8.5 Selecting the k't Smallest Value in a List

8.18

8.19

8.20

8.21

8.22

8.23

8.24

8.25

8.26

a. Show that for a list of size n, Select makes at most » calls to Partition
when determining the k™" smallest element.

b. Foragivennand t = k — 1, find a list exhibiting worst-case behavior —
that is, for which the size of the sublist containing the k" smallest value
of the original list is only reduced by one with each call to Partition.

Design and give pseudocode for an iterative version of the procedure Select.

Show that the median of five elements can be computed directly using six
comparisons.

Consider the function W(n) defined by the recurrence relation (8.5.9).
Using induction, show that W(n) = 24n.

Design and give pseudocode for an iterative version of the procedure
Select2.

Design a version of Select2 that works for lists L[0:n — 1] where the ele-
ments are not necessarily distinct

Prove that Select is correct.

Design an O(logk) divide-and-conquer algorithm for finding the k™ small-
est (largest) element in a list L[0:2n — 1], where the sublists L[0:n — 1]
and L[n, 2n — 1] are in increasing order.

Design an algorithm Partition2(L[low:high], Pivot, position) that rearranges
the input list about the element Pivot € L[low:high] so that each element
to the left of Pivot is no larger than Pivot, and each element to the right is
no smaller than Pivot. The final position of Pivot in the rearranged list
should be returned in the parameter position.

Section 8.6 Two Classical Problems in Computational Geometry

8.27

8.28

8.29

Prove that a rectangle of width 4 and height 24 can contain at most six
points whose pairwise distances are at least 4.

Write a computer program implementing the closest-pair algorithm.

Verify that the divide-and-conquer algorithm for the convex hull problem
discussed in Section 8.6. has O(nlogn) complexity.
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8.30

8.31

8.32

Show that the convex hull of a set of points P,, P,, ... , P, in the plane con-

sists of the set of all points A\P, + A,P, +--- + A P, where A, A,, ..., A
are all nonnegative real numbers such that A, + A, +--- + A = 1.

n

Write a computer program implementing the divide-and-conquer algo-
rithm for the convex hull problem discussed in Section 8.6.

Show that a lower bound in Q(nlogn) exists for the convex hull problem
in the plane.

Section 8.7 Closing Remarks

8.33 Pan’s divide-and-conquer matrix multiplication algorithm is based on a
partitioning scheme that assumes # is a power of 70. The complexity T(»)
of Pan’s divide-and-conquer algorithm satisfies the recurrence relation

T(n) = 143,640T(n/70), n =70, i=1, init. cond. T(1) = 1.

Show that this implies that T(n) is approximately n?7%.



BACKTRACKING AND
BRANCH-AND-BOUND

Suppose you enter a maze of garden hedges, like that shown in Figure 10.1. To
find the exit of the maze (or to determine that there is no exit), you need a guar-
anteed strategy. Does such a strategy exist? Yes. You simply walk along the trail
with your left hand always touching the hedge. If you hit a dead end, you turn
around and backtrack, still keeping your left hand touching the hedge. This left-
hand backtracking strategy will always lead you to the exit, or return you to the
entrance if there is no exit. It even works when you’re blindfolded.

Of course, by symmetry, an algorithm for generating a path through a maze
can also be based on the right-hand backtracking strategy. For the maze shown
in Figure 10.1, the right-hand backtracking strategy generates a slightly shorter
path. In general, however, neither backtracking strategy generates the shortest
path. (In fact, Figure 10.1 provides an example.) Thus, although backtracking al-
ways gets you through the maze, some good heuristics might yield a shorter path
(see Figure 10.2).

289
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FIGURE 10.1

Garden maze and
path to exit
generated by the
left-hand
backtracking
algorithm.

FIGURE 10.2

The left-hand
backtracking
algorithm versus
heuristic search.

Source: Jim Borgman,
© 1995 The Cincinnati
Enquirer. Reprinted with
permission. All rights
reserved.
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We can associate an implicit state-space T tree with the maze problem,
where a node (or state) in T corresponds to a sequence of decisions made leading to
a junction point in the maze. The children of a node correspond to the various
branches from that junction point, where we restrict the choice of branches to
those not leading to a junction already visited (this avoids cycles, yielding a finite
tree). The left-hand backtracking algorithm is based on performing a depth-first
search of the state-space tree.
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State-Space Trees

The backtracking and branch-and-bound design strategies are applicable to any
problem whose solution can be expressed as a sequence of decisions. Both back-
tracking and branch-and-bound are based on a search of an associated state-
space tree that models all possible sequences of decisions. There may be several
different ways to model decision sequences for a given problem, with each
model leading to a different state-space tree. We assume in our model for the
decision-making process that the decision x, at stage k must be drawn from a fi-
nite set of choices. For each k > 1, the choices available for decision x, may be
limited by the choices that have already been made for x,, ..., x, _ .

For a given problem instance, suppose # is the maximum number of decision
stages that can occur. For k < n, we let P, denote the set of all possible sequences

of k decisions, represented by k-tuples (x,, x,, ..., x,). Elements of P, are called
problem states, and problem states that correspond to solutions to the problem are
called goal states.

Given a problem state (x,, ... ,x, _,) € P, _ |, we let D (x,, ..., x, _,) denote

the decision set consisting of the set of all possible choices for decision x,. Letting &
denote the null tuple ( ), note that D, (<) is the set of choices for x,.

The decision sets D,(x,, ..., X, _,), Kk = 1, ..., n, determine a decision tree T of
depth #, called the state-space tree. The nodes of T at level k, 0 =< k < n, are the prob-
lem states (x,, ..., x,) € P, (P, consists of the null tuple). For 1 < k < n, the children
of (x;, ..., X, _,) are the problem states {(xps -5 X) [ X, € Dp(X}5 oo s X _ )}

A state-space tree that models a problem whose set of decision choices
D,(x,, ..., x,_,) depends only on the input size is called static. A state-space tree
in which D, depends on not only the input size but also the particular input is
called dynamic. For example, if we are solving the knapsack problem with ob-
jects by, ..., b, _ |, astatic state-space tree might be one in which the first deci-
sion is whether to include b, the second decision is whether to include 4, and
so forth (we are describing what we will call the static fixed-tuple state-space
tree for the knapsack problem). On the other hand, based on some heuristic
dependent on b, ..., b, _ |, we might decide that our first decision is whether
to include b,,, where m could be different from zero. Similar comments hold for
other levels in the tree, leading to a dynamic state-space tree modeling the
knapsack problem. In this chapter, we always use static state-space trees, but
we do introduce a dynamic state-space tree in connection with the backtrack-
ing solution to the conjunctive normal form (CNF) satisfiability problem de-
veloped in the exercises.
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10.1.1 An Example

Our first illustration of state-space trees is for the sum of subsets problem. An input

to the sum of subsets problem is a multiset A = {a, ... , a, _,} of n positive
integers, together with a positive integer Sum. A solution to the sum of subsets
problem is a subset of elements a e aik of 4, i, < --- < 1, such that

a;, + - +a = Sum.

The sum of subsets problem can be interpreted as the problem of making
correct change, where a, represents the denomination of the (i + 1)* coin, i = 0,

n — 1,and Sum represents the desired change. This differs from the version of
the coin-changing problem discussed in Chapter 7, because here a limited num-
ber of coins of each denomination are available. For example, consider the mul-
tiset A = {25,1,1, 1,5, 10, 1, 10, 25}. The denominations are 1, 5, 10, 25, which
occur with multiplicities 4, 1, 2, 2, respectively.

There are two natural ways to model a decision sequence leading to a
solution to the sum of subsets problem. In the first model, a problem state

consists of choosing k elements a, 4, of 4,7, < ... <1, in succession, for
1

some k € {1, ..., n}. The decision sequence can be represented by the k-tuple

(Xp oo s X)) = (il, ..., 1), where X; corresponds to the decision to choose element

a atstage j, 1 =j = k. For example, consider the instance n = 5, and suppose that
we have decided to choose the second, fourth, and fifth elements. Then x, = 1,
x, = 3, and x; = 4, so*that the problem state associated with this decision se-
quence is the 3-tuple (1, 3, 4).

Given that problem state (x,, ..., x, _,) has occurred (that is, the decision has
been made to choose elementsa,, ..., ay 1)’ then the available choices for de-
cision x, are L yleldmg

Di(xy oo v X)) = {1+ Lxeo, +2,...,n—1}, 1=k=mn_(10.1.1)

For example, suppose n = 5 and that problem state (0, 2) has occurred. The
only elements available for the third decision are a, and a,, so that D;(0, 2) =
{3, 4}. Figure 10.3 illustrates the state-space tree T determined by D, (x|, ...,
x, _ ) for the sum of subsets problem, where n = 5. The goal states (nodes) are
not determmed until a particular instance of the problem is specified. For ex-
ample, for the instance A = {1, 4, 5, 10, 4} and Sum = 9, the goal states are (0,
2,4),(1,2),and (2, 4). On the other hand, for the same set A, if Sum = 10, then
the goal states are (0, 1, 2), (3), and (0, 2, 4). State-space trees like this, in
which the size of the goal states can vary for the same input size, are called vari-
able-tuple state-space trees.

The second natural way to model the sum of subsets problem is an example
of a fixed-tuple model, in which goal states can be considered as n-tuples. In this
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( )

X 0
(0) 1)
4
X3 1 2 3 4 3
(0,1) (0,2) (1,2) ()
(2;4)
%5 3 % 3 5 4 4 4
(1L3.4)  (234)
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o

Variable-tuple state-space tree T modeling the decision set D, given by Formula (10.1.1) for
the sum of subsets problem with n = 5. Edges are labeled w1th the indices of the chosen
elements. Index values of the problem states are shown outside some sample nodes.

model, the decision at stage k is whether to choose element a, _ |, 1 = k < n.
Thus, D, = (0, 1}, where x, = 1 if element a, _ , is chosen, and x, = 0 otherwise.
Thus, the state-space tree T associated with the decision sets D (x,, ..., x, _ ) is
the full binary tree on 2" * ! — 1 nodes, with a left child of a node at level k — 1
corresponding to choosing 4, _, (x, = 1) and a right child corresponding to omit-
ting a, _, (x, = 0), so that

Di(xy, ..., xey) ={0,1}, 1=k=n. (10.1.2)

Figure 10.4 shows the fixed-tuple state-space tree for the same sum of sub-
sets problem illustrated in Figure 10.3. For the same instance A = {1, 4, 5, 10, 4}
and Sum = 9 considered earlier, the goal states are now represented by the
5-tuples (1, 1,0,0, 1), (0, 1, 1,0, 0), and (0, 0, 1, 0, 1).

10.1.2 Searching State-space Trees

The state-space tree for most problems is large (exponential or worse in the
input size). Thus, while a brute-force search of the entire state-space tree has the
advantage of always finding a goal state if one exists, the search might not end in
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|:|GURE104 .................................................................................................................................................................

Fixed-tuple state-space tree T modeling the decision set D, given by Formula (10.1.2) for the sum
of subsets problem with n = 5. Edges ending at level k are labeled 1 or 0, depending on whether
a, was chosen or not. Labels of the path from the root to some sample leaf nodes shown.

a single lifetime, even for relatively small input sizes. However, we can often de-
termine that there is no goal node in the subtree rooted at a given node X in the
state-space tree. In this case, we say that X is bounded, and we can prune
the state-space tree by eliminating the descendants of node X. Thus, when
searching state-space trees, we look for good bounding functions. Bounded is a
Boolean function such that if Bounded(X) is .true., then there is no descendant of
X that is a goal node. Good bounding functions can possibly limit the search to
relatively small portions of the state-space tree.

An algorithm that performs a potentially complete search of a state-space tree modeling a
given problem will always find a goal state if one exists. However, the state-space tree usu-
ally grows exponentially with the input size to the problem, so unléss good bounding func-
tions can be found to limit the search, such an algorithm will usually be too inefficient in the
worst case to be practical.
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In this chapter, we discuss two general-purpose design strategies based on
searching the state-space tree associated with a given problem: backtracking and
branch-and-bound. The state-space tree is usually implicit to backtracking algo-
rithms, whereas branch-and-bound algorithms usually require the state-space
tree to be explicitly implemented. Backtracking is based on a depth-first search
of the state-space tree. When a node is accessed during a backtracking search, it
becomes the current node being expanded (called the E-node), but immediately,
its first child not yet visited becomes the new E-node. On the other hand,
branch-and-bound algorithms are based on breadth-first searches of the state-
space tree that generate all the children of the E-node when the node is first ac-
cessed. Thus, a node can be the E-node many times during a backtracking
search, but a node is the E-node at most once during a branch-and-bound algo-
rithm. There are various versions of branch-and-bound, differing only in the
manner in which the next E-node is chosen. For example, the children might be
placed on a queue (FIFO branch-and-bound), a stack (LIFO branch-and-bound),
or a priority queue (least-cost branch-and-bound).

o Backtracking is based on a depth-first search of the state-space tree 7, and only needs to

explicitly maintain the current path (or problem state) at any given point in the search.
Branch-and-bound is based on a breadth-first search and normally needs to explicitly main-
E tain the entire portion already reached in the search (except for nodes that are bounded). ;

As mentioned earlier, unless good bounding functions can be found, back-
tracking and branch-and-bound tend to be inefficient in the worst case. How-
ever, they can be applied in a wider variety of settings than the other major
design strategies that we have discussed. Moreover, there are many practical and
important problems for which the best solutions known are based on backtrack-
ing or branch-and-bound together with clever heuristics to bound the search.
This is especially true for the NP-complete problems, such as the fundamental
problem of determining the satisfiability of CNF Boolean expressions. The best-
known solutions to CNF satisfiability are based on backtracking searches of dy-
namic state-space trees modeling the input as determined by clever heuristics
and bounding strategies.

Backtracking

Before stating the general backtracking design strategy, we illustrate the method
by applying it to the sum of subsets problem discussed in the previous section.
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FIGURE 10.5

Variable-tuple state-
space tree for sum
of subsets problem
with A = {1, 4, 5,
10, 4} and

Sum = 9. The value
of the sum of the
elements chosen is
shown inside each
node. Edges are
labeled with the
indices of the
chosen elements.

10.2.1 A Backtracking Algorithm for the Sum of Subsets Problem

Initially, we will not assume that the set A = {a,, ..., a,_,} is ordered. (Later, we
show that by sorting A in increasing order, we can obtain an improved bounding
function.) We use the decision sequence formulation corresponding to the variable-
tuple state-space tree, so that the decision sets D,(x,, ... , x, _ ) are given by For-
mula (10.1.1).

To motivate the definition of a bounding function for the problem states,
we consider the instance of the sum of subsets problem where n = 5, A =
(1,4, 5,10, 4}, and Sum = 9. The state-space tree for this instance, and the three
goal states (x,, X,, x;) = (0, 1,4), (x,,x,) = (1, 2),and (x, x,) = (2, 4), are shown
in Figure 10.5.

For example, consider the problem state (0, 1, 2) in the state-space tree in
Figure 10.5 corresponding to the choice of elements a,, a,, a,. Note that a, + a, +
a, = 10> Sum = 9. Further, any extension of (0, 1, 2) corresponds to a set of el-
ements whose sum is even greater than 10. Thus, there is no path in the state-
space tree from (0, 1, 2) to a goal state. In other words, “You can't get there from
here!” (See Figure 10.6.) We bound node (0, 1, 2) because there is no need to ex-

amine any of its descendants.

X

Xs




FIGURE 10.6
A bounded node

Source: © 1996 by Sidney
Harris. Altered and
reprinted with
permission. All rights
reserved.
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For the general problem state (x), ..., Xx,) € P,, we define the bounding func-
tion Bounded(x,, ... , x,) by

.true. if S, T oot s = Sum,

10.2.1
false. otherwise. ( )

Bounded(x,, ..., x,) = {

Clearly, if the elements corresponding to (x,, ... , x,) have a sum greater than
or equal to Sum, then any extension of (x, ... , x;) corresponds to a set of ele-
ments whose sum is strictly greater than Sum. Thus, if Bounded(x, ... , x,) =
.true., then no descendant of (x,, ... , x,) can be a goal state. For the problem in-
stance A = (1, 4, 5, 10, 4), Figure 10.7 shows the state-space tree T (from Figure
10.5) after it has been pruned at all the nodes bounded by Formula (10.2.1). The
bounded nodes are labeled B, except the bounded nodes that are also goal nodes,
which are so labeled. The unlabeled leaves correspond to nodes that were leaves
in the original state-space T, before pruning.

The backtracking strategy performs a depth-first search of the state-space
tree T, using an appropriate bounding function. By convention, when moving
from an E-node to the next level of the state-space tree, we select the leftmost
child not already visited. If no such child exists, or if the E-node is bounded, then
we backtrack to the previous level. If only one solution to the problem is desired,
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FIGURE 10.7 @
Pruned state-space
tree for the sum of X 0 1 2 3 4
subsets problem 1 4 @
with A = {1, 4, 5,
10, 4} and
Sum = 9. Edges are *2 1 2 3 4 2 3 4 3 4
labeled with the (5) 6 DIO

indices of the B

chosen elements. X
Bounded nodes are 3 2 3 4

labeled 8. 19 (5
B B

then the backtracking algorithm terminates once a goal state is found. Other-
wise, the algorithm continues until all the nodes have been exhausted, out-
putting each goal state when it is reached.

We now give pseudocode for nonrecursive and recursive backtracking pro-
cedures for solving the sum of subsets problem. These procedures perform a
depth-first search of the variable-tuple state-space tree T, using the bounding
function given in Formula (10.2.1). The procedures output all goal nodes but
can be trivially modified to terminate once the first goal state is found.

m— - s0e0 s procedure SumOfSubsets(A[0:n — 1], Sum, X[0:n])

Input:  A[0:n — 1] (an array of positive integers)
Sum (a positive integer less than A[Q] + --- + A[n—1])
X[0:n] (an array of integers where X[1:n] stores variable-tuple problem states,
and X[0] = —1 for convenience of pseudocode)

Output: print all goal states; that is, print all (X[1], ... , X[k]) such that
AKX + - + AXIK]) = Sum

fori’0Otondo

X[l « -1
. endfor
PathSum « 0
: ke 1

while k = 1 do //E-node is (X[1], ..., X[k — 1]). Initially
: // E-node = () corresponding to root
ChildSearch « .true.
: while ChildSearch do // searching for unbounded child of £-node
: if X[k] = —1 then
: XK — Xk = 1] + 1 // visit first child of E-node
else

PathSum « PathSum — A[X[K]]
Xk] « X[k] + 1 //visit next child of E-node

teavanseoee
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endif
if X[k] > n — 1 then // no more children of E-node
ChildSearch « false.
else
PathSum « PathSum + A[X[k]]
if PathSum = Sum then //(X01], ..., X[k]) is bounded
if PathSum = Sum then
Print(X[1], ..., X[k]) //print goal state
endif
else //(X[1], ..., X[K]) is not bounded
ChildSearch « false.
endif
endif
endwhile
if Xk] > n — 1 then
XK <=1 //backtrack to previous level; no more children of £-node
ke—k—1
else
ke—k+1 //go one more level deep in state-space tree
endif
endwhile
end SumOfSubsets

........................................................................................

The following recursive backtracking algorithm SumOfSubsetsRec(k) for the
sum of subsets problem is called initially with k = 0. We assume that A[0:n — 1],
Sum, and X[0:n — 1] are global variables. When calling SumOfSubsetsRec with
input parameter k, it is assumed that X[1], ... , X[k] have already been assigned
values, so that k¥ = 0 on the initial call.
""""" procedure SumOfSubsetsRec(k) recursive
Input:  k (a nonnegative integer, O on initial call)
A[0:n — 1] (global array of positive integers)
Sum (global positive integer less than A[Q] + - + A[n—1])
X[0:n] (an array of integers, where X[1:n] stores variable-tuple problem states,
X[1], ..., X[k] have already been assigned, and where X[0] = —1 for
convenience of pseudocode)
PathSum (global variable = A[X[1]] + -+ + A[X[K]], initialized to O)
Output: print all descendant goal states of (X[1], -+, X[k]); that is, print all (X[1], ...,
X[k], X[k + 1], ..., X[q]) such that AX[1]] + - + AXK]] + AlX[k + 1]] +
- + AX[q]] = Sum
ke—k+1 // move on to next level
Temp « PathSum
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for Child « X[k — 1]+ 1ton — 1 do
X[k] « Child
PathSum « Temp + A[X[K]]

if PathSum = Sum then //X[1], ..., X[k]) is bounded
: if PathSum = Sum then
: Print(X(1], ..., X[K]) // print goal state
: endif
else //X[1), ..., X[k]) is not bounded
: SumOfSubsetsRec(k)
< endif
: endfor
: end SumOfSubsetsRec
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If the elements a, ... , a, _, are first sorted in increasing order (the reverse of
the ordering used by the greedy algorithm for the coin-changing problem), then
the following bounding function can be used for the problem states (x,, ... , x,).
The bounding function (10.2.2) is stronger than that given by (10.2.1).

.true. if Ao+ Fay +a, ., > Sum,

10.2.2
false. otherwise ( )

Bounded(x,, ..., x;) = {

Because a; = a, = --- = a, _ |, whenever the elements corresponding to
problem state (x,, ..., X, x, + 1) have a sum strictly greater than Sum, then the
elements corresponding to any problem state (x,, ... , X;, X, , ,) also have a sum
strictly greater than Sum. Thus, (10.2.2) is a valid bounding function. SumOfSub-
sets and SumOfSubsetsRec can be easily modified to use the bounding function
given in 10.2.2

10.2.2 The General Backtracking Paradigm

The following general backtracking paradigm, Backtrack, follows the backtracking
strategy we just described for the sum of subsets problem. Backtrack finds all so-
lutions to a given problem by searching for all goal states in a state-space tree as-
sociated with the problem. Backtrack invokes a bounding function, Bounded, for
the problem states. The definition of Bounded depends on the particular problem
being solved. We assume that an implicit ordering exists for the elements of
Dy(x)y .oy x, _ )
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---------

procedure Backtrack()
Input: T (implicit state-space tree associated with the given problem)
D, (decision set, where D, = & for k = n)
Bounded (bounding function)
Output: all goal states
ke
while k = 1 do //E-node is (X[1], ..., X[k = 1]). Initially
E-node = () corresponding to root.
Searching « .true.
while Searching do //searching for unbounded child
X[k] « first of the remaining untried values from D (X[1], ..., X[k — 1]),
where this value is @ if all values in D, (X[1], ..., X[k — 1]) have
been tried
: if X[k] = @ then
: Searching « false.
: else
if (X[1], ..., X[k]) is a goal state then
Print(X[1], ..., X[k])

endif

: if .not. Bounded(X[1], ... , X[k]) then

: Searching « false.

endif

: endif

: endwhile

: if Xk] = @ then

Arrange for all values in D, to be considered as untried
: ke—k—1 //backtrack to previous level
else

: ke—k+1 //move on to next level

: endif

: endwhile

{  end Backtrack

----------------------------------------------------------------------------------------

The procedure BacktrackRec is the recursive version of the procedure Back-
track. Since we are essentially performing a depth-first search of the state-space
tree T starting at the root, BacktrackRec(k) is initially called with k = 0. Note how
elegantly the recursion implements the backtracking process. We assume that
D (X[1], ..., X[k]) is empty for k = n.

cese>>e1 procedure BacktrackRec(k) recursive
: Input: T (implicit state-space tree associated with the given problem)
k (a nonnegative integer, O in initial call)
D, (decision set, where D, = @ for k = n)
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X[0:n] (global array where X[1:n] maintains the problem states of 7, and where
the problem state (X[1], ..., X[k]) has already been generated)
Bounded (bounding function)
Output: all goals that are descendants of (X[1], ..., X[k])
ke—k+1
foreach x, € D(X[1], ..., X[k — 1]) do
X[K] « x,
if (X[1], ..., X[k]) is a goal state then
Print(X[1], ..., XKD
endif
if .not. Bounded(X[1], ..., X[k]) then
BacktrackRec(k)
endif
endfor
end BacktrackRec

aaaaaaaaaaaaaaaaaaaaaa S eSS0 EPTILIICTT ISV IUENIOSEINTIIIIILRNIISISITVIIICINVOISEOEIDINDSS

1. Often, computing only one goal state is required. We can easily modify the procedures
Backtrack and BacktrackRec to halt once the first goal state is reached.

2. Notice that in a slight variation from the pseudocode for procedures Backtrack and
BacktrackRec, the SumOfSubsets and SumOfSubsetsRec pseudocode only checks for a goal
state after determining that a problem state is bounded. Putting off this check for a goal state
applies to any problem where all the goal states are bounded.

10.2.3 Tic-Tac-Toe

Consider the problem of finding a tie board (result of a “cat’s game” ) in the fa-
miliar game of tic-tac-toe. Here we are trying to determine whether tie games
are possible, not to devise a strategy for playing the game. (In Chapter 23, we
consider the problem of designing strategies for various perfect-information
games such as tic-tac-toe.)

The game of tic-tac-toe involves two players A and B, who alternately place Xs
and Os into unoccupied positions on a board such as the one shown in Figure 10.8.

FIGURE 10.8 X X 0
A 3 X 3 tic-tac-toe
tie board 0 0 X




FIGURE 10.9

(a) Row-column
labeling (i, j); (b)
row-major labeling
k;and ()a3 x 3
board configuration
corresponding to
the 7-tuple
(1,1,0,1,0,0,1)
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We assume that player A starts by placing an X in any position, and then player
B places an O in any remaining position. The two players continue to alternately
place Xs and Os on the board until either there are three Xs in a row (horizon-
tally, vertically, or diagonally) so that A wins, there are three Os in a row so that
B wins, or all nine positions are occupied with no three Os or three Xs in a row
and the game is a tie (a cat’s game).

We use backtracking to find a tie board — that is, a board corresponding to a
tie game (see Figure 10.8). In fact, we solve the problem for an » X n board,
where a tie board contains no “three in row” of either Xs or Os in any 3 X 3 sub-
board of contiguous positions in the n X n board. In our definition of a tie board,
we do not assume that the number of Xs and the number of Os differ by at most
1. However, it is interesting that all tie boards in the n X n board have this prop-
erty, so we don’t need to check for it in our backtracking algorithm.

We refer to the cell in row 7 and column j of the n X n board as cell (i, j), i, j
€ {1, ..., n}. We also refer to cell (7, j) as the cell labeled k, where k = n(i — 1) +j;
that is, k is a row-major labeling (see Figure 10.9). Row-major labeling of the cells
is useful in defining the problem states P,. However, when defining the bound-
ing function, it is more convenient to use row-column labeling. The problem of
finding a board filled with Xs and Os, containing no three in a row in either Xs or
Os, can be expressed as a sequence of decisions in which the decision at stage k
is whether to place an X or O in the cell labeled k. We set x, = 1 if an X is placed

(1,1) | (1,2) | (1.3) 1 2 3
(2.1) | (2.2) | (2,3) 4 5 6
(3.1) 1 (3.2) | (3,3) 7 8 9
(a) (b)
X | x| o
X | o] o

(c)
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in cell k in the k™" stage; otherwise, x, = 0. Thus, D, = {0, 1}, and the problem
states of size k, 1 = k = n, are given by

Pe={(x;, ... x)|xp, ..., x, € {0, 1}}. (10.2.3)

The (fixed-tuple) state-space tree T for tic-tac-toe is identical to the fixed-
tuple state-space tree for the sum of subsets problem; namely, Tis the full binary
tree on 2" *! — 1 nodes. Figure 10.9¢ shows the 3 X 3 board configuration cor-
responding to the 7-tuple (1,1,0,1,0,0, 1).

An obvious bounding function for tic-tac-toe is given by

.true. if board configuration corresponding
Bounded(x,, ..., x;) = to (x, ..., x,) contains 3 in arow, (10.2.4)
[false. otherwise.

Note that Bounded = .true. for the problem state (1, 1,0, 1, 0, 0, 1) in Figure
10.9. If the board configuration corresponding to the problem state (x,, ..., x,)
already contains three in a row (in either Xs or Os), then it obviously cannot be
extended to a board configuration not containing three in a row. In particular, it
cannot be extended to a goal state. .

Before giving pseudocode for the algorithm TicTacToe solving the problem of
finding an n X n generalized tie board configurations, we give pseudocode for
the Boolean function BoundedBoard based on Formula (10.2.4). The board con-
figuration is represented by the two-dimensional array B[—1:# + 2, —1:n + 2],
in which, for convenient implementation of BoundedBoard (and by abuse of no-
tation), we assume the existence of “border” rows and columns indexed by —1,
0,n + 1,n + 2. The cells corresponding to these rows and columns are always
empty; thatis, B[i,j] = “E” if eitheri € {—~1,0,n + 1,n+ 2}orjE€{—1,0,n + 1,
n + 2}. We illustrate a bordered 4 X 4 board in Figure 10.10, together with an as-
signment of Xs and Os to the positions k =1, ..., 10.

We assume that the two-dimensional array B[—1:n + 2, —1:n + 2] is global
to the function BoundedBoard. We refer to a set of three adjacent cells along a
horizontal, vertical, or diagonal line as a winning line. Suppose the board config-
uration restricted to the cells labeled 1, 2, ..., k — 1 in the row-major labeling of
the 4 X 4 board contains no three in a row in either Xs or Os. Then, to determine
whether the board configuration restricted to the cells labeled 1, 2, ... , k contains
three in a row in either Xs or Os, we merely need to check all winning lines con-
taining the cell labeled k. Four winning lines need to be checked: one horizontal,
one vertical, and two diagonal. Figure 10.11 shows these lines for the cell in the
board of Figure 10.10 whose row-major label is k = 11.
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FIGURE 10.10

A bordered 4 X 4
tic-tac-toe board
with first ten E E E E E E E E

positions filled

E E E E E E E E

E E E E E E E E

E E E E E E E E
FIGURE 10.11 E E E E E E E E

Winning lines that

are checked for k =
11inadx4x4 E E E E E E E E

tic-tac-toe board

E E (0] o E E E
E E E E E E E E
E E E E E E E E
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The following Boolean function BoundedBoard(i, j) returns the value .true. if
and only if the board configuration corresponding to B[—1:n + 2, —1:n + 2] con-
tains all Xs or Os in one of the four winning lines previously described.

s finction BoundedBoard(j, j)
© Input: B[-1m+2, —1n+2] (global array corresponding to board
configuration)
i (integers between 1 and n, inclusive)

Output: returns .true. if the board configuration involving the cells labeled 1, ...,
k = n( — 1) + j, contains three in a row in either Xs or Os along a line
: containing the cell labeled k.
: LineH « (B[i,j] = Bli,j — 1)) .and. (B[,j] = B[i,j — 2])
: LineV « (Bi,j] = B[i = 1,j]) .and. (B[i,j] = Bli — 2,/])
LineD1 « (Bli,j1 =Bl — 1,j = 1]) .and. B[i,j] = B[ — 2,j — 2])
LineD2 « (B[, j] = B[i = 1,j + 1]) .and. (B[i,j] = B[i — 2,j + 2])
return(LineH .or. LineV .or. LineD1 .or. LineD2)
end BoundedBoard

»
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We now give pseudocode for the algorithm TicTacToe. TicTacToe calls the pro-
cedures Previous(i, j) and Next(i, j), which accomplish the operations of back-
tracking to the previous cell (k = k — 1) and moving forward to the next cell
(k = k + 1), respectively, in the row-major labeling. Thus, Previous(i, j) executes
the statement

ifj > 1 then
jei-1
else
R
jen
endif

and Next(i, j) executes the statement

ifj < n then
je—j+1
else
[e—i+1
je 1
endif
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procedure TicTacToe(n)
Input:  n (a positive integer representing size of board)
Output: all generalized tie board configurations; that is, all board configurations not
containing three in a row in either Xs or Os
forie— —1ton+ 2do
forje<—1ton + 2do

Bli,j] «'E; //initialize all positions on board to empty
endfor
endfor
i1 //k=1
Je 1
while/ > 0 do
if B[i,j] = 'O’ then //backtrack: k = k — 1
Bli,j] «'F
Previous(l, /)
else
if B/, /] = 'E' then
Bli,j] «'X //visit left child of E-node
else
Bli,j] « 'O //visit right child of £-node
endif

if .not. BoundedBoard(i, j) then
if ( = n) .and. (j = n) then
PrintBoard(Board[1:n, 1:n]) //print goal state
else
Next(i, f)
endif
endif
endif
endwhile
end TicTacToe

We can write a recursive version, TicTacToeRec(i, j), of TicTacToe as follows. Tic-

TacToeRec(i, ) is initially called with i = 0 and j = n (k = 0). The augmented board
Board is initialized to “E.”

q ..... eose
.

srsawese

procedure TicTacToeRec(i, j) recursive
Input: /,j (integers between 1 and n, inclusive, called initially with i = 0 andj = n)
B[-1n+2,—1:n + 2] (global array corresponding to board
configuration, initialized to “E," and B(1, 1], ..., Bli, /] filled with Xs and
Os with no three in a row)
Output: all extensions of B[1, 1], ..., B[i, /] to goal states; that is, board configurations
not containing three in a row in either Xs or Os
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Next(,j) /lk=k+1
for Child < 1to 2 do
if Child = 1 then
Bli,j] <X
else
Bli,j] « 'O
endif
if .not. BoundedBoard(i, j) then
: if ¢ = n) .and. ( = n) then
: PrintBoard(Board[1:n, 1:n]) //print goal state
else
TicTacToeRec(, )
endif
endif
endfor
end TicTacToeRec
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10.2.5 Solving Optimization Problems Using Backtracking

Backtracking is frequently used to solve optimization problems—that is, to opti-
mize (maximize or minimize) an objective function f over all goal states for a
given problem. For examf)le, for a sum of subsets problem interpreted as a coin-
changing problem, we want to make correct change using the fewest coins (the
objective function f is the number of coins). To do so, we use the following
generic backtracking paradigm for solving the problem of minimizing the objec-
tive function (the paradigm is easily altered to solve maximization problems).
Given an objective function f, let f* denote the minimum of f over all solution
states. A solution state X such that f(X) = f* is a goal state. Note that for any so-
lution state X = (x,, ..., x,), the value f(X) is an upper bound for f*. We maintain
a variable UB, initialized to infinity. Additionally, at each stage of the backtrack-
ing algorithm, we maintain a solution state CurrentBest such that UB = f(Current
Best) is the minimum value of fover all solution states generated so far. For many
problems, we can efficiently compute a function LowerBound(x,, ... , ;) that is
not larger than the value of f on any solution state belonging to the subtree of
the state-space tree rooted at (x,, ... , x,). We can then dynamically bound a
problem state (x,, ..., x,) if LowerBound(x,, ... , x,) = UB. For example, in the
coin-changing problem modeled on the variable-tuple state-space tree, Lower-
Bound(x,, ... ,x,) = kif (x,, ..., x,) is a goal state; otherwise, LowerBound(x, ... ,
x,)=k+ 1.

The generic backtracking paradigm for minimizing an objective function is
based on the strategy just outlined. We describe the recursive version Backtrack-
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MinRec of the paradigm, and leave the iterative version BacktrackMin as an exer-
cise. The following high-level recursive procedure BacktrackMinRec is called ini-
tially with & = 0. During its resolution, BacktrackMinRec calls a function
StaticBounded, which plays the same role as the function Bounded used for nonop-
timization problems. For example, in the optimization version of the sum of sub-
sets problem with input parameter Sum, a problem state is statically bounded if
its sum was not smaller than Sum, whereas it is dynamically bounded if the car-
dinality of the subset corresponding to the problem state is at least as large
as a previously generated solution state. In general, a problem state is either
bounded dynamically (LowerBound(x,, ... , x,) = UB), or bounded statically
(Static Bounded(x,, ... , x,) = .true.).

procedure BacktrackMinRec(k, CurrentBest) recursive
Input: T (implicit state-space tree associated with the given problem)
D, (decision set, with D, = @ for k = n)
f (objective function defined on problem states)
k (a nonnegative integer, O on initial call)
X[0:n] (global array where X[1:n] maintains the problem states of 7, and where
the problem state (X[1], ... , X[k]) has already been generated)
: StaticBounded (a static bounding function on the problem states)
LowerBound (a function defined on the problem states)
: CurrentBest (solution state extending (X[1], ... , X[k]) with the current
minimum value of f over all descendants of (X[1], ..., Xk]) )
. UB (global variable, initialized to )
Output: CurrentBest (solution state extending (X[1], ..., X[k]) with the minimum value
of f over all descendants of (X[1], ..., X[k]) )
ke—k+1
for each X[k] € DX[1], ..., X[k — 1]) do
if (X[1], ..., X[k]) is a solution state then

XX

: if f{(X[1], ..., X[k]) < UB then
: UB « f(X[1], ..., XKD
: CurrentBest « (X[1], ..., Xk])
endif
endif

if LowerBound(X[1], ..., X[k]) < UB .and.
.not. StaticBounded(X[1], ... , X[k]) then
BacktrackMinRec(k, CurrentBest)
endif
endfor
end BacktrackMinRec
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The paradigm BacktrackMinRec ends up returning the first optimal goal state that was
encountered. (Of course, unlike nonoptimization problems solved using backtracking, the
algorithm has no way of checking that it was an optimal goal state until all goal states have been
examined or eliminated.) If all optimal goal states are desired, then CurrentBest must maintain all
the goal states that have the current minimum value of £. For example, the sum of subsets problem
illustrated in Figure 10.12 has two optimal goal states, represented by the tuples (1, 2) and (2, 4).
Procedure SumOfSubsetsMinRec only outputs the goal state (1, 2).

sz e

The algorithm BacktrackMinRec is easily altered to apply to optimization
problems where we wish to maximize the objective function f. For such prob-
lems, LB is the current maximum value of f, and UpperBound(x,, ... , x,) is an
upper bound for the maximum value of f over all solution states in the subtree
of the state-space tree rooted at (x|, ... , x,). Alternatively, a problem involving
maximizing an objective function f can be canonically transformed into an
equivalent problem of minimizing the associated objective functiong = M — f,
where M is a suitable constant. By replacing fby M — fin a maximization prob-
lem, BacktrackMinRec can be applied directly to solve both minimization and
maximization problems. Of course, M can be taken as zero, but for a given
problem a nonzero value of M might yield a natural interpretation for g. For ex-
ample, for the 0/1 knapsack problem, if M is taken as the sum of the values of all
of the input objects, then M — fis the sum of the values of the objects left out of
the knapsack.

As our first illustration of the use of BacktrackMinRec, we show how it can be
directly translated into a solution for the optimization version of the sum of sub-
sets problem, where goal states are solution states having minimum cardinality.
Thus, UB is the smallest cardinality of a solution state currently generated. Note
that a problem state (x,, ..., x,) corresponding to a subset of cardinality & can be
dynamically bounded if & is not smaller than the current value of UB. Interpret-
ing dynamic bounding in terms of the generic paradigm BacktrackMinRec, we see
that LowerBound(x,, ... ,x,) = k + 1 if X, + o+ x, < Sum; otherwise, Lower-
Bound(x,, ... ,x,) = k.

procedure SumOfSubsetsMinRec(k, CurrentBest) recursive

Input: & (a nonnegative integer, O on initial call)
A[0:n — 1] (global array of positive integers)
Sum (global positive integer less than A[0] + --- + A[n—1])
X[0:n] (global array initialized to —1s. It is assumed that X[1], ..., X[k]
representing a partial solution is already defined) CurrentBest (solution state
(X(1], ..., X[m)) extending (X[1], ..., X[m]) such that m is minimum over all
currently examined solution states that are descendants of (X[1], ..., X[k]) )
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PathSum (global variable = AX[1]] + --- + AX[K]])
UB (global variable, initialized to o)
Output: CurrentBest (solution state (X[1], ..., X[m]) such that m is a minimum over all
solution states that are descendants of (X[1], ..., X[k]))
ke—k+1 //go one level deeper in state-space tree
Temp « PathSum
for Child < X[k — 1] + 1ton — 1 do

vsvossn0onBece

: X[k] « Child
: PathSum « Temp + A[X[K]]
if Temp = Sum then //(X(1], ..., X[K]) is statically bounded
if Temp = Sum then //(X(1], ..., X[k]) is a solution state
if Kk < UB then
UB «k
CurrentBest « (X[1], ..., X[k])
endif
: endif
: else //X[1], ..., X[k]) is not statically bounded
if Kk < UB then //(X(1], ..., X[K]) is not dynamically bounded
: SumOfSubsetsMinRec(k, CurrentBest)
: endif
: endif
: endfor

: end SumOfSubsetsMinRec

--------------- %5660 ON90eE0T000080T20603 880640200000 IRNIEEITRDISOTOBIDISIINNIISCIITELIDS

The portion of the state-space tree generated by procedure SumOfSubsets
MinRec is illustrated in Figure 10.12 for a sample set A = (1, 4, 5, 10, 4} and Sum
=9.

SumOfSubsetsMinRec was written as a direct translation of BacktrackMinRec.
However, since BacktrackMinRec is a generic paradigm, it is often the case that ad-
ditional efficiencies might be possible when adapting it to a specific problem. In-
deed, in the variable-tuple implementation of the optimization version of the
sum of subsets problem, where a single optimal goal is to be output, when a goal
state X is generated, there is no need to generate the remaining siblings of X be-
cause the subsets corresponding to these siblings cannot have smaller cardinality
than the subset corresponding to X. To implement this improvement in the pro-
cedure CoinChangingRec, we need only break out of the for loop whenever a goal
is generated (by simply adding a break statement after the assignment updating
CurrentBest). For example, with this alteration, we would not generate the two
siblings of the goal (X[1] = 1, X[2] = 2) in Figure 10.12.
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FIGURE 10.12

Portion of the
state-space tree
generated by
procedure
SumOfSubsetsMin
Rec for the set A =
{1, 4,5, 10, 4} and
Sum = 9. Statically
bounded nodes are
labeled SB. Nodes
not statically
bounded but
dynamically
bounded are
labeled DB. Leaf
nodes in the entire
state-space tree are
unlabeled, unless
they are goals.
Solution states
resulting in updates
to UB and
CurrentBest are
labeled with

the updated value
of UB. At
termination,
SumOfSubsetsMin
Rec outputs the
final value
CurrentBest =

(1, 2).
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Our next example, the 0/1 knapsack problem, illustrates the transformation
of maximization problems into minimization problems. In Chapter 7, an efficient
greedy algorithm was given for solving the knapsack problem. The greedy
method does not necessarily yield an optimal solution to the 0/1 knapsack prob-
lem. In fact, there is no known worst-case polynomial algorithm for solving the
0/1 knapsack problem. However, the greedy algorithm for the knapsack problem
helps us to define a useful function LowerBound for dynamic bounding in the
transformed minimization problem.

Since the 0/1 knapsack problem involves looking at subsets of a set of size ,
we may solve the problem using backtracking by searching the same state-space
tree as in the sum of subsets problem. Consider the variable-tuple state-space
tree determined by (10.1.1) (see Figure 10.3). An obvious static bounding func-
tion for the problem state (x, ..., x,) is given by

true. ifw, +--+w_=C
StaticBounded(x,, ... , x;) = i X ’ 10.2.5
(x ¥ {.false. otherwise. ( )
For (x,, ..., x,) a problem state, let
k
Value(x,, ..., x;) = va,.
=t (10.2.6)

k
Weight(x,, ..., X) = D, w,.
i=1

For the 0/1 knapsack problem, the solution states consist of all tuples not sta-
tically bounded — that is, all tuples (x|, ... , x,) such that Weight(x,, ... ,x,) = C
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goal states maximize the objective function Value over all solution states. The
maximization problem is transformed into a minimization problem by letting

n—1
M= EV,',
i=0

10.2.7
LeftOutval(x,, ..., x,) = M — Value(x,, ..., x) ( )
In other words, LeftOutVal(x,, ... , x,) is the total value of all the objects left out
of the knapsack corresponding to solution state (x5 --- » X,). In the transformed

problem, which we now consider, the objective is to minimize the objective func-
tion LeftOutVal. To dynamically bound problem states, we maintain a variable UB,
which at each stage of the backtracking algorithm keeps track of the minimum
value of LeftOutVal(x|, ... , x,) over all the solution states generated so far.

Consider a solution state (x,, ..., x,) corresponding to the partial filling of the
knapsack with the subset of objects B, = (bx,’ e bxk}. Suppose (x|, ..., X;) is not
bounded by Formula (10.2.6), and let C' = C — Weight(x,, ... , x,) denote the re-
maining capacity of the knapsack. Let LeftOutVal*(x,, ..., x,) denote the minimum
value of LeftOutVal over all solution states in the state-space subtree rooted at (x,,
...,X,). In other words, LeftOutVal*(x,, ... , x,) is the smallest value of LeftOutVal that
can be achieved by placing additional objects in the knapsack from the remaining
set of objects B’ = {bxk+l’ ..., b,_}. Clearly, if LeftOutVal*(x,, ... ,x,) = UB, then (x|,
..., X,) can be dynamically bounded. Unfortunately, there is no known efficient
method to compute LeftOutVal*(x,, ... , x,). In fact, the general problem of comput-
ing LeftOutVal*(x, ... , x,) is equivalent to the original 0/1 knapsack problem.

Fortunately, we can efficiently compute a useful lower bound for LeftOut-
Val*(x,, ..., x,) by applying the greedy algorithm Knapsack. For B, a given set of
objects (with associated values and weights), and C, a given capacity for the
knapsack, we let Greedy(C, B) denote the value of the optimal placement of ob-
jects in the knapsack, where fractions of objects are permitted (that is, the value
of the knapsack generated by Knapsack). We define LowerBound(x,, ... , x,) by

LowerBound(x,, ..., x;) = LeftOutVal(x,, ..., x,) — Greedy(C’, B'). (10.2.8)

Clearly, we have

LeftOutVal*(x,, ..., x;) = LowerBound(x,, ..., X;).
Thus, we can dynamically bound a problem state (x,, ... , x,) if LowerBound
(X}, ..., X,) = UB. Figure 10.13 shows the portion of the state-space tree T gener-

ated by backtracking for a sample instance of the 0/1knapsack problem.
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1 0 1 2 3 4
v; 16 6 12 4
,C=11
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LoBd = LowerBound (x,, ... , Xy)

FIGURE 10.13

Portion of the variable-tuple state-space tree T generated by the procedure BacktrackMin for a sample
input to the 0/1 knapsack problem. Problem states that are statically bounded (Weight(x,, ... , x,) = C)
are labeled SB, whereas problem states not statically bounded but dynamically bounded (LowerBound
(X, ..., X,) =UB) are labeled DB. LeftOutVal(x,, ..., x,) is shown inside each solution state.
LowerBound(x ..., X) and the current value of UB are shown outside each problem state where UB is
updated, or where the problem state is dynamically bounded.

Cowards die many times before their deaths;

The valiant never taste of death but once.
—Shakespeare, Julius Caesar, Act ll, Scene Il

As with backtracking algorithms, branch-and-bound algorithms are based on
searches of an associated state-space tree for goal states. However, in a branch-
and-bound algorithm, all the children of the E-node (the node currently being
expanded) are generated before the next E-node is chosen. When the children
are generated, they become /ive nodes and are stored in a suitable data structure,
LiveNodes. LiveNodes is typically a queue, a stack, or a priority queue. Branch-and-
bound algorithms using the latter three data structures are called FIFO (first in,
first out) branch-and-bound, LIFO (last in, first out) branch-and-bound, and least cost
branch-and-bound, respectively.
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Immediately upon expansion, the current E-node becomes a dead node and
a new E-node is selected from LiveNodes. Thus, branch-and-bound is quite dif-
ferent from backtracking, where we might backtrack to a given node many
times, making it the E-node each time until all its children have finally been gen-
erated or the algorithm terminates. The nodes of the state-space tree at any given
point in a branch-and-bound algorithm are therefore in one of the following
four states: E-node, live node, dead node, or not yet generated.

As with backtracking, the efficiency of branch-and-bound depends on the
utilization of good bounding functions. Such functions are used in attempting to
determine solutions by restricting attention to small portions of the entire state-
space tree. When expanding a given E-node, a child can be bounded if it can be
shown that it cannot lead to a goal node.

We illustrate branch-and-bound by revisiting the sum of subsets problem,
where the data structure LiveNodes is a queue. Such a branch-and-bound, called
FIFO branch-and-bound, involves performing a breadth-first search of the state-
space tree. Initially the queue of live nodes is empty. The algorithm begins by
generating the root node of the state-space tree and enqueuing it in the queue
LiveNodes. At each stage of the algorithm, a node is dequeued from LiveNodes to
become the new E-node. All the children of the E-node are then generated. The
children that are not bounded are enqueued (as they are generated from left to
right). If only one goal state is desired, then the algorithm terminates after the
first goal state is found. Otherwise, the algorithm terminates when LiveNodes is
empty. Because of the nature of FIFO branch-and-bound, the first goal state
found for the sum of subsets problems automatically has the smallest cardinality;
that is, it solves the coin-changing problem.

Figure 10.14 illustrates FIFO branch-and-bound for the sum of subsets prob-
lem for the instance A = (1, 11, 6, 2, 6, 8, 5) and Sum = 10. The action of the
queue LiveNodes and the portion of the state-space tree generated in reaching the
first goal state are given. For this instance of the sum of subsets problem, FIFO
branch-and-bound generates fewer nodes of the state-space tree before reaching
a goal state than are generated by backtracking.

Figure 10.15 illustrates LIFO branch-and-bound, where LiveNodes is a stack,
for the same instance of the sum of subsets problem given in Figure 10.14. LIFO
branch-and-bound is similar to backtracking, except that a move is made to the
rightmost child of a node first instead of the leftmost. However, unlike back-
tracking, all the children of a node are generated before moving on.

LIFO branch-and-bound generates fewer nodes than does FIFO branch-and-
bound for the input considered in Figure 10.14, but for other inputs, the opposite
can be true. In general, since FIFO branch-and-bound is based on a breadth-first
search of the state-space tree, it is more efficient than LIFO branch-and-bound
when goal nodes are not very deep in the state-space tree.
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FIGURE 10.14

Action of queue
LiveNodes and a
portion of

the variable-tuple
state-space tree
generated by FIFO
branch-and-bound
for the sum of
subsets problem
with A = {1, 11, 6,
2, 6,8, 5}and
Sum = 10. The sum
of the elements
chosen is shown
inside each node.
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10.3.1 General Branch-and-Bound Paradigm

When we use backtracking, we do not explicitly implement the state-space tree.
However, in branch-and-bound algorithms, we must explicitly implement the
state-space tree and maintain the data structure storing the live nodes. In the
general branch-and-bound paradigm BranchAndBound, the state-space tree T is
implemented using the parent representation.
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stack LiveNodes

generate () push ()

pop E-node := ()
generate (0) push (0)
generate (1) bounded
generate (2) push (2)
generate (3) push (3)
generate (4) push (4)
generate (5) push (5)
generate (6) push (6)

pop E-node := (6)
pop E-node := (5)
generate (5,6) bounded

pop E-node := 4
generate (4,5) bounded
generate (4,6) bounded

pop E-node := (3)
generate (3,4) push (3,4)
generate (3,5) goal node

5

Ox

o

®
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goal B B
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The nodes of T that are generated by paradigm BranchAndBound are
represented as follows:

TreeNode = record
Info: InfoType
Parent: —TreeNode
end TreeNode

Only the value x, need be stored in the information field Info of the node N
corresponding to problem state (x,, ... , x,). Given a pointer PtrNode to N, the en-
tire tuple (x,, ..., x,) is recovered by following the path in T from N to the root.
For convenience, we denote D,(x,, ... , x,_,) by D, (PtrNode), where PtrNode is a
pointer to the problem state (x,, ..., x, _ ).

The next E-node is chosen from the elements of LiveNodes by calling the pro-
cedure Select(LiveNodes, E-node, k), where E-node is a pointer to the E-node and &
is the size of the E-node. The definition of procedure Select is dependent on the
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type of branch-and-bound being implemented. For example, Select may choose
the next E-node from a queue LiveNodes (FIFO branch-and-bound), a stack
LiveNodes (LIFO branch-and-bound), a priority queue LiveNodes (least cost
branch-and-bound), and so forth.

Paradigm BranchAndBound adds a node to LiveNodes, by calling the procedure
Add(LiveNodes, PtrNode). BranchAndBound also invokes the Boolean functions
Answer(PtrNode) and Bound(PtrNode). Answer(PtrNode) assumes the value .true. if
the node pointed to by PtrNode is a goal state. Bound(PtrNode) returns the value
.true. if the node pointed to by PtrNode is bounded. Similar to backtracking,
the definition of the bounding function depends on the particular problem
being solved.

s S . procedure BranchAndBound
Input:  function D,(x,, ... , X, _,) determining state-space tree T associated with the
given problem)
Bounding function Bounded
Output: All goal states to the given problem
LiveNodes is initialized to be empty
AllocateTreeNode(Root)
Root—Parent « null

Add(LiveNodes, Root) //add root to list of live nodes
while LiveNodes is not empty do
Select(LiveNodes, E-node, k) //select next E-node from live nodes

for each X[k] € D,(E-node) do  //for each child of the E-node do
AllocateTreeNode(Child)

Child—info « X[k]

Child—Parent « E-node

if Answer(Child) then //if child is a goal node then
Path(Child) //output path from child to root

endif

if .not. Bounded(Child) then
Add(LiveNodes, Child)  //add child to list of live nodes
endif
endfor
endwhile
end BranchAndBound

tsssrarensssuNBIBEIIAN dosonnnn P IR AN SIS EIINISISEIIINISEIITEIIINELTINISIED *re

As with the general paradigm Backtrack there is a corresponding version of the
general paradigm BranchAndBound for problems involving minimizing or maxi-
mizing objective functions. For example, the paradigm BranchAndBoundMin main-
tains in CurrentBest the solution state with the current minimum value of the
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objective function f, and the value f{CurrentBest) is used to dynamically bound
nodes. Again, this dynamic bounding is done using a suitable function, Lower-
Bound, whose value at a given node X is a lower-bound estimate of the value of the
objective function at all goal states in the subtree rooted at X. A node X can be (dy-
namically) bounded if f(CurrentBest) = LowerBound(X). As with the 0/1 knapsack
problem discussed earlier, the function LowerBound(X) is often expressed in the
form f(X) + h(X), where h(X) is a lower-bound estimate of the smallest incremen-
tal increase in fincurred in going from X to a descendant goal state. Sometimes
h(X) is a heuristic estimate that might not be provably a lower bound, but which
nevertheless has been shown to work well in practice. LiveNodes is often main-
tained as a priority queue, where LowerBound(X) is taken as the priority of a node
X. The next E-node chosen by Select is the node in LiveNodes with the least value of
LowerBound, and the strategy is called least cost branch-and-bound. A more detailed
discussion of least cost branch-and-bound will be given in the Chapter 23, where
it is shown to be a special case of a more general search strategy.

“% 10.4 Closing Remarks

Both LIFO and FIFO branch-and-bound are blind searches of the state-space tree
Tin the sense that they search the nodes of T'in the same order regardless of the
input to the algorithm. Thus, they tend to be inefficient for searching the large
state-space trees that often arise in practice. Using heuristics can help narrow the
scope of otherwise blind searches. The least cost branch-and-bound strategy dis-
cussed above uses a heuristic cost function associated with the nodes of the
state-space tree T, where the set of live nodes is maintained as a priority queue
with respect to this cost function. In this way, the next node to become the
E-node is the one that is the most promising to lead quickly to a goal.

Least cost branch-and-bound is closely related to the general heuristic search
strategy called A*-search. A*-search can be applied to state-space digraphs (di-
graphs are discussed in Chapter 11), rather than just state-space trees. A*-search
is one of the most commonly used search strategies in artificial intelligence.
Both A*-search and least cost branch-and-bound are discussed in Chapter 23.

The backtracking and branch-and-bound strategies are well suited to paral-
lelization because different portions of the state-space tree can be assigned to dif-
ferent processors for searching. In Chapter 18, we discuss a general parallel
backtracking paradigm in the context of message-passing distributed computing;
and in Appendix F, we give code for an MPI implementation for the optimization
version of the sum of subsets problem.
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Section 10.1 State-Space Trees

10.1 Consider the backtracking solution to the following instance of the 0/1
knapsack problem. The capacity of knapsack = ¢ = 15.

i 0 1 2 3 4 5 6
v, 25 45 12 7 6 10 5
w., 5 11 3 2 2 7 4

1
a. Give P, and Dy(x,, Xy, ..., X, _ ).
b. Draw the variable-tuple state-space tree (first three levels).
10.2 Repeat Exercise 10.1 for the fixed-tuple state-space tree.

10.3 Show that the number of nodes of both the fixed-tuple and variable-tuple
state-space trees for the sum of subsets problem are exponential in 7.

Section 10.2 Backtracking

104 Modify the pseudocode for the procedure SumOfSubsets to use the bound-
ing function given in 10.2.2
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a. Give pseudocode for a nonrecursive backtracking procedure for solving
the sum of subsets problem, based on the state-space tree given in
Figure 10.4.

b. Repeat part (a) for a recursive backtracking procedure.

a. Reformulate procedure Backtrack so it halts once the first goal is
reached.

b. Repeat part (a) for the procedure BacktrackRec.

Give pseudocode for versions of the procedures Backtrack and BacktrackRec
that only check for a goal state after determining that a problem state is
bounded. These modified algorithms only apply to problems in which all
the goal states are bounded.

Give pseudocode for a nonrecursive version of the paradigm BacktrackMin
for minimizing an objective function.

Show the portion of the state-space tree generated during backtracking
for the instance of the 0/1 knapsack problem given in Exercise 10.1 using
the bounding functions (10.2.5) and (10.2.8).

a. Give pseudocode for a backtracking algorithm that solves the 0/1
knapsack problem using the bounding functions (10.2.5) and (10.2.8).

b. Write a program implementing your algorithm in part (a), and run the
program for various inputs.

a. Write a program using backtracking that proves there are no tie boards
for the 3 X 3 X 3 tic-tac-toe game, even if we relax the condition that
the number of Xs and the number of Os differ by one.

b. Write a program using backtracking that outputs all tie boards for the
3 X 3 X 3 board minus the center position (when playing the game of
tic-tac-toe, no X or O is placed in the center position), where we relax
the condition that the number of Xs is equal to the number of Os. Is
there a tie board where the number of Xs equals the number of Os?

Two queens in the ordinary chessboard are nonattacking if they are not in
the same row, column, or diagonal. A classical problem known as the 8-
queens problem is to place eight queens on the board so that each pair of
queens is nonattacking. One solution to the 8-queens problem is shown
in Figure 10.16.
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FIGURE 10.16

A solution to the
8-queens problem

FIGURE 10.17

The eight possible
moves for a knight
in the given
position

10.13

Q

The n-queens problem is to place n queens on the n X n chessboard so that
each pair of queens is nonattacking.

a. Design a backtracking algorithm that generates all solutions to the »n-
queens problem.

b. Write a program implementing your algorithm in part (a), and run
your program with various values of ».

Another classical problem associated with chess is the knight’s tour prob-
lem. A knight can make up to eight moves, as shown in Figure 10.17.
Starting at an arbitrary position in the # X n board, a knight’s tour is a se-
quence of n?> — 1 moves such that every square of the board is visited once.

a. Design a backtracking algorithm that either produces a knight'’s tour or
determines that no such tour exits.

b. Write a program implementing your algorithm in part (a), and run
your program with various values of n.

W = possible move

10.14 Let Maze[0:n — 1,0:n— 1] be a 0/1 two-dimengional array.

a. Design a backtracking algorithm that either finds a path from Maze[0, 0]
to Maze[n — 1, n — 1] or determines that no such path exists. Adjacent
vertices in the path correspond to adjacent cells in the matrix. You are
not allowed to move to a cell that contains a 1.
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FIGURE 10.18

Initial board
configuration for

Hi-Q.
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b. Write a program implementing your algorithm in part (a), and run
your program with various values of n.

Write a program that uses backtracking to solve the game of Hi-Q. Hi-Q is
a popular game that can be found in many toy stores. Thirty-two pieces are
arranged on a board as shown in Figure 10.18, with the center position left
empty. The goal is to remove all the pieces but one by jumping and have
the last piece end up in the middle position. A piece is allowed to jump a
neighbor in either a horizontal or vertical direction (diagonal jumps are not
permitted). When a piece is jumped, it is removed from the board. Output
the 32 board configurations showing the solution: the initial board config-
uration and the board configuration after each jump is performed.

Section 10.3 Branch-and-Bound

Consider the optimization version of the sum of subsets problem for in-
stance {a,, ... ,a,} = (1,11,6,2,6,8,5)and Sum = 10. Show that for this
instance of the sum of subsets problem, FIFO branch-and-bound gener-
ates fewer nodes of the state-space tree before reaching a goal state than
backtracking does.

Give pseudocode for a version of the general procedure BranchAndBound
that terminates as soon as a goal is found.

Give pseudocode for the procedure Path(PtrNode).

Draw that portion of the variable-tuple state-space tree generated by
FIFO branch-and-bound for the 0/1 knapsack problem given by the fol-
lowing chart. Label the nodes with appropriate values of UB, LoBd, SB, DB,
and indicate the optimal goal node, as in Figure 10.13. Trace the action of
the queue LiveNodes, as illustrated in Figure 10.14.
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10.20

10.21

10.22

10.23
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Repeat Exercise 10.19 for least cost branch-and-bound.
Repeat Exercise 10.19 using the fixed-tuple state-space tree.
Repeat Exercise 10.20 using the fixed-tuple state-space tree.

Given a set of Boolean variables y,,y,, ... , y,, a CNF expression involving
these variables is a conjunction of the form ¢; \ C, N\ ... \ C,, where
each C, is a disjunction of clauses of the form z; | \/ z;, \/ ... \/ Z (s,
and where each z; i (called a literal) is one of the Boolean variables y,
Vs +++ 2 Y, OF its negation. The CNF SAT problem is to determine for a given
CNF expression whether or not there is a truth assignment to the Boolean
variables for which the CNF expression evaluates to .true. (that is, is sat-
isfied). For a positive integer k, a k-CNF expression has the property that
each clause contains exactly k literals. It turns out that the 2-CNF SAT
problem has a polynomial solution (see Chapter 26), whereas the 3-CNF
problem is already NP-complete. The best-known solutions to the CNF
SAT problem involve fixed-tuple dynamic state-space trees and back-
tracking, together*with such things as using clever heuristics to bound the
search. In this exercise, we assume that each clause in a CNF expression is
input as a string of integers, with positive integer i meaning that x; occurs
in the clause, and negative integer  meaning that the negative of x; occurs
in the clause. For example, 2, -5, 10 would represent the clause

Y2V ¥s V Yo

a. Write a program that accepts a CNF expression as input and uses
backtracking on a fixed-tuple static state-space tree to determine
whether or not the CNF expression is satisfiable. The left (right) child
of a node at level k¥ — 1 corresponds to assigning .true. (.false.) toy,,
k=1,...,n.

b. Repeat part (a), but now use a dynamic state-space tree, where the k"
decision (level) in the tree is to give a truth assignment to the Boolean
variable that occurs (either positively or negatively) k" most often in
the CNF expression (ties are decided using subscript ordering).

c. Repeat part (b), but now the decision at a given node in the tree is to
assign a truth value to the variable that occurs most often in the clauses
that have not already been satisfied by the previous assignments.

d. Run the programs written in parts (a), (b), and (c) with various input
CNF expressions, and compare the results.




NP-COMPLETE PROBLEMS

It is a curious phenomenon that the worst-case complexities of known sequen-
tial algorithms for most of the commonly encountered problems in computer
science fall into the following two categories:

1. Bounded above by low degree polynomials.
2. Bounded below by super-polynomial functions. (A function f is super-
polynomial if f € Q(n*) for all integers k = 1.)

Problems in graph theory illustrate this situation well. For example, we have
seen O(n*) and O(n?) algorithms, respectively, for the problems of finding
minimume-cost spanning trees and finding the shortest paths between every pair
of vertices in weighted graphs, whereas the best-known algorithms for the
Hamiltonian cycle problem and the graph-coloring problem have super-polyno-
mial complexity. On the other hand, no one has been able to show that super-
polynomial lower bounds for these problems exist. Problems such as the Hamil-
tonian cycle and graph-coloring problems (or more precisely, their decision ver-
sions, as defined in the next section) belong to a large class of fundamental
decision problems called NP-complete problems. It turns out that if any NP-
complete problem is solvable by a polynomial (time) algorithm, then they all are
so solvable. It has long been conjectured that no polynomial algorithm exists for
any of the NP-complete problems. This conjecture is arguably the most impor-
tant open question in theoretical computer science.

817
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In this chapter, we give a brief introduction to the class of NP-complete
problems. Our treatment is somewhat intuitive and informal. In particular, we
do not establish the formal machinery necessary to prove the famous result of
Cook that NP-complete problems exist; rather, we refer the interested student to
the references for a completely rigorous treatment.

We also expand our earlier discussion of the class NC and introduce the no-
tion of P-completeness. P-completeness can be viewed as the analog for parallel
computation of NP-completeness for sequential computation.

® 26.1 The Classes P and NP
We consider a problem to be tractable if it can be solved by a worst-case polyno-
mial (time) algorithm. Problems having super-polynomial worst-case complex-
ity are considered intractable. Throughout this chapter, when we use the term
computing time (or complexity) we always mean the worst-case computing time
(complexity).

Super-polynomial algorithms are computationally infeasible to implement
in the worst case. Even though we have called a problem tractable if it can be
solved by a polynomial algorithm, such an algorithm may still be computa-
tionally infeasible if it has complexity Q(n¥) where k is large. For example, an
algorithm having complexity »n®* will not finish in our lifetime even for n = 2.
Nevertheless, it is standard in the theory of algorithms to regard problems
solved by polynomial algorithms as tractable, and it becomes important to
identify those problems. Besides, if a polynomial algorithm has been shown to
exist for a problem (even one of high degree), then there may be hope that a
more practical polynomial algorithm of relatively small degree can be found for
the problem.

In the theory of complexity, it is convenient and useful to restrict attention
to decision problems—that is, problems whose solutions simply output “yes” or
“no” (0 or 1). Let P denote the class of decision problems that are solvable by al-
gorithms having polynomial (worst-case) complexity.

26.1.1 Input Size

When considering membership in P, we must be very careful about how input
size is measured (recall our discussion of primality testing in Chapter 24). For ex-
ample, when considering a decision problem having input parameters that are
numeric quantities, the size of these numeric quantities is taken into account
when measuring input size. We usually use the number of digits in the binary
representation of the sum of the appropriate sizes of these numeric quantities.
For example, consider an input (Wo Wyy ooy W, 1), (Vg ¥y oo, V,_y) @nd C to the
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n—1

0/1 knapsack problem. If we let m = 3/2; (w; + v;) and d denote the number of
digits of m, then the size of this inputisn + d € @(n + log m).

26.1.2 Optimization Problems and Their Decision Versions

Decision problems occur naturally in many contexts. For example, an important
decision problem in graph theory is to determine whether a clique of size k oc-
curs in a given input graph. In mathematical logic, a fundamental decision prob-
lem is whether the Boolean variables in a given Boolean formula can be assigned
truth values that make the entire formula true. In addition to such decision
problems that are of interest in their own right, optimization problems usually
give rise to associated decision problems. Moreover, restricting attention to the
decision version of an optimization problem sometimes can be done without loss
of generality (up to polynomial factors). In other words, the decision version of
an optimization problem may have the property that a polynomial solution to
the optimization problem exists if and only if a polynomial solution to the asso-
ciated decision problem exists (the “only if” part is always true).

To illustrate, consider the optimization problem of determining the chro-
matic number y = x(G) of a graph G on n vertices—that is, finding the minimum
number of colors necessary to properly color the vertices of a graph G such that
no two adjacent vertices get the same color. Given an integer k, the associated
decision problem asks whether a proper k-coloring of G exists. Clearly, a solution
to the optimization problem immediately implies a solution to the decision prob-
lem: A proper k-coloring exists if and only if K = y(G). On the other hand, a poly-
normial solution to the decision problem also implies a polynomial solution to the
original problem: Simply call the decision problem for k = 1, 2, ... until a “yes” is
returned (which will happen after at most n calls).

As another example, consider the 0/1 knapsack problem with input weights
Wo, Wy, .o, W, _, values v, v, ..., v, _|, and capacity C. The decision version of this
problem adds an integer input parameter k and asks whether a collection of the
objects can be placed in the knapsack whose total value is at least k. Here again,
it is obvious that the ordinary version of the 0/1 knapsack problem yields a solu-
tion of the decision version with no extra work. However, in the case of nonin-
teger (rational) weights and values, there is no obvious polynomial number of
decision problems whose answers yield the optimal solution to the 0/1 knapsack
problem. The situation improves if we restrict attention to the case of integer
weights and values. Then each possible solution has an integer value, with the
largest possible value equal tom = v, + v, + ... + v, _,. Unlike the graph-coloring
problem, we cannot simply call the decision problem for k = m, m — 1, ... until a
“yes” is returned, since this will take an exponential number (with respect to
input size) of calls in general. However, using a binary search strategy, by mak-
ing log,m calls to the decision problem for suitable values of k, we can determine
the optimal solution in polynomial time (see Exercise 26.1).



0 MW PARTV: Special Topics

It is not known in general whether a polynomial solution to the 0/1 knapsack decision problem
implies a polynomial solution to the 0/1 knapsack optimization problem.
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26.1.3 The Class NP

The class NP (nondeterministic polynomial) consists of decision problems for
which yes instances can be solved in polynomial time by a nondeterministic al-
gorithm. Formal treatments of the class NP and nondeterministic algorithms are
usually given in terms of Turing machines and formal languages. We proceed less
formally and base our discussion on the intuitive notion of “guessing and verify-
ing.” In this context, we give the following high-level pseudocode for a generic
nondeterministic polynomial algorithm NPAlgorithm. Step 1 in NPAlgorithm is the
nondeterministic step, and step 2 is the deterministic step.

function NPAlgorithm(A, /)
Input: A (a decision problem), / (an instance of problem A)
Output:  "yes” or “"don't know”
1. In polynomial time, guess a candidate certificate C for <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>