
1

INF 4130
September 20, 2016

• Today:
– First hour:
 Ch. 23.5: Game trees and strategies for two-player games.

– Second hour:
 Rune Djurhuus: About chess-playing programs.
 (His slides will be posted on the course web page.)

• Next week:
– Petter Kristiansen: Implementation of priority queues

– Torbjørn Rognes: On algorithms that are used in bio-informatics
(e.g. searching in gene-sequences)

Ch. 23.5: Games, game trees and strategies

• We looked at «one player games» (= search) earlier, and their
decision trees in Ch 23 (from start to 23.4).
– This is search for a goal node that everybody agrees is «good».

• Then you can e.g. use A*-search. One can e.g. use it for:
– Solve the 15-puzzle from a given position.
– Find the shortest path between nodes in a graph (better than plain Dijksta)

 BUT:
• When two players are playing against each other, things get very

different. What is good for one player is bad for the other.
– The trees of possible plays are often enormous. For chess it is estimated to

have 10100 nodes, and can therefore never (?) be searched exhaustively!

• We only look at zero-sum games:
– The quality of a situation is represented by numbers.
– The sum of A’s evaluation and B’s evaluation of a situation is always zero.
– Then: What one player gains in a move is lost by the other.

Example: Tic-tac-toe and game trees

• Player A (always) starts
– And we will here do all our considerations from A’s point of view.
– We use numbers for node quality.
– High numbers are good for A and small numbers are good for B.

The start node of the
game tree for «tic-tac-
toe».

• The board has 3 x 3 squares.
• The game: Alternately do the moves:

– Player A chooses an unused
square and writes ‘x’ in it,

– Player B does the same, but
writes ‘o’.

• When a player has three-in-a-
row, he/she has won.

Number of nodes in a tic-tac-toe game tree

9 nodes

9*8 = 72 nodes

9*8*7 = 504 nodes

9*8*7*6 = 3024 nodes

9*8*7*6*5*4*3*2*1 = 9! (“factorial”) = 362 880 nodes

……
9*8*7*6*5 = 15120 nodes

By searching depth-first in this tree, you never need to store more than 9 nodes,
but it will take some time to go through all 362 880 nodes (and for “interesting”
games there are usually a lot more!).

But if we represent each game position only once …
(also usable for «one player games»)

1 node

9 nodes

9*8 = 72 nodes

9*8*7 = 504 nodes

9*8*7*6 = 3024 nodes

9*8*7*6*5*4*3*2*1 = 362 880 nodes
……

72 different nodes

9 nodes

252 different nodes

756 different nodes

9*8*7*6*5 = 15120 nodes 1260 different nodes

126 different nodes =
……

This usually requires a lot of memory!

BUT: In some games you can gain a lot by recognizing equal nodes, and not
repeat the analysis for these

(see next slide).

1680 different nodes 9*8*7*6*5* 4 = 60480 nodes

1 node

() 9
4

But if we represent each game position only once …
(also usable for «one player games»)

1 node

9 nodes

9*8 = 72 nodes

9*8*7 = 504 nodes

9*8*7*6 = 3024 nodes

9*8*7*6*5*4*3*2*1 = 362 880 nodes
……

72 different nodes

9 nodes

252 different nodes

756 different nodes

9*8*7*6*5 = 15120 nodes 1260 different nodes

126 different nodes
……

This usually requires a lot of memory!

BUT: In some games you can gain a lot by reconizing equal nodes, and not repeat
the analysis for these (this is somewhat like dynamic programming). In the above
simple game we never need more than 1680 nodes.

1680 different nodes 9*8*7*6*5* 4 = 60480 nodes

Sketch of a
collapsed tree

(a DAG)

1 node

Representing symmetric solutions by one node
(also usable for «one player games»)

• One can also gain a lot by looking at symmetries:
– Represent positions that are symmetries of each other only once .
– Tic-tac-toe: Symmetric solutions will always be at the same depth,

but this is not generally the case!

• Using this will often reduce the memory needs even further!
– But in e.g. chess there are few symmetries to utilize.

Zero-sum games
• Seen from A, high values are good, and low ones are bad
• For B the opposite is true
• We will (for the time being) look at the values as seen form A!

A “strategy” for A means:
“A rule telling A what to do in all possible “A-situations”.

Aim: We will look for a strategy (if one exists) so that A is sure to win

• “Fully analyzable games” means: The full tree can be analyzed
– Then there are three possibilities for each A-situation S:
1. A has a strategy from S, so that it will win whatever B does, and chooses

its move from S according to that (score: +1 for A)
2. Whatever A does from S, B has a winning strategy from the new situation

(score: -1 for A).
3. If A and B both play perfectly, it will end in a tie (score: 0 for A)

• This can occur only for some games.
• The game tic-tac-toe ends in a tie if both players play perfectly.

Another example: The game Nim

The game Nim:

– We start with two (or more)
piles of sticks.

– Number of sticks: m and n.
– One player can take any

number of sticks from one pile,
but have to take at least 1.

– The player taking the last stick
 has lost.

• Nim will never end in a tie.
• With m = 3 and n = 2 , the full game

tree (utilizing some symmetries) is
shown to the right.

• The value seen from A is indicated
for the final situations (leaf nodes).

• Next problem: What is the value
of the rest of the nodes?

Here m=3 and n=2

NB: We could reduce the number of
separate nodes further by recognizing
equivalent nodes (see red circles above)

• A wants to find an optimal
move.

• We must assume that also B
will do optimal moves seen
from its point of view.

• Since the values are as seen
from A, B will move to the
subnode with smallest value,

Min-Max Strategy:
• To compute the value of a

node, we have to know the
values of all the subnodes.

• This can be done by a depth
first search, computing node
values during the withdrawal
(postfix).

How can we find a strategy so that A wins?
Or prove that no such strategy exists.

Strategy for A: If possible, move to a node with
value +1. Otherwise make a random move.

Strategy for B: If possible, move to a node with
value -1. Otherwise make a random move.

The Min-Max-Algorithm in action
With simple alpha-beta cutoff (pruning)

S

U V W

• Previous slide: This is done by
a deph first traversal of the
game tree, computing values
on withdrawal (that is postfix)

• The result of this is given in the
figure to the left as + and -.

Possible optimalization:
• From the start-position S,

assume that A has looked at
three of its subtrees (from the
left). A has then found a
winning node U (marked +1).
Then the value of V and W
does not matter.

• This is a simple version of
alpha-beta cutoff (pruning)

• Red arrows: Good move from
winning situations for A

• Blue arrows: Good move from
winning situations for B

• One then usually searches to a certain depth, and then estimate (with some
heuristic function) how good the situation is for A at the nodes at that
depth. We then usually also use other numbers that -1, 0 and +1.

• In the figure above we go to depth 2.
• The heuristic function above is: Number of «winning lines for A» minus

the same for B (this is given below each leaf nodes).

• The best move for A from the start position is therefore (according to this
heuristic) to go to C2.

Usually, the game tree is too large to traverse

However, this heuristic is not good later on in the game. It does not take
into account that winning is better than any heuristic. We therefore, in
addition, give winning nodes the value +∞ (and here 9 is fine).

This will give quite a good strategy. But, as said above: tic -tac-toe will
end in a tie if both players play perfectly.

We have to add that the tie-situation (e.g. the one to the right) gets the
value 0. Thus, if we fully analyze the game, the value of the root node
will be 0.

NOTE: The difficult choice for a game-programmer is between searching
very deep or using a good, but time consuming, heuristic function!

o o x
x x o
o x x

Usually, the game tree is too large to traverse

Alpha-beta cutoff (pruning)
This technique is only usable for two-player games!

u

Should have become -2, but
value -1 is enough for A to
conclude that a move to C3
is not the best (to C2 is
better)

 Intuitively Alpha-beta-cutoff goes as follows (assuming it is A’s move):
– A will consider all the possible moves from the current situation, one after the other
– A has already seen a move in which it can obtain the value u (after C1 og C2, u = 1)
– A looks at the next potantial move, which leads to situation C3

– However, A then observes that from C3, B has a very good move (= bad for A) that
seen from A has the value v = -1. Then the value of C3 cannot be better than -1
(independent of what the other subtrees of C3 gives (as B will minimize at C3).

– As v < u, player A has no interest in looking for even better moves for B from
situation C3. A already knows that it has a better move than to C3, which is to C2.

C4

Examples showing alpha-beta cutoff

• When A considers the next move:
– Cutoffs from A-situations is called

alpha-cutoffs.
– Corresponding cutoffs from B-

situations are called beta-cutoffs.
• The figures to the left shows alpha-

and beta-cutoffs at different stages of a
DF-search of a game tree.

• When implementing alpha-beta-cutoffs
during a DF-search, it is usual to
switch viewpoints between the levels.

– Then we can always maximize the
value.

– But we have to negate all values for
each new level.

• Such an implementation is given at the
next slide.

real function ABNodeValue (
 X, // The node we compute alpha/beta value for. Children: C[1],C[2]… C[k]
 numLev, // Number of levels left
 parentVal, // The alpha-beta-value from the parent node (-LB from the parent)
 // Returned value: The final alpha/beta-value for the node X
{
 real LB; // Current Lower Bound for the alpha/beta value of this node (X)

 if <X is a terminal node> or numLev = 0 then {
 return <An estimate of the quality of the situation (the heuristic)>;
 } else {
 LB := - ABNodeValue(C[1], NumLev-1, ∞);
 for i := 2 to k do {
 if LB >= parentValue then {
 return LB; // Cutoff, no further calculation
 }
 else {
 LB := max(LB, - ABNodeValue(C[i], Numlev-1, - LB));
 }
 }
 }
 return LB;
}

Start the recursive call to calculate value for the (current) rootnode (down to depth 10) by calling
ABNodeValue(rootnode, 10, -∞)

Alpha-beta-search (negating the values for each level)

Misprints in the textbook

• There are some simple misprints in the program at page
741 in the textbook (probably not corrected in any
edition):

– ”AB” is missing in the name of the procedure in the recursive

call.
– A right parenthesis is missing at the end of the line where max

is called.

• These errors are corrected on the previous slide!

	INF 4130�September 20, 2016�
	Ch. 23.5: Games, game trees and strategies
	Example: Tic-tac-toe and game trees
	Number of nodes in a tic-tac-toe game tree
	But if we represent each game position only once …�(also usable for «one player games»)
	But if we represent each game position only once …�(also usable for «one player games»)
	Representing symmetric solutions by one node�(also usable for «one player games»)
	Zero-sum games
	Another example: The game Nim
	How can we find a strategy so that A wins? �Or prove that no such strategy exists.
	The Min-Max-Algorithm in action�With simple alpha-beta cutoff (pruning)
	Usually, the game tree is too large to traverse
	Usually, the game tree is too large to traverse
	Alpha-beta cutoff (pruning)�This technique is only usable for two-player games!
	Examples showing alpha-beta cutoff
	Alpha-beta-search (negating the values for each level)
	Misprints in the textbook

