
INF 4130 / 9135
30/8-2016

• Mandatory assignments («Oblig-1», «-2», and «-3»):

 All three must be approved
 Deadlines around: 25. sept, 25. oct, and 15. nov

• Other courses on similar themes:

 INF-MAT 3100 Linear optimization
 INF-MAT 4110 Mathematical optimization
 MAT-INF 3600 Mathematical logic
 INF 1080* Logical methods for computer science
 INF 5840 Computability theory

.

Algorithms, efficiency, and complexity

 Unsolvable

Intractable

 (NP-complete)

 Simple (P)

Problem classes:
The elements (the points
inside the ellipse to the right)
are «problems», and three
problem classes are
indicated.

These classes are defined
from what type of algorithms
can (or cannot) solve
problems in it.

E.g. the class P consists of
all problems that (in the
worst case) can be solved
by algorithms running in
«polynomial time»,

Note: Each probem will in turn
consist of a number of «instances».
To be interesting, a problem must
have an unlimited number of
instances.

And: Today we will work within P

P

coNP NP

PSPACE

EXP
coNEXP NEXP

EXPSPACE

2-EXP

ELEMENTARY

R

⁞

Such search problems have become more important lately
– The amount of stored digital information grows steadily (about 3

zettabytes [billion terabytes] 2012).
– Search for a given pattern in DNA strings (about 3 giga-letters in

humans).
– Google and similar programs search for given strings (or sets of

strings) on all registered web-pages.

Searching for similar patterns is also relevant for DNA-strings
– The genetic sequences in organisms are changing over time because

of mutations.
– Searches for similar patterns are treated in Ch. 20.5. We will look at

that in connection with dynamic programming (Ch. 9, next week).
.

Search for a given (short) string in a long string

An alphabet is a finite set of «symbols» A = {a1, a2, …, ak } .

A string S = S [0: n -1] of length n is a sequence of symbols from A.

We can consider the string either as an array S[0:n -1] or as a string of symbols
S = < s0 s1 … sn -1 >

The search problem: Given two strings T (= Text) and P (= Pattern), where P is

shorter than T (usually much shorter).
 Decide whether P occurs as a (continuous) substring in T, and if so, find where it

occurs.

0 1 2 … n -1

T [0:n -1]
(Text)

P [0:m -1]
(Pattern)

String search

• Naive algorithm, no preprocessing of neither T nor P
– Assume that the length of T and P are n and m respectively
– The naive algorithm is already a polynomial-time algorithm, with worst case

execution time O(n*m), which is also O(n2).

• Preprocessing of P (the pattern) for each new P
– Prefix-search: The Knuth-Morris-Pratt algorithm
– Suffix-search: The Boyer-Moore algorithm
– Hash-based: The Karp-Rabin algorithm

• When searching in the same text a lot of times (with different patterns):

– Preprocess the text T (which is done to an extreme degree in search engines)
– We shall look at Suffix trees that relie on a structure called a Trie.

Variants of string search

0 1 2 … n -1

T [0:n -1]

P [0:m -1]

The naive algorithm

Searching forward

”Window”

0 1 2 … n -1

T [0:n -1]

P [0:m -1]

The naive algorithm

0 1 2 … n -1

T [0:n -1]

P [0:m -1]

The naive algorithm

0 1 2 … n-m n -1

T [0:n -1]

P [0:m -1]

The naive algorithm

function NaiveStringMatcher (P [0:m -1], T [0:n -1])
 for s ← 0 to n - m do
 if T [s :s + m - 1] = P then
 return(s)
 endif
 endfor
 return(-1)
end NaiveStringMatcher

0 1 2 … n-m n -1

T [0:n -1]

P [0:m -1]

The naive algorithm

function NaiveStringMatcher (P [0:m -1], T [0:n -1])
 for s ← 0 to n - m do
 if T [s :s + m - 1] = P then
 return(s)
 endif
 endfor
 return(-1)
end NaiveStringMatcher

0 1 2 … n-m n -1

T [0:n -1]

P [0:m -1]

The naive algorithm

} The for-loop is executed n – m + 1 times.

Each string test has up to m symbol comparisons

O(nm) execution time (worst case)

• There is room for improvement in the naive algorithm
– The naive algorithm moves the window (pattern) only one character at

a time.
– But maybe we can move it farther, based on what we know from

earlier comparisons.
– We look at the following example:

0 0 1 0 0 1 0 0 2 0 0 0 1 0 0 2 0 1 2 …

0 0 1 0 0 2 0 1

The Knuth-Morris-Pratt algorithm

0 0 1 0 0 1 0 0 2 0 0 0 1 0 0 2 0 1 2 …

0 0 1 0 0 2 0 1

Search forward

The Knuth-Morris-Pratt algorithm

0 0 1 0 0 1 0 0 2 0 0 0 1 0 0 2 0 1 2 …

0 0 1 0 0 2 0 1

The Knuth-Morris-Pratt algorithm

0 0 1 0 0 1 0 0 2 0 0 0 1 0 0 2 0 1 2 …

0 0 1 0 0 2 0 1

The Knuth-Morris-Pratt algorithm

We move the pattern one step: Mismatch

0 0 1 0 0 1 0 0 2 0 0 0 1 0 0 2 0 1 2 …

0 0 1 0 0 2 0 1

The Knuth-Morris-Pratt algorithm

We move the pattern two steps: Mismatch

0 0 1 0 0 1 0 0 2 0 0 0 1 0 0 2 0 1 2 …

0 0 1 0 0 2 0 1

3

Thus, we can skip a number of tests and move the pattern more than one character forward (three in
the above situation) before we start comparing characters again.

The key is that we know what the characters of T and P are up to the point where P and T got
different in the previous comparison. (T and P are equal up to this point.)

Thus for each possible index j in P, we assume that the first difference between P and T occurs at j,
and from that compute how far we can move P before the next string-comparison.

It may well be that we never get a match like the one above, and we can then move P all the way to
the point in T where we found an inequality. This is the best case for the efficiency of the algorithm.

The Knuth-Morris-Pratt algorithm

We move the pattern three steps: Now, there is at least a match in
the part of T where we had a match in the previous test

0 1 i - dj i

0 0 1 0 0 1 0 0 2 0 0 0 1 0 0 2 0 1 2 …

0 1 j -1 j

0 0 1 0 0 2 0 1

0 0 1 0 0 2 0 1

0 j -2 j

dj

dj is the longest suffix of P [1 : j -1] that is also prefix
of P [0 : j - 2]

We know that if we move P less than j - dj steps, there can be no (full) match.

And we know that, after this move, P [0 : dj -1] will match the corresponding part of T.

Thus we can start the comparison at dj in P and compare P [dj : m-1] with the symbols from
index i in T.

j - dj

The Knuth-Morris-Pratt algorithm

• We will produce a table Next [0: m-1] that shows how far we can move P
when we get a (first) mismatch at index j in P, j = 0,1,2, … , m-1

• But the array Next will not give this number directly. Instead, Next [j] will
contain the new (and smaller value) that j should have when we resume
the search after a mismatch at j in P (see below)

– That is: Next [j] = j – <number of steps that P should be moved>,
– or: Next [j] is the value that is named dj on the previous slide

• After P is moved, we know that the first dj symbols of P are equal to the

corresponding symbols in T (that’s how we chose dj).

• So, the search can continue from index i in T and Next [j] in P.

• And, importantly, The array Next can be computed from P alone

Idea behind the Knuth-Morris-Pratt algorithm

The Knuth-Morris-Pratt-algorithm

function KMPStringMatcher (P [0:m -1], T [0:n -1])
 i ← 0 // indeks i T
 j ← 0 // indeks i P
 CreateNext(P [0:m -1], Next [n -1])
 while i < n do
 if P [j] = T [i] then
 if j = m –1 then // check full match
 return(i – m + 1)
 endif
 i ← i + 1
 j ← j + 1
 else
 j ← Next [j]
 if j = 0 then
 if T [i] ≠ P [0] then
 i ← i + 1
 endif
 endif
 endif
 endwhile
 return(-1)
end KMPStringMatcher

 O(n)

Knuth-Morris-Pratt-algoritmen

 Main form:
 function CreateNext (P [0:m -1], Next [0:m -1])
 …
 end CreateNext

• This can be written straight-ahead with simple searches, and will then use

time O(m2).

• However, one can use some of the tricks we used above, and can then

find the array Next in time O(m).

• The textbook discusses the complex one, but we do not include that one in
the curriculum for INF4130.

• We will discuss the simple one as an exercise next week.

Calculating the array Next from P

0 0 1 0 0 1 0 0 2 0 0 0 1 0 0 2 0 1 2 …

0 0 1 0 0 2 0 1

The array Next for the string P above:

 j = 0 1 2 3 4 5 6 7
Next[j] = 0 0 1 0 1 2 0 1

The Knuth-Morris-Pratt algorithm
Example

0 0 1 0 0 1 0 0 2 0 0 0 1 0 0 2 0 1 2 …

0 0 1 0 0 2 0 1

0 0 1 0 0 2 0 1

Example

The Knuth-Morris-Pratt algorithm

The array Next for the string P above:

 j = 0 1 2 3 4 5 6 7
Next[j] = 0 0 1 0 1 2 0 1

0 0 1 0 0 1 0 0 2 0 0 0 1 0 0 2 0 1 2 …

0 0 1 0 0 2 0 1

0 0 1 0 0 2 0 1

0 0 1 0 0 2 0 1

Example

The Knuth-Morris-Pratt algorithm

The array Next for the string P above:

 j = 0 1 2 3 4 5 6 7
Next[j] = 0 0 1 0 1 2 0 1

0 0 1 0 0 1 0 0 2 0 0 0 1 0 0 2 0 1 2 …

0 0 1 0 0 2 0 1

0 0 1 0 0 2 0 1

0 0 1 0 0 2 0 1

0 0 1 0 0 2 0 1

Example

The Knuth-Morris-Pratt algorithm

The array Next for the string P above:

 j = 0 1 2 3 4 5 6 7
Next[j] = 0 0 1 0 1 2 0 1

0 0 1 0 0 1 0 0 2 0 0 0 1 0 0 2 0 1 2 …

0 0 1 0 0 2 0 1

0 0 1 0 0 2 0 1

0 0 1 0 0 2 0 1

0 0 1 0 0 2 0 1

This is a linear algorithm: worst case runtime O(n).

Example

The Knuth-Morris-Pratt algorithm

The array Next for the string P above:

 j = 0 1 2 3 4 5 6 7
Next[j] = 0 0 1 0 1 2 0 1

• The naive algorithm, and Knuth-Morris-Pratt is prefix-based (from left to right
through P)

• The Boyer-Moore algorithm (and variants of it) is suffix-based (from right to left
in P)

• Horspool proposed a simplification of Boyer-Moore, and we will look at the
resulting algorithm here.

• We look at the following example:

B M m a t c h e r _ s h i f t _ c h a r a c t e r _ e x …

c h a r a c t e r

The Boyer-Moore algorithm (Horspool)

B M m a t c h e r _ s h i f t _ c h a r a c t e r _ e x …

c h a r a c t e r

Comparing from the
end of P

The Boyer-Moore algorithm (Horspool)

B M m a t c h e r _ s h i f t _ c h a r a c t e r _ e x …

c h a r a c t e r

c h a r a c t e r

The Boyer-Moore algorithm (Horspool)

B M m a t c h e r _ s h i f t _ c h a r a c t e r _ e x …

c h a r a c t e r

c h a r a c t e r

c h a r a c t e r

The Boyer-Moore algorithm (Horspool)

B M m a t c h e r _ s h i f t _ c h a r a c t e r _ e x …

c h a r a c t e r

c h a r a c t e r

c h a r a c t e r

c h a r a c t e r

The Boyer-Moore algorithm (Horspool)

B M m a t c h e r _ s h i f t _ c h a r a c t e r _ e x …

c h a r a c t e r

c h a r a c t e r

c h a r a c t e r

c h a r a c t e r

Worst case execution time O(mn), same as for the naive algorithm!

However: Sub-linear (≤ n), as the average execution time is O(n (log|A| m) / m).

The Boyer-Moore algorithm (Horspool)

 The Boyer-Moore-algorithm (Horspool)

function HorspoolStringMatcher (P [0:m -1], T [0:n -1])
 i ← 0
 CreateShift(P [0:m -1], Shift [0:|A| - 1])
 while i < n – m do
 j ← m – 1
 while j ≥ 0 and T [i + j] = P [j] do
 j ← j -1
 endwhile
 if j = 0 then
 return(i)
 endif
 i ← i + Shift[T[i + m -1]]
 endwhile
 return(-1)
end HorspoolStringMatcher

Main form:
 function CreateShift (P [0:m -1], Shift [0:|A| - 1])
 …
 end CreateShift

• We must preprocess P to find the array Shift.

• The length of Shift[] is the number of symbols in the alphabet.

• We search from the end of P (minus the last symbol), and calculate the

distance from the end for every first occurence of a symbol.

• For the symbols not occuring in P, we know:
 Shift [t] = <the length of P> (m)
 This will give a ”full shift”.

Calculating the array Shift from P

• We assume that the alphabet for our strings is A = {0, 1, 2, …, k -1}.
• Each symbol in A can be seen as a digit in a number system with base k
• Thus each string in A* can be seen as number in this system (and we assume that

the most significant digit comes first, as usual)

Example:
 k = 10, and A = {0,1, 2, …, 9} we get the traditional decimal number system
 The string ”6832355” can then be seen as the number 6 832 355.

• Given a string P [0: m -1]. We can then the corresponding number P´ using m

multiplications and m additions (Horners rule, computed from the innermost right
expression and outwards):

 P´ = P [m - 1] + k (P [m - 2] + … + k (P [1] + k (P [0])...))

Example (written as it computed from left to right):
 1234 = ((1*10 + 2)*10 + 3)*10 + 4

The Karp-Rabin algorithm (hash based)

• Given a string T [0: n -1], and an integer s (start-index), and a pattern of length m.
We then refer to the substring T [s: s + m -1] as Ts, and its value is referred to as T´s

• The algorithm:
– We first compute the value P´ for the pattern P
– Based on Horners rule we compute T´0, T´1 , T´2 , … and successively compares these

numbers to P´

• This is very much like the naive algorithm.

• However: Given T´s -1 and k m – 1, we can compute T´s in constant time:
 !

The Karp-Rabin algorithm

0 1 2 … s -1 s s + m -1 n -1

T [0:n -1]

T´s

This constant time computation can be done as follows (where T´s -1 is defined as on
the previous slide, and k m – 1 is pre-computed):

 T´s = k * (T´s -1 - k m – 1 *T [s]) + T [s+m] s = 1, …, n – m

 Example:
 k = 10, A = {0,1, 2, …, 9} (the usual decimal number system) and m = 7.
 T´s -1 = 7937245
 T´s = 9372458

 T´s = 10 * (7937245 – (1000000 * 7)) + 8 = 9372458

The Karp-Rabin algorithm

• We can compute T´s in constant time when we know T´s -1 and k m – 1.

• We can therefore compute P´ and the n – m + 1 numbers:
 T´s, s = 0, 1, …, n – m
 in time O(n).

• Thus, we can ”theoretically” implement the search algorithm in time O(n).

• However the numbers T´s and P´ will be so large that storing and comparing them
will take too long time (in fact O(m) time).

• The Karp-Rabin trick is to instead use modular arithmetic:
– We do all computations modulo a value q.

• The value q should be chosen as a prime, so that kq just fits in a register (of e.g.
32/64 bits).

• A prime number is chosen as this will distribute the values well.

The Karp-Rabin algorithm, time considerations

• We compute T´(q)
s and P´(q), where

 T´(q)
s = T´s mod q,

 P´(q) = P´ mod q, (only once)
 and compare.

• We can get T´(q)

s = P´(q) even if T´s ≠ P´. This is called a spurious match.

• So, if we have T´(q)

s = P´(q), we have to fully check whether Ts = P.

• With large enough q, the probability for getting spurious matches is low (see next
slides)

} «x mod y» is the remainder when deviding
x with y, and this is always in the interval
{0, 1, …, y -1}.

The Karp-Rabin algorithm, time considerations

The Karp-Rabin-algorithm

function KarpRabinStringMatcher (P [0:m -1], T [0:n -1], k, q)
 c ← k m -1 mod q

 P´(q) ← 0

 T´(q)
s ← 0

 for i ← 1 to m do
 P´(q) ← (k * P´(q) + P [i]) mod q

 T´(q)
0 ← (k * T´(q)

0 + T [i]) mod q
 endfor

 for s ← 0 to n - m do
 if s > 0 then
 T´(q)

s ← (k * (T´(q)
s -1 - T [s] * c) + T [s + m]) mod q

 endif
 if T´(q)

s = P´(q) then
 if Ts = P then
 return(s)
 endif
 endif
 endfor
 return(-1)
 end KarpRabinStringMatcher

• The worst case running time occurs when the pattern P is found at the end of the
string T.

• If we assume that the strings are distributed uniformally, the probability that T´(q)
s is

equal to P´ (which is in the interval {0, 1, …, q-1}) is 1/q

• Thus T´(q)
s , for s = 0, 1, …, n-m-1 will for each s lead to a spurious match with

probability 1/q.

• With the real match at the end of T, we will on average get (n - m) / q spurious
matches during the search

• Each of these will lead to m symbol comparisons. In addition, we have to check
whetherT´(q)

n-m equals P when we finally find the correct match at the end.

• Thus the number of comparisons of single symbols and computations of new values
T´(q)

s will be:

• We can choose values so that q >> m. Thus the runing time will be O(n).

)1(1 +−+







+

− mnm
q

mn

The Karp-Rabin algorithm, time considerations

Multiple searches in a fixed string T (structure)

• It is then usually smart to preprocess T, so that later searches in T for
different patterns P will be fast.

• Search engines (like Google or Bing) do this in a very clever way, so that

searches in huge number of web-pages can be done extremely fast.

• We often refer to this as indexing the text (or data set), and this can be done
in a number of ways. We will look at the following technique:

• Suffix trees, which relies on ”Tries” trees.
• So we first look at Tries.

• T may also gradually change over time. We then have to update the index

for each such change.

• The index of a search engine is updated when the crawler finds a new web
page.

First: Trie trees

In the textbook there is
an error here a w

e o

b

i

n

t

e

l

l

g

o

r

i

t

h

m

r

v n

a e

l

l

y

t

l

e

w

r

l

d

Compressed trie tree

”al” ”inter” ”w”

”gorithm” ”l” ”n” ”view” ”eb” ”orld”

”ally” ”et”

Suffix tree for
T = babbage

And finally: Suffix trees (compressed)

”bbage” ”a” ”bage”

”ge”

”ge”

”a” ”b” ”e” ”ge”

”bbage”

• Looking for P in this Trie will decide whether P occurs in T

• There are a lot of optimizations that can be done for such
 trees

Div.

	INF 4130 / 9135�30/8-2016
	Algorithms, efficiency, and complexity
	Slide Number 3
	Search for a given (short) string in a long string
	String search
	Variants of string search
	The naive algorithm
	The naive algorithm
	The naive algorithm
	The naive algorithm
	The naive algorithm
	The naive algorithm
	The Knuth-Morris-Pratt algorithm
	The Knuth-Morris-Pratt algorithm
	The Knuth-Morris-Pratt algorithm
	The Knuth-Morris-Pratt algorithm
	The Knuth-Morris-Pratt algorithm
	The Knuth-Morris-Pratt algorithm
	The Knuth-Morris-Pratt algorithm
	Slide Number 20
	The Knuth-Morris-Pratt-algorithm
	Knuth-Morris-Pratt-algoritmen
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	The Boyer-Moore algorithm (Horspool)
	The Boyer-Moore algorithm (Horspool)
	The Boyer-Moore algorithm (Horspool)
	The Boyer-Moore algorithm (Horspool)
	The Boyer-Moore algorithm (Horspool)
	The Boyer-Moore algorithm (Horspool)
	 The Boyer-Moore-algorithm (Horspool)
	Slide Number 35
	The Karp-Rabin algorithm (hash based)
	The Karp-Rabin algorithm
	The Karp-Rabin algorithm
	The Karp-Rabin algorithm, time considerations
	The Karp-Rabin algorithm, time considerations
	The Karp-Rabin-algorithm
	The Karp-Rabin algorithm, time considerations
	Multiple searches in a fixed string T (structure)
	First: Trie trees
	Compressed trie tree
	And finally: Suffix trees (compressed)
	Div.

