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• Mandatory assignments («Oblig-1», «-2», and «-3»): 

    All three must be approved  
     Deadlines around: 25. sept, 25. oct, and 15. nov 

 
• Other courses on similar themes: 

 INF-MAT 3100 Linear optimization   
 INF-MAT 4110 Mathematical optimization 
 MAT-INF 3600  Mathematical logic   
    INF 1080*   Logical methods for computer science 
 INF 5840  Computability theory 
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Algorithms, efficiency, and complexity 

 
 
    Unsolvable 

                                   
  
                   
Intractable 

 (NP-complete) 
 
 Simple (P) 

Problem classes: 
The elements (the points 
inside the ellipse to the right) 
are «problems», and three 
problem classes are 
indicated. 
 
These classes are defined 
from what type of algorithms 
can (or cannot) solve 
problems in it. 
 
E.g. the class P consists of 
all problems that (in the 
worst case) can be solved 
by algorithms running in 
«polynomial time», 

Note: Each probem will in turn 
consist of a number of «instances».  
To be interesting, a problem must 
have an unlimited number of 
instances. 

And: Today we will work within P 
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Such search problems have become more important lately 
– The amount of stored digital information grows steadily (about 3 

zettabytes [billion terabytes] 2012). 
– Search for a given pattern in DNA strings  (about 3 giga-letters in 

humans). 
– Google and similar programs search for given strings (or sets of 

strings) on all registered web-pages. 
 

Searching for similar patterns is also relevant for DNA-strings 
– The genetic sequences in organisms are changing over time because 

of mutations. 
– Searches for similar patterns are treated in Ch. 20.5.  We will look at 

that in connection with dynamic programming (Ch. 9, next week). 
. 

  

Search for a given (short) string in a long string  



An alphabet is a finite set of «symbols» A = {a1, a2, …, ak } . 
 
A string S = S [0: n -1]  of length n is a sequence of symbols from A. 
 
We can consider the string either as an array S[0:n -1] or as a string of symbols  
S = < s0 s1 … sn -1 > 
 
The search problem: Given two strings  T (= Text) and P (= Pattern), where P is 

shorter than  T (usually much shorter). 
 Decide whether P occurs as a (continuous) substring in T, and if so, find where it 

occurs. 

0 1 2 … n  -1 

T [0:n -1]      
(Text) 

P [0:m -1] 
(Pattern) 

String search 



• Naive algorithm, no preprocessing of neither T nor P 
– Assume that the length of T and P are n and m respectively 
– The naive algorithm is already a polynomial-time algorithm, with worst case 

execution time O(n*m), which is also O(n2). 
 

• Preprocessing of P (the pattern) for each new P 
– Prefix-search: The Knuth-Morris-Pratt algorithm 
– Suffix-search:         The Boyer-Moore algorithm 
– Hash-based: The Karp-Rabin algorithm 

 
• When searching in the same text a lot of times (with different patterns): 

– Preprocess the text T (which is done to an extreme degree in search engines) 
– We shall look at Suffix trees that relie on a structure called a Trie. 

Variants of string search 



 
 

0 1 2 … n  -1 

T [0:n -1]      

P [0:m -1] 

The naive algorithm 

Searching forward 

”Window” 



 
 

0 1 2 … n  -1 

T [0:n -1]      

P [0:m -1] 

The naive algorithm 



 
 

0 1 2 … n  -1 

T [0:n -1]      

P [0:m -1] 

The naive algorithm 



 
 

0 1 2 … n-m n  -1 

T [0:n -1]      

P [0:m -1] 

The naive algorithm 



 
 
 
 
 
 
 
 
 
function NaiveStringMatcher (P [0:m -1], T [0:n -1]) 
 for s ← 0 to n - m do 
  if T [s :s + m - 1] = P  then  
         return(s) 
  endif 
 endfor 
 return(-1) 
end NaiveStringMatcher 

0 1 2 … n-m n  -1 

T [0:n -1]      

P [0:m -1] 

The naive algorithm 



 
 
 
 
 
 
 
 
 
function NaiveStringMatcher (P [0:m -1], T [0:n -1]) 
 for s ← 0 to n - m do 
  if T [s :s + m - 1] = P  then  
         return(s) 
  endif 
 endfor 
 return(-1) 
end NaiveStringMatcher 

0 1 2 … n-m n  -1 

T [0:n -1]      

P [0:m -1] 

The naive algorithm 

} The for-loop is executed n – m + 1 times. 
 

Each string test has up to m symbol comparisons 
 

O(nm) execution time (worst case) 
 
 



• There is room for improvement in the naive algorithm 
– The naive algorithm moves the window (pattern) only one character at 

a time. 
– But maybe we can move it farther, based on what we know from 

earlier comparisons. 
– We look at the following example: 

 
 

0 0 1 0 0 1 0 0 2 0 0 0 1 0 0 2 0 1 2 … 

0 0 1 0 0 2 0 1 

The Knuth-Morris-Pratt algorithm 



 
 
 
 

0 0 1 0 0 1 0 0 2 0 0 0 1 0 0 2 0 1 2 … 

0 0 1 0 0 2 0 1 

Search forward 

The Knuth-Morris-Pratt algorithm 



 
 
 
 

0 0 1 0 0 1 0 0 2 0 0 0 1 0 0 2 0 1 2 … 

0 0 1 0 0 2 0 1 

The Knuth-Morris-Pratt algorithm 



 
 
 

0 0 1 0 0 1 0 0 2 0 0 0 1 0 0 2 0 1 2 … 

0 0 1 0 0 2 0 1 

The Knuth-Morris-Pratt algorithm 

We move the pattern one step: Mismatch 



 
 
 
 

0 0 1 0 0 1 0 0 2 0 0 0 1 0 0 2 0 1 2 … 

0 0 1 0 0 2 0 1 

The Knuth-Morris-Pratt algorithm 

We move the pattern two steps: Mismatch 



 
 
 
 

0 0 1 0 0 1 0 0 2 0 0 0 1 0 0 2 0 1 2 … 

0 0 1 0 0 2 0 1 

3 

Thus, we can skip a number of tests and move the pattern more than one character forward (three in 
the above situation) before we start comparing characters again.   
 
The key is that we know what the characters of T and P are up to the point where P and T got 
different in the previous comparison. (T and P  are equal up to this point.)   
 
Thus for each possible index j in P, we assume that the first difference between P and T occurs at j, 
and from that compute how far we can move P before the next string-comparison. 
 
It may well be that we never get a match like the one above, and we can then move P all the way to 
the point in T where we found an inequality.  This is the best case for the efficiency of the algorithm. 

The Knuth-Morris-Pratt algorithm 

We move the pattern three steps: Now, there is at least a match in 
the part of T where we had a match in the previous test 



 
 
 
 

0 1 i - dj i 

0 0 1 0 0 1 0 0 2 0 0 0 1 0 0 2 0 1 2 … 

0 1 j -1 j 

0 0 1 0 0 2 0 1 

0 0 1 0 0 2 0 1 

0 j -2 j 

dj 

dj  is the longest suffix of  P [1 : j -1] that is also prefix 
of P [0 : j - 2] 

We know that if we move P  less than j - dj steps, there can be no (full) match.  
 

And we know that, after this move, P [0 : dj -1] will match the corresponding part of T.   
 

Thus we can start the comparison at dj  in P and compare P [dj : m-1] with the symbols from 
index i in T. 

j - dj 

The Knuth-Morris-Pratt algorithm 



 
 

• We will produce a table Next [0: m-1] that shows how far we can move P 
when we get a (first) mismatch at index j in P,  j = 0,1,2, … , m-1 
 

• But the array Next will not give this number directly.  Instead, Next [ j ] will 
contain the new (and smaller value) that j should have when we resume 
the search after a mismatch at j in P (see below) 

 

– That is:  Next [ j ] = j – <number of steps that P should be moved>, 
– or: Next [ j ]  is the value that is named dj on the previous slide 

 
• After P is moved, we know that the first dj symbols of P are equal to the 

corresponding symbols in T (that’s how we chose dj ). 
 

• So, the search can continue from index i in T and Next [ j ] in P. 
 
• And, importantly, The array Next can be computed from P alone 
 
 

Idea behind the Knuth-Morris-Pratt algorithm 



The Knuth-Morris-Pratt-algorithm 

function KMPStringMatcher (P [0:m -1], T [0:n -1]) 
 i ← 0   // indeks i T 
 j ← 0   // indeks i P  
 CreateNext(P [0:m -1], Next [n -1]) 
 while i < n do 
  if P [ j ] = T [ i ] then 
   if j = m –1 then              // check full match 
    return(i – m + 1) 
   endif 
   i ← i + 1 
   j ← j + 1 
  else 
   j ← Next [ j ] 
   if j = 0 then 
    if T [ i ] ≠ P [0] then 
     i ← i + 1 
    endif 
   endif 
  endif 
 endwhile 
 return(-1) 
end KMPStringMatcher 

 O(n) 



Knuth-Morris-Pratt-algoritmen 

 
     Main form: 
          function CreateNext (P [0:m -1], Next [0:m -1]) 
             … 
          end CreateNext 
 
 
• This can be written straight-ahead with simple searches, and will then use 

time O(m2). 
 
• However, one can use some of the tricks we used above, and can then 

find the array Next in time O(m).  
 

• The textbook discusses the complex one, but we do not include that one in 
the curriculum for INF4130. 
 

• We will discuss the simple one as an exercise next week. 

Calculating the array Next from P  



 
 
 
 

0 0 1 0 0 1 0 0 2 0 0 0 1 0 0 2 0 1 2 … 

0 0 1 0 0 2 0 1 

 
The array Next for the string P above:    
 
           j =   0  1  2  3  4  5  6  7  
Next[ j ] =   0    0   1    0  1    2   0   1 

The Knuth-Morris-Pratt algorithm 
Example 



 
 
 
 

0 0 1 0 0 1 0 0 2 0 0 0 1 0 0 2 0 1 2 … 

0 0 1 0 0 2 0 1 

0 0 1 0 0 2 0 1 

Example 

The Knuth-Morris-Pratt algorithm 

 
The array Next for the string P above:    
 
           j =   0  1  2  3  4  5  6  7  
Next[ j ] =   0    0   1    0  1    2   0   1 



 
 
 
 

0 0 1 0 0 1 0 0 2 0 0 0 1 0 0 2 0 1 2 … 

0 0 1 0 0 2 0 1 

0 0 1 0 0 2 0 1 

0 0 1 0 0 2 0 1 

Example 

The Knuth-Morris-Pratt algorithm 

 
The array Next for the string P above:    
 
           j =   0  1  2  3  4  5  6  7  
Next[ j ] =   0    0   1    0  1    2   0   1 



 
 
 
 

0 0 1 0 0 1 0 0 2 0 0 0 1 0 0 2 0 1 2 … 

0 0 1 0 0 2 0 1 

0 0 1 0 0 2 0 1 

0 0 1 0 0 2 0 1 

0 0 1 0 0 2 0 1 

Example 

The Knuth-Morris-Pratt algorithm 

 
The array Next for the string P above:    
 
           j =   0  1  2  3  4  5  6  7  
Next[ j ] =   0    0   1    0  1    2   0   1 



 
 
 
 

0 0 1 0 0 1 0 0 2 0 0 0 1 0 0 2 0 1 2 … 

0 0 1 0 0 2 0 1 

0 0 1 0 0 2 0 1 

0 0 1 0 0 2 0 1 

0 0 1 0 0 2 0 1 

This is a linear algorithm: worst case runtime O(n). 

Example 

The Knuth-Morris-Pratt algorithm 

 
The array Next for the string P above:    
 
           j =   0  1  2  3  4  5  6  7  
Next[ j ] =   0    0   1    0  1    2   0   1 



• The naive algorithm, and Knuth-Morris-Pratt  is prefix-based (from left to right 
through P) 

• The Boyer-Moore algorithm (and variants of it) is suffix-based (from right to left  
in P) 
 

• Horspool proposed a simplification of Boyer-Moore, and we will look at the 
resulting algorithm here. 
 

• We look at the following example: 
 

B M m a t c h e r _ s h i f t _ c h a r a c t e r _ e x … 

c h a r a c t e r 

The Boyer-Moore algorithm (Horspool) 



B M m a t c h e r _ s h i f t _ c h a r a c t e r _ e x … 

c h a r a c t e r 

Comparing from the 
end of P 

The Boyer-Moore algorithm (Horspool) 



B M m a t c h e r _ s h i f t _ c h a r a c t e r _ e x … 

c h a r a c t e r 

c h a r a c t e r 

The Boyer-Moore algorithm (Horspool) 



B M m a t c h e r _ s h i f t _ c h a r a c t e r _ e x … 

c h a r a c t e r 

c h a r a c t e r 

c h a r a c t e r 

The Boyer-Moore algorithm (Horspool) 



B M m a t c h e r _ s h i f t _ c h a r a c t e r _ e x … 

c h a r a c t e r 

c h a r a c t e r 

c h a r a c t e r 

c h a r a c t e r 

The Boyer-Moore algorithm (Horspool) 



B M m a t c h e r _ s h i f t _ c h a r a c t e r _ e x … 

c h a r a c t e r 

c h a r a c t e r 

c h a r a c t e r 

c h a r a c t e r 

Worst case execution time O(mn), same as for the naive algorithm! 
 
However: Sub-linear (≤ n), as the average execution time is O(n (log|A| m) / m). 

The Boyer-Moore algorithm (Horspool) 



 The Boyer-Moore-algorithm (Horspool) 

function HorspoolStringMatcher (P [0:m -1], T [0:n -1]) 
 i ← 0       
 CreateShift(P [0:m -1], Shift [0:|A| - 1])   
 while i < n – m do     
  j ← m – 1   
  while j ≥ 0 and T [ i + j ] = P [ j ] do  
   j ← j -1  
  endwhile 
  if j = 0 then  
   return( i ) 
  endif 
  i ← i + Shift[ T[ i + m -1] ] 
 endwhile 
 return(-1) 
end HorspoolStringMatcher 



 
Main form: 
      function CreateShift (P [0:m -1], Shift [0:|A| - 1])     
  …   
  end CreateShift 
 
• We must preprocess P to find the array Shift. 

 
• The length of Shift[ ] is the number of symbols in the alphabet. 
 
• We search from the end of P (minus the last symbol), and calculate the 

distance from the end for every first occurence of a symbol. 
 

• For the symbols not occuring in P, we know:  
                              Shift [ t ] = <the length of P>    (m) 
     This will give a ”full shift”. 
 

Calculating the array Shift from P 



 
• We assume that the alphabet for our strings is A = {0, 1, 2, …, k -1}. 
• Each symbol in A can be seen as a digit in a number system with base k 
• Thus each string in A* can be seen as number in this system (and we assume that 

the most significant digit comes first, as usual) 
 
Example: 
 k = 10, and A = {0,1, 2, …, 9} we get the traditional decimal number system 
 The string ”6832355” can then be seen as the number 6 832 355. 

 
• Given a string P [0: m -1]. We can then the corresponding number P´ using m 

multiplications and m additions (Horners rule, computed from the innermost right 
expression and outwards): 

  
 P´  = P [m - 1] + k (P [m - 2] + … + k (P [1] + k (P [0])...)) 
 
Example (written as it computed from left to right): 
 1234 = ((1*10 + 2)*10 + 3)*10 + 4 

 

The Karp-Rabin algorithm (hash based) 



• Given a string T [0: n -1], and an integer s (start-index), and a pattern of length m.  
We then refer to the substring T [s: s + m -1] as Ts, and its value is referred to as T´s  
 

• The algorithm: 
– We first compute the value P´ for the pattern P 
– Based on Horners rule we compute T´0, T´1 , T´2 , … and successively compares these 

numbers to P´  
 

• This is very much like the naive algorithm. 
 

• However: Given T´s -1 and k m – 1, we can compute T´s in constant time: 
 ! 

The Karp-Rabin algorithm 

0 1 2 … s -1      s s + m -1 n -1 

T [0:n -1] 

T´s 



This constant time computation can be done as follows (where T´s -1 is defined as on 
the previous slide, and k m – 1 is pre-computed): 
 
  T´s = k * (T´s -1 - k m – 1 *T [s]) + T [s+m]  s = 1, …, n – m 
 
 
 Example: 
  k = 10, A = {0,1, 2, …, 9}  (the usual decimal number system) and m = 7. 
  T´s -1 = 7937245 
  T´s   =    9372458 
 
   T´s = 10 * (7937245 – (1000000 * 7)) + 8   =    9372458 

The Karp-Rabin algorithm 



• We can compute T´s  in constant time when we know T´s -1 and k m – 1. 
 

• We can therefore compute P´ and the n – m + 1 numbers:  
                        T´s, s = 0, 1, …, n – m   
      in time O(n). 

 

• Thus, we can ”theoretically” implement the search algorithm in time O(n). 
 

• However the numbers T´s and P´ will be so large that storing and comparing them 
will take too long time (in fact O(m) time). 
 

• The Karp-Rabin trick is to instead use modular arithmetic:   
– We do all computations modulo a value q.  

 

• The value q should be chosen as a prime, so that kq just fits in a register (of e.g. 
32/64 bits). 
 

• A prime number is chosen as this will distribute the values well. 
 

 
 

 

The Karp-Rabin algorithm, time considerations 



• We compute T´(q)
s  and P´(q), where 

           T´(q)
s = T´s mod q, 

           P´(q) = P´ mod q, (only once) 
 and compare. 
 
• We can get T´(q)

s = P´(q) even if T´s ≠ P´.  This is called a spurious match. 
 
• So, if we have T´(q)

s = P´(q), we have to fully check whether Ts = P. 
 

• With large enough q, the probability for getting spurious matches is low (see next 
slides) 
 
 

} «x mod y» is the remainder when deviding 
x with y, and this is always in the interval  
{0, 1, …, y -1}. 

The Karp-Rabin algorithm, time considerations 



The Karp-Rabin-algorithm 

function KarpRabinStringMatcher (P [0:m -1], T [0:n -1], k, q) 
 c ← k m -1 mod q 

 P´(q) ← 0 

 T´(q)
s ← 0 

 
 for i ← 1 to m do 
  P´(q) ← (k * P´(q) + P [ i ]) mod q 

  T´(q)
0 ← (k * T´(q)

0 + T [ i ]) mod q 
 endfor 
 
 for s ← 0 to n - m do 
  if s > 0 then  
   T´(q)

s ← (k * ( T´(q)
s -1 - T [ s ] * c) + T [ s + m ]) mod q 

  endif 
  if T´(q)

s = P´(q) then 
    if Ts = P then 
    return(s) 
   endif 
  endif 
 endfor 
 return(-1) 
 end KarpRabinStringMatcher 



• The worst case running time occurs when the pattern P is found at the end of the 
string T. 

 

• If we assume that the strings are distributed uniformally, the probability that T´(q)
s is 

equal to P´ (which is in the interval  {0, 1, …,   q-1})  is 1/q  
 

• Thus T´(q)
s , for s = 0, 1, …, n-m-1  will for each s lead to a spurious match with 

probability 1/q. 
 

• With the real match at the end of T, we will on average get (n - m) / q spurious 
matches during the search 
 

• Each of these will lead to m symbol comparisons. In addition, we have to check 
whetherT´(q)

n-m equals P when we finally find the correct match at the end. 
 

• Thus the number of comparisons of single symbols and computations of new values 
T´(q)

s will be: 
 
 

• We can choose values so that q >> m. Thus the runing time will be O(n). 
   

)1(1 +−+
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The Karp-Rabin algorithm, time considerations 



Multiple searches in a fixed string T (structure) 

• It is then usually smart to preprocess T, so that later searches in T for 
different patterns P will be fast. 
 
• Search engines (like Google or Bing) do this in a very clever way, so that 

searches in huge number of web-pages can be done extremely fast. 
 

• We often refer to this as indexing the text (or data set), and this can be done 
in a number of ways.  We will look at the following technique: 
 
• Suffix trees, which relies on ”Tries” trees. 
• So we first look at Tries. 

 
• T may also gradually change over time. We then have to update the index 

for each such change. 
 

•  The index of a search engine is updated when the crawler finds a new web 
page. 
 
  



First: Trie trees 

In the textbook there is 
an error here a w 
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Compressed trie tree 

”al” ”inter” ”w” 

”gorithm” ”l” ”n” ”view” ”eb” ”orld” 

”ally” ”et” 



Suffix tree for 
T = babbage 

And finally: Suffix trees (compressed) 

”bbage” ”a” ”bage” 

”ge” 

”ge” 

”a” ”b” ”e” ”ge” 

”bbage” 

•  Looking for P in this Trie will decide whether P occurs in T 
 

•  There are a lot of optimizations that can be done for such 
    trees  



Div. 
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