
Search in State-spaces
 13/9 – 2016

• Backtracking (Ch. 10)
• Branch-and-bound (Ch. 10)
• Iterative deepening (only on these slides, but still part of the curriculum!)
• A*-search (Ch. 23)

1

Search in State-Spaces

• Backtracking (Ch. 10)
– Depth-First-Search in a state-space: DFS
– Memory efficient

• Branch-and-bound (Ch. 10)
– Breadth-First-Search: BFS
– It needs a lot of space: Must store all nodes that have been seen, but not

explored further.
– We can also indicate for each node how «promising» it is (heuristric), and always

proceed from the currently most promising one. Natural to use a priority queue
to choose next node.

• Iterative deepening
– DFS down to level 1, then to level 2, etc.
– Combines: The memory efficiency of DFS, and the search order of BFS

• Dijkstra’s shortest path algorithm (repetition from INF2220 etc.)
• A*-search (Ch. 23)

– Is similar to branch-and-bound, with heuristics and priority queues
– Can also be seen as an improved version of Dijkstra’s algorithm.

2

State-spaces and Decision Sequences
• The state-space of a system is the set of states in which the system can

exist. Figure below: Each constellation of an 8-puzzle is a state.

• Some states are called goal states. That’s where we want to end up. No
goal state is shown below.

• Each search algorithm will have a way of traversing the states, and these
are usually indicated by directed edges, as is seen on the figure below.

• Such an algorithm will usually have a number of
 decision poins: ”Where to seach next?”. The full
 tree with all choices is the state space
 tree for that algorithm.

• Thus, different algorithms
will have different state
space trees. See the
following slides.

• Main problem: The state
space is usually very large 3

‘Models’ for decision sequences

• There is usually more than one decision sequence for a given
problem, and they may lead to different state space trees.

• Example: Find, if possible, a Hamiltonian Cycle (see figures below)

• There are (at least) two natural decision sequences:
– Start at any node, and try to grow paths from this node in all possible

ways.

– Start with one edge, and add edges as long as they don’t make a cycle
with already chosen edges.

• These lead to different state space trees (see next slides).

This graph
obviously has
no Hamiltonian
Cycle

Hamiltonian
Cycle

4

Models for decision sequences

• A tree structure formed by the first decision sequence:
– Choose a node and try paths out from from that node.

• Possible choices in each step: Choose among all unused nodes
connected to the current node by an edge.

c d

e

a

b

b

a c

d e c a d

d

e

c e d

c

e d

d e

e

e

a

a

5

Models for decision sequences
• A tree structure formed by the second model:

– Start with one edge, and add edges as long as they don’t make a cycle
with already chosen edges.

B
C

D

E A

-
B C E G F

F E D C
A

B G
D F G

G

E
Different decision sequences may be more
or less suitable for pruning.

Examples from the book:
Figure 10.3 and 10.4 (Subset sum)
Page 719 (8-puzzle, a small version of the
15-puzzle)
 6

State spaces and decision sequences

7

Some times the path leading to the goal node is
an important part of the solution

Eight-puzzle: Here the path leading to

the goal node is the sequence of
moves we should perform to solve
the puzzle

But here it is not:

Hamiltonian cycle adding edges: Here
the order in which we added the
edges is usually of no significance
for the Hamiltonian circuit we end
up with. 8

B
C

D

E A

-
B C E

G F

F E D C
A

B G
D F G

G

E

Backtracking and Depth-First-Search

 A template for implementing depth-first-search may look
like this:

It can not only be used for
trees, but also for graphs,
because of this

 procdure DFS(v)
 {
 If <v is a goal node> then return ´´…..´´
 v.visited = TRUE;
 for <each neighbour w of v> do
 if not w.visited then DFS(w)
 od
 }

9

Backtracking and Depth-first-search
• Searches the state space tree depth first with backtracking, until it

reaches a goal state (or has visited all states).

• The easiest implementation is usually to use a recursive procedure.

• Memory efficient (only «O(the depth of the tree)»).

• If the edges have lengths and we e.g. want a shortest possible
Hamiltonian cycle, we can use heuristics to choose the most
promising direction first (e.g. choose the shortest legal edge from
where you are now)

• One has to use ”pruning” (or ”bounding”) as often as possible. This is
important, as an exhaustive search usually requires exponentiaI time,
and we must use all tricks we can find to limit the execution time.

• Main pruning principle: Don’t enter subtrees that cannot contain a
goal node. But the difficulty is to find where this is the case.

10

Branch-and-bound / Breadth-First-Search
• Uses some form of breadth-first-search.
• We have three sets of nodes:

1. The ”finished nodes” (dark blue). Often do not need to be stored
2. The ”live nodes” (green) seen but not explored further. Large set, that must

be stored.
3. The ”unseen nodes” (light blue). We often don’t have to look at all of them.

• The live nodes (green) will always be a cut through the state-space tree
(or likewise if it is a graph)

• The main step:
• Choose a node N from the set of Live Nodes.
• If N is a goal node, then we are finished, ELSE:
• Take N out of the Live-Node set and

insert it into the finished nodes.
• Insert all children of N into the

Live-Node set.
• BUT: if we are searching

a graph, only insert unseen ones

b

a c

d e c a d

d

e

c e d

c

e d

d e

e

e

a

a 11

Branch-and-bound / Breadth-First-Search

• Three strategies:
– The Live-Node set is a FIFO-queue

• We get traditional breadth first

– The Live-Node set is a LIFO-queue
• The order will be similar to

depth-first, but not exactly

– The LiveNode queue is a priority
queue,

• We can call this priority search
• If the priority stems from a

certain kind of heuristics,
 then this will be A*-search

(comes later today).

b

a c

d e c a d

d

e

c e d

c

e d

d e

e

e

a

a

12

Iterative deepening
 Not in the textbook, but included in curriculum!

 A drawback with DFS is
that you can end up going
very deep in one branch
without finding anything,
even if there is a shallow
goal node close by.

 Level 1

Level 2

Level 3

 We can avoid this by first
doing DFS to level one,
then to level two, etc.

 With a reasonable
branching facor, this will not
be too much extra work,
and we are always memory
efficient.

 We only «test for goal
nodes» at the levels we
have not been on before.

13

Iterative deepening
 Assignment next week:

 Adjust the DFS program to do iterative deepening:

 We assume that the test for deciding whether a given node is a goal
node is expensive, and we shall therefore only test this for the ”new
levels” (only once for each node).

 Discuss how iterative deepening will work for a directed graph.

procedure DFS(v)
{
 If <v is a goal node> then return ´´…..´´
 v.visited=TRUE
 for <each neighbor w of v> do
 if not w.visited then DFS(w) fi
 od
}

14

We move to Ch. 23, and first look at good old:
Dijkstra’s algorithm for single source shortest

paths in directed graphs

«Tree nodes»
(The finished

nodes)

s

u

v

x

z

y

1

2

4

3

3

1

2

1

2

0

1

2

4

2

5

d

c

d

b

a

Q: The priority
Queue
(The «live nodes»)

Unseen nodes

15

Next: Pick the
smallest node in Q

Dijkstra’s algorithm

procedure Dijkstra(graph G, node source)
 for each each node v in G do // Initialisation
 v.dist := ∞ // Marks as unseen nodes
 v.previous := NIL // Pointer to remeber the path back to source
 od
 source.dist := 0 // Distance from source to itself
 Q := { source } // The initial priority queue only contains source
 while Q is not empty do
 u := extract_min(Q) // Node in Q closest to source. Is removed from Q
 for each neighbor v of u do // Key in prio-queue is distance from source
 x = length(u, v) + u.dist
 if x < v.dist then // Nodes in the ”tree” will never pass this test
 v.dist := x
 v.previous := u // Shortest path ”back towards the source”
 fi
 od
 od
end

16
Could already here discard nodes in the tree

A*-search (Hart, Nilsson, Raphael 1968)

• Backtracking / depth-first, LIFO / FIFO, branch-and-bound, breadth-
first and Dijkstra´s algorithm only use local information when
choosing the next step.

• A*-search is simular to Dijkstra´s algorithm, but it uses a global
heuristic (”qualified guess”) to make better choices from Q in each
step.

• Widely used in AI and knowlegde based systems.
• A*-search (like Dijkstra´s alg.) is useful for problems where we have

– An explicit or implicit graph of ”states”
– There is a start state and a number of goal states
– The (directed) edges represent legal state transitions, and they all have

a cost
 And (like with Dijkstra´s alg.) the aim is to find the cheapest

(shortest) path from the start node to a goal node.
• A*-search: If we for each node in Q can ”guess” how far it is to a

goal node, then we can often speed up the algorithm considerably!

17

A-search – heuristic
• The strategy is a sort of breadth-first search, like Dijkstra´s algorithm.

– However, we now use an estimate h(v) for the shortest path from
the node v to some goal node (h for heuristic).

– The value we use for choosing the best next node is now:
 f(v) = g(v) + h(v) (while Dijkstra uses only g(v))
– Thus, we get a priority-first search with this value as priority.

s v m
g(v)

Dijkstra

Dijkstra chooses the
next node based on
g(v)

18

A-search – heuristic
• The strategy is a sort of breadth-first search, like Dijkstra´s algorithm.

– However, we now use an estimate h(v) for the shortest path from
the node v to some goal node (h for heuristic).

– The value we use for choosing the best next node is now:
 f(v) = g(v) + h(v) (while Dijkstra uses only g(v))
– Thus, we get a priority-first search with this value as priority.

s v m
g(v)

A-search

A–search chooses the
next node based on
g(v) + h(v)

19

A*-search and heuristics

• If we know that h(v) is never larger than the actual shortest path to
the closest goal node
– and we use the A-search algorithm described on the previous

slides, we will eventually get the correct result (this is not proven
here)

• However, we will often have to go back to nodes that we «thought we
were finished with» (nodes in the tree will have to go back into the
priority queue, as we may later find an even shorter path to them)

– And this usually results a lot of extra work

• Dijkstra´s algorithm never moves a tree-node back into the queue,
and still get the correct answer. We will put requirements on h(v) so
that this will also be true for the A-search algorithm above.

20

Exercise
(”admissible heuristic”)

• Study the example in figure 23.5 (the textbook, page
723). It demonstrates some of what is said on the
previous slide:
If you do not move nodes back into Q from the «tree»
(when a shorter path is found), you may not find the
shortest path

• The drawings below is from that example:

a

b

r

d

c
6

20
11

8

2

7

v r a b c d

h(v) - 23 20 15 29

a r c
11 7

a r

d

c
6 2

7

21

A*-search and monotone heuristics
The function h(v) should be an estimate of the distance from v to the
closest goal node. If h(v) is never larger than the shortest distance to a
goal, we know that the search will terminate, but maybe slowly.
However, we can restrict h(v) further, and get more efficient algorithms.

• the function h(v) must then have the follwing properties:

– (As before) The function h(v) is never larger that the real
distance to the closest goal-node.

– h(g) = 0 for all goal nodes g.
– And a sort of ”triangule inequality” must hold:

 If there is a transition from node u to node v with cost c(u,v) ,
then the following should hold:

h(u) ≤ c(u,v) + h(v) u v

g

c(u,v)
h(u)

h(v)
22 In this case, h(v) is said to be MONOTONE.

A*-search and monotone heuristics
• (From the previous slide) The criteria for monotonicity on h:

– If there is an edge from v to w with weight c(v,w), then we must
always have h(v) ≤ c(v,w) + h(w)

– Every goal node g must have h(g) = 0 .
.
• A nice thing here is that if these two requirements are fulfilled:

– then the first requirement (that h(v) is never larger than the real
shortest distance to a goal) is automatically fulfilled.

• Sketch of a proof: We assume that u →v → w → m is a shortest
path from u to a goal state g. We set up the inequalities we know:

h(u) ≤ c(u,v) + h(v)

h(v) ≤ c(v,w) + h(w)

h(w) ≤ c(w,g) + h(g) = c(w,g)

u

v

w

g If we combine the above, we get: h(u) ≤ c(u,v) + c(v,w) + c(w,g) 23

Relation to Dijkstra’s algorithm
• If we use h(v) = 0 for all nodes, this will be Dijkstra’s algorithm
• By using a better heuristic we hope to work less with paths that do not lead

to solutions (a shortest path), so that the algorithm will run faster.
• However, with a heuristic we will remove nodes from Q in a differnt order

than with Dijkstra´s algorithm.
• Thus, we can no longer know that when v is moved from Q to the tree, it

has the correct shortest path length v(g)

BUT luckily, we can prove this (proposition 23.3.2 in the book):
• If h is monotone, then values of g(v) and parent(v) will always be correct

when v is removed from Q to become a tree node.
• Therefore, we never need to go back to tree nodes, move them back into Q,

and update their variables.
See slides below.

Note: There is a misprint at page 724, in formula 23.3.7:
Where: … h(v) + h(v) … appears, it should insted be: … h(v) ≤ g(v) + h(v) …

 24

A*-search – the data for the algorithm
Will be studied as an exercise

• We have a directed graph G with edge weights c(u,v), a start node s,
a number of goal-nodes, and finally a monotone heuristic function h(u),
(often set in all nodes during initialisation, and never changed).

• In addition, each node v has the following variables:

– g: This variable will normally change many times during the execution of the
algorithm, but its final value (after being moved to the tree) will be the length of
the shortest path from the start node to v.

– parent: This variable will end up pointing to the parent in a tree of shortest paths
back to the start node

– f: This variable will all the time have the value g(v) + h(v), that is, an estimate of
the path length from the start node to a goal node, through the node v

• We keep a priority queue Q of nodes, where the value of f is used as priority

– This queue is initialized to contain only the start node s, with g(s) = 0
 (This initialization is missing in the description of the algorithm at page 725)
– The value of f will change during the algorithm, and the node must then be

«moved» in the priority queue

• The nodes that is not in Q at the moment are partitioned intto two types:
– Tree nodes: In these the parent pointer is part of a tree with the start node as

root. These nodes have all been in Q earlier.
– Unseen nodes (those that we have not touched up until now).

25

A*-search – the algorithm
 Will be studied as an exercise next week

• Q is initialized with the start node s, with g(s) = 0. (all other nodes are unseen)

• The main step, that are repeted until Q is empty:

Find the node v in Q with the smallest f-value. We then have two alternatives:

1. If v is a goal node the algorithm should terminate, and g(u) and parent(u) indicates the

shortest path (backwards) from the start node to v.

2 Otherwise, remove v from Q, and let it become a tree node (it now has its parent
 pointer and g(v) set to correct values)

• Look at all the unseen neighbours w of v, and for each do the following:
– Set g(w) = c(v,w) + g(v) .
– Set f(w) = g(w) + h(w) .
– Set parent(w) = v .
– Put w into PQ .

• Look at all neighbours w’ of v that are in Q, and for each of them do:
– If g(w’) > g(v) + c(v, w’) then

- set g(w) = c(v,w) + g(v)
- set parent(w)= v

• Note that we (as in «Dijkstra») do not look at neighbours of v that are tree
nodes. That this will work needs a proof, see next slides

26

Proof that strong A*-search works
You will not be asked about details in this proof at the exam,

but you should know how the induction goes

Proof of proposition 23.3.2: We must use induction (not done in the book).

Induction hypothesis: Proposition 23.3.2 is true for all nodes w that are moved from

Q into the tree before v. That is, g(w) and parent(w) is correct for all such w.

Induction step: We have to show that after v is moved to the tree, this is also true for

the node v (and none of the old tree nodes are cahanged)

Def: Let generally g*(u) be the length of the shortest path from the start node to a

node u. We want to show that g(v) = g*(v) after v is moved from Q to the tree.

 We examine the situation when v is moved from Q to the tree, and look at the

node sequence P from the start node s to v, following the parent pointers from v
 s = v0, v1, v2, … , vj = v

 We now assume that v0, v1, …, vk,, but not vk+1, where k+1 < j, have become
tree nodes when v is removed from Q, so that vk+1 is in Q when v is removed
from Q. We shall show that this cannot be the case. 27

Illustrating the proof for A*-search
– The value we use for choosing the best next node is now:
 f(v) = g(v) + h(v)

• NB: We assume that the heuristic function h is monotone
• The important point is to show that there cannot be a shorter path to

v that pass through another node outside the tree, e.g. through u.

s v

w

u

G

g(v)
h(v)

A* chooses the next node
based on f(v) = g(v) + h(v)

28

h(w)

h(u)

c

a

b

d

f

g

e

The queue Q

x

z y

Induction hypthesis:

The red edges
indicate the global
shortest paths

The Tree T

End of proof that A*-search works
 From the monotonicity we know that (for i = 0, 1, …, j-1)
 g*(vi) + h(vi) ≤ g*(vi) + c(vi, vi+1) + h(vi+1)

 Since the edge (vi, vi+1) is part of the shortest path to vi+1, we have:
 g*(vi+1) = c(vi, vi+1) + g*(vi)

 From these two together, we get:
 g*(vi) + h(vi) ≤ g*(vi+1) + h(vi+1)

 By letting i be k+1, k+2, …, j-1 respectively, we get
 g*(vk+1) + h(vk+1) ≤ g*(vj) + h(vj) = g*(v) + h(v)

 From the induction hypotheses we know that g(vk) = g*(vk), (by looking at the

actions done when vk was taken out of Q) g(vk+1) = g*(vk+1), even if it occurs in Q.

 We thus know:
 f(vk+1) = g(vk+1) + h(vk+1) = g*(vk+1) + h(vk+1) ≤ g*(v) + h(v) ≤ g(v) + h(v) = f(v)

 Here, all ‘≤’ must be equalities, otherwise f(vk+1) < f(v), and then v would not have

been taken out of Q before vk+1. Therefore g*(v)+h(v) = g(v)+h(v) and thus
 g*(v) = g(v).
 End of proof

29

A*-search

American highways. Shortest path Cincinatti - Houston is marked. 30

A*-search

The tree generated by Dijkstra’s algorithm (stops in Houston) 31

A*-search

The tree generated by the A*-algorithm with the monotone h(v):

 h(v) = the «geographical» distance from v to the goal-node (Houston).
32

	Search in State-spaces � 13/9 – 2016
	Search in State-Spaces�
	State-spaces and Decision Sequences
	‘Models’ for decision sequences
	Models for decision sequences
	Models for decision sequences
	State spaces and decision sequences
	Some times the path leading to the goal node is an important part of the solution
	Backtracking and Depth-First-Search
	Backtracking and Depth-first-search
	Branch-and-bound / Breadth-First-Search
	Branch-and-bound / Breadth-First-Search
	Iterative deepening� Not in the textbook, but included in curriculum!
	Iterative deepening
	We move to Ch. 23, and first look at good old:�Dijkstra’s algorithm for single source shortest paths in directed graphs
	Dijkstra’s algorithm
	A*-search (Hart, Nilsson, Raphael 1968)
	A-search – heuristic
	A-search – heuristic
	A*-search and heuristics
	Exercise�(”admissible heuristic”)
	A*-search and monotone heuristics
	A*-search and monotone heuristics
	Relation to Dijkstra’s algorithm
	A*-search – the data for the algorithm�Will be studied as an exercise
	A*-search – the algorithm� Will be studied as an exercise next week
	Proof that strong A*-search works�You will not be asked about details in this proof at the exam,�but you should know how the induction goes
	Illustrating the proof for A*-search
	End of proof that A*-search works
	A*-search
	A*-search
	A*-search

