
Undecidability
Lecture in INF4130

Department of Informatics

October 18th, 2018



Background from Lecture 1

• Formal Languages

• Turing Machines
• General purpose computational models
• Infinite tape
• Accepting, Rejecting and Looping
• Turing machines can simulate other Turing machines (Exercise-set-1, Universal Turing

machine)

• Church Turing Thesis



Terminology

Example (The language PRIMES)

PRIMES = {n | n is a prime number}.

Example (The decision problem PRIMALITY)

INSTANCE: A natural number, n.
QUESTION: Is n a prime number?

Example (Checking membership for PRIMES)

M = “On input n:

(1) if n < 2, reject.

(2) for all 2 ≤ i ≤
√
n:

(3) if i divides n, reject.

(4) accept.”



Definition (Turing-recognizable languages)

The set of stings A, that a Turing machine M accept, is called the language of M, or the
language recognized by M. We write A = L(M). A language is called Turing-recognizable if
some Turing machine recognizes it.

Definition (Deciders)

A Turing machine that halts on all inputs, it is called a decider. If M is a decider it will either
accept or reject its input. The language A is said to be decided by M.

Definition (Decidable and undecidable languages)

A language is (Turing) decidable if there exists a Turing machine that decides it. If a language
is not decidable, we call it undecidable.



Definition (Turing-recognizable languages)

The set of stings A, that a Turing machine M accept, is called the language of M, or the
language recognized by M. We write A = L(M). A language is called Turing-recognizable if
some Turing machine recognizes it.

Definition (Deciders)

A Turing machine that halts on all inputs, it is called a decider. If M is a decider it will either
accept or reject its input. The language A is said to be decided by M.

Definition (Decidable and undecidable languages)

A language is (Turing) decidable if there exists a Turing machine that decides it. If a language
is not decidable, we call it undecidable.



Example (Life on Mars, [1])

Let A be the language {s} where

s =

{
0, if life never will be found on Mars.

1, if life will be found on Mars someday.

Is A a decidable language or not?



Theorem
Any finite language is decidable.

Proof
If A is a finite language, a decider MD for A can be constructed by hard-coding all
yes-instances of A into MD . On input w , MD accepts if w is one of the yes-instances of A, and
rejects otherwise.



Theorem
Any finite language is decidable.

Proof
If A is a finite language, a decider MD for A can be constructed by hard-coding all
yes-instances of A into MD . On input w , MD accepts if w is one of the yes-instances of A, and
rejects otherwise.



• Are any languages undecidable, and if so, how do we prove it?

• We will first prove that a particular problem is undecidable.

• After finding such a problem, we can show undecidability of other problems using a
technique called reductions.

• We will meet a very similar situation in later lectures, when we define NP-completeness.



• Are any languages undecidable, and if so, how do we prove it?

• We will first prove that a particular problem is undecidable.

• After finding such a problem, we can show undecidability of other problems using a
technique called reductions.

• We will meet a very similar situation in later lectures, when we define NP-completeness.



• Are any languages undecidable, and if so, how do we prove it?

• We will first prove that a particular problem is undecidable.

• After finding such a problem, we can show undecidability of other problems using a
technique called reductions.

• We will meet a very similar situation in later lectures, when we define NP-completeness.



The Halting problem

Definition (The Halting Problem)

INSTANCE: A Turing machine M with an input w .
QUESTION: Does M halt when run on w?

Definition (HALT)

HALT = {〈M,w〉|TM M halts on input w}

Theorem
HALT is an undecidable language.



The Halting problem

Definition (The Halting Problem)

INSTANCE: A Turing machine M with an input w .
QUESTION: Does M halt when run on w?

Definition (HALT)

HALT = {〈M,w〉|TM M halts on input w}

Theorem
HALT is an undecidable language.



The Halting problem

Definition (The Halting Problem)

INSTANCE: A Turing machine M with an input w .
QUESTION: Does M halt when run on w?

Definition (HALT)

HALT = {〈M,w〉|TM M halts on input w}

Theorem
HALT is an undecidable language.



Intuition and proof overview

Why can we not just simulate M on w?

U = “On input 〈M,w〉:
(1) Simulate M on input w .

(2) If M accepts, accept.

(3) If M rejects, accept.”

The Turing machine U actually recognizes HALT , but it does not decide it. We need to show
that no Turing machine decides HALT .
We will assume that Turing machine H decides HALT and from that derive a contradiction.



Intuition and proof overview

Why can we not just simulate M on w?
U = “On input 〈M,w〉:

(1) Simulate M on input w .

(2) If M accepts, accept.

(3) If M rejects, accept.”

The Turing machine U actually recognizes HALT , but it does not decide it. We need to show
that no Turing machine decides HALT .

We will assume that Turing machine H decides HALT and from that derive a contradiction.



Intuition and proof overview

Why can we not just simulate M on w?
U = “On input 〈M,w〉:

(1) Simulate M on input w .

(2) If M accepts, accept.

(3) If M rejects, accept.”

The Turing machine U actually recognizes HALT , but it does not decide it. We need to show
that no Turing machine decides HALT .
We will assume that Turing machine H decides HALT and from that derive a contradiction.



Proof of undecidability of HALT

Assume that there exists a TM H that decides HALT . H takes 〈M,w〉 as input and accepts if
M halts on w . If M loops forever on input w , H rejects.
We now construct the following TM called D:

D = “On input 〈M1〉:
(1) Simulate H on 〈M1, 〈M1〉〉.
(2) If H accepts, loop forever.

(3) If H rejects, accept.”

What happens if we now run D on input 〈D〉? Well, (1) D will send 〈D, 〈D〉〉 to H which will
check if D halts on input D. If (2) H accepts then D will enter a loop and never halt, but if
(3) H rejects, then D will halt! Either way H will answer the question wrong. Thus we have a
contradiction, so our assumption that there existed a decider for HALT was false.



Proof of undecidability of HALT

Assume that there exists a TM H that decides HALT . H takes 〈M,w〉 as input and accepts if
M halts on w . If M loops forever on input w , H rejects.
We now construct the following TM called D:
D = “On input 〈M1〉:

(1) Simulate H on 〈M1, 〈M1〉〉.
(2) If H accepts, loop forever.

(3) If H rejects, accept.”

What happens if we now run D on input 〈D〉? Well, (1) D will send 〈D, 〈D〉〉 to H which will
check if D halts on input D. If (2) H accepts then D will enter a loop and never halt, but if
(3) H rejects, then D will halt! Either way H will answer the question wrong. Thus we have a
contradiction, so our assumption that there existed a decider for HALT was false.



Proof of undecidability of HALT

Assume that there exists a TM H that decides HALT . H takes 〈M,w〉 as input and accepts if
M halts on w . If M loops forever on input w , H rejects.
We now construct the following TM called D:
D = “On input 〈M1〉:

(1) Simulate H on 〈M1, 〈M1〉〉.
(2) If H accepts, loop forever.

(3) If H rejects, accept.”

What happens if we now run D on input 〈D〉? Well, (1) D will send 〈D, 〈D〉〉 to H which will
check if D halts on input D. If (2) H accepts then D will enter a loop and never halt, but if
(3) H rejects, then D will halt! Either way H will answer the question wrong. Thus we have a
contradiction, so our assumption that there existed a decider for HALT was false.



We will now look at an alternative proof∗.

Diagonalization proof of undecidability of HALT

Again, we assume that H exist and create D as before. Remember that D checks if its input,
M1, halts on itself by using H as a subroutine. Then D behaves the opposite way from how M1

behaves on itself. Now we create the following table where the entry i ,j is the result of running
H on 〈Mi , 〈Mj〉〉:

〈M1〉 〈M2〉 〈M3〉 〈M4〉 . . . 〈D〉 . . .

M1 accept reject accept reject accept
M2 accept accept accept accept accept
M3 reject reject reject reject . . . reject . . .
M4 accept accept reject reject accept

...
...

. . .

D reject reject accept accept ?
...

...
. . .

Since D will accept the opposite of the diagonal, we have our contradiction.

∗Actually the exact same proof as last slide, but from a different perspective



We will now look at an alternative proof∗.

Diagonalization proof of undecidability of HALT

Again, we assume that H exist and create D as before. Remember that D checks if its input,
M1, halts on itself by using H as a subroutine. Then D behaves the opposite way from how M1

behaves on itself. Now we create the following table where the entry i ,j is the result of running
H on 〈Mi , 〈Mj〉〉:

〈M1〉 〈M2〉 〈M3〉 〈M4〉 . . . 〈D〉 . . .

M1 accept reject accept reject accept
M2 accept accept accept accept accept
M3 reject reject reject reject . . . reject . . .
M4 accept accept reject reject accept

...
...

. . .

D reject reject accept accept ?
...

...
. . .

Since D will accept the opposite of the diagonal, we have our contradiction.

∗Actually the exact same proof as last slide, but from a different perspective



We will now look at an alternative proof∗.

Diagonalization proof of undecidability of HALT

Again, we assume that H exist and create D as before. Remember that D checks if its input,
M1, halts on itself by using H as a subroutine. Then D behaves the opposite way from how M1

behaves on itself. Now we create the following table where the entry i ,j is the result of running
H on 〈Mi , 〈Mj〉〉:

〈M1〉 〈M2〉 〈M3〉 〈M4〉 . . . 〈D〉 . . .

M1 accept reject accept reject accept
M2 accept accept accept accept accept
M3 reject reject reject reject . . . reject . . .
M4 accept accept reject reject accept

...
...

. . .

D

reject reject accept accept ?
...

...
. . .

Since D will accept the opposite of the diagonal, we have our contradiction.

∗Actually the exact same proof as last slide, but from a different perspective



We will now look at an alternative proof∗.

Diagonalization proof of undecidability of HALT

Again, we assume that H exist and create D as before. Remember that D checks if its input,
M1, halts on itself by using H as a subroutine. Then D behaves the opposite way from how M1

behaves on itself. Now we create the following table where the entry i ,j is the result of running
H on 〈Mi , 〈Mj〉〉:

〈M1〉 〈M2〉 〈M3〉 〈M4〉 . . . 〈D〉 . . .

M1 accept reject accept reject accept
M2 accept accept accept accept accept
M3 reject reject reject reject . . . reject . . .
M4 accept accept reject reject accept

...
...

. . .

D reject reject accept accept

?
...

...
. . .

Since D will accept the opposite of the diagonal, we have our contradiction.

∗Actually the exact same proof as last slide, but from a different perspective



We will now look at an alternative proof∗.

Diagonalization proof of undecidability of HALT

Again, we assume that H exist and create D as before. Remember that D checks if its input,
M1, halts on itself by using H as a subroutine. Then D behaves the opposite way from how M1

behaves on itself. Now we create the following table where the entry i ,j is the result of running
H on 〈Mi , 〈Mj〉〉:

〈M1〉 〈M2〉 〈M3〉 〈M4〉 . . . 〈D〉 . . .

M1 accept reject accept reject accept
M2 accept accept accept accept accept
M3 reject reject reject reject . . . reject . . .
M4 accept accept reject reject accept

...
...

. . .

D reject reject accept accept ?
...

...
. . .

Since D will accept the opposite of the diagonal, we have our contradiction.

∗Actually the exact same proof as last slide, but from a different perspective



We will now look at an alternative proof∗.

Diagonalization proof of undecidability of HALT

Again, we assume that H exist and create D as before. Remember that D checks if its input,
M1, halts on itself by using H as a subroutine. Then D behaves the opposite way from how M1

behaves on itself. Now we create the following table where the entry i ,j is the result of running
H on 〈Mi , 〈Mj〉〉:

〈M1〉 〈M2〉 〈M3〉 〈M4〉 . . . 〈D〉 . . .

M1 accept reject accept reject accept
M2 accept accept accept accept accept
M3 reject reject reject reject . . . reject . . .
M4 accept accept reject reject accept

...
...

. . .

D reject reject accept accept ?
...

...
. . .

Since D will accept the opposite of the diagonal, we have our contradiction.
∗Actually the exact same proof as last slide, but from a different perspective



Reductions

• translating one problem into another

• the typical way of showing undecidability, is via reductions

• more on reductions when we come to P and NP

Definition (Turing Reducibility)

Language A is (Turing) reducible to language B, written A ≤T B, if A is decidable given a
decider to B as a subroutine∗.

∗Such a decider for B is often called an oracle.



Reductions

• translating one problem into another

• the typical way of showing undecidability, is via reductions

• more on reductions when we come to P and NP

Definition (Turing Reducibility)

Language A is (Turing) reducible to language B, written A ≤T B, if A is decidable given a
decider to B as a subroutine∗.

∗Such a decider for B is often called an oracle.



Reductions

• translating one problem into another

• the typical way of showing undecidability, is via reductions

• more on reductions when we come to P and NP

Definition (Turing Reducibility)

Language A is (Turing) reducible to language B, written A ≤T B, if A is decidable given a
decider to B as a subroutine∗.

∗Such a decider for B is often called an oracle.



A typical reduction

Example (Dollar-language)

Let L$ = {〈M〉| TM M eventually writes a $ when started on a blank tape}

We will show how to reduce HALT to L$. Since HALT is undecidable, we will know that L$ is
undecidable.



A typical reduction

Example (Dollar-language)

Let L$ = {〈M〉| TM M eventually writes a $ when started on a blank tape}

We will show how to reduce HALT to L$. Since HALT is undecidable, we will know that L$ is
undecidable.



A typical reduction

Proof: L$ is undecidable

First we assume (for contradiction) that L$ is decidable, that is, M$ exists and decides L$. We
now want to use M$ to create a decider for HALT (which we know cannot exist) to get our
contradiction.
H = “On input 〈M,w〉:

(1) Create TM M ′ from 〈M,w〉 such that:
M ′ = ”Ignore the input:

(1) Simulate M on w . // Note: important that this step doesn’t write $
(2) Write $ on the tape.
(3) Accept.”

(2) Simulate M$ on 〈M ′〉.
(3) If M$ accepts, accept. If M$ rejects, reject.”



Comments to the proof that L$ is undecidable

• The reduction is very typical and actually straight forward

• The action ”write $” seems very arbitrary



Comments to the proof that L$ is undecidable

• The reduction is very typical and actually straight forward

• The action ”write $” seems very arbitrary



Theorem (Rice’s theorem)

Let R be a language consisting of Turing machine descriptions, such that R contains some, but
not all Turing machine descriptions. Furthermore, let the membership in R for any Turing
machine M1, depend solely on the language of M1, that is:
L(M1) = L(M2) =⇒ (〈M1〉 ∈ R ↔ 〈M2〉 ∈ R). Then R is an undecidable language.

Proof
Weekly exercise.

Note that the ”Dollar-language” is not captured by Rice’s theorem. Writing a $ on the tape is
not a property concerning the language of the Turing machine.



Theorem (Rice’s theorem)

Let R be a language consisting of Turing machine descriptions, such that R contains some, but
not all Turing machine descriptions. Furthermore, let the membership in R for any Turing
machine M1, depend solely on the language of M1, that is:
L(M1) = L(M2) =⇒ (〈M1〉 ∈ R ↔ 〈M2〉 ∈ R). Then R is an undecidable language.

Proof
Weekly exercise.

Note that the ”Dollar-language” is not captured by Rice’s theorem. Writing a $ on the tape is
not a property concerning the language of the Turing machine.



Theorem (Rice’s theorem)

Let R be a language consisting of Turing machine descriptions, such that R contains some, but
not all Turing machine descriptions. Furthermore, let the membership in R for any Turing
machine M1, depend solely on the language of M1, that is:
L(M1) = L(M2) =⇒ (〈M1〉 ∈ R ↔ 〈M2〉 ∈ R). Then R is an undecidable language.

Proof
Weekly exercise.

Note that the ”Dollar-language” is not captured by Rice’s theorem. Writing a $ on the tape is
not a property concerning the language of the Turing machine.



Example (ACCEPT)

Let ACCEPT = {〈M,w〉| TM M accepts w}. Show that ACCEPT is an undecidable language
by giving a reduction from HALT .

Proof

We want to show HALT ≤T ACCEPT . Idea: construct 〈M ′,w ′〉 from 〈M,w〉 such that M ′

accepts w ′ iff M halts on w .
M ′ = ”Ignore the input:

(1) Simulate M on w .

(2) Accept.”

Now we may send M ′ together with some input to MACCEPT (the assumed decider for
ACCEPT ). If MACCEPT says that M ′ accepted its input, then we know that the simulation of
M on w must have halted. If MACCEPT rejects, then we know that M was looping on w .



Example (ACCEPT)

Let ACCEPT = {〈M,w〉| TM M accepts w}. Show that ACCEPT is an undecidable language
by giving a reduction from HALT .

Proof

We want to show HALT ≤T ACCEPT . Idea: construct 〈M ′,w ′〉 from 〈M,w〉 such that M ′

accepts w ′ iff M halts on w .
M ′ = ”Ignore the input:

(1) Simulate M on w .

(2) Accept.”

Now we may send M ′ together with some input to MACCEPT (the assumed decider for
ACCEPT ). If MACCEPT says that M ′ accepted its input, then we know that the simulation of
M on w must have halted. If MACCEPT rejects, then we know that M was looping on w .



Example (EMPTY)

Let EMPTY = {〈M〉|L(M) = ∅}. Show that EMPTY is an undecidable language by giving a
reduction from HALT .

Proof

We want to show HALT ≤T EMPTY . Idea: construct 〈M ′〉 from 〈M,w〉 such that L(M ′) 6= ∅
iff M halts on w .
M ′ = ”On input x:

(1) if (x 6= w), reject.

(2) Simulate M on w .

(3) Accept .”

Now we may send M ′ to MEMPTY (the assumed decider for EMPTY ). M ′ was constructed to
reject all inputs except w , and to only accept w if M halts on w . If L(M ′) 6= ∅ then M ′ must
have accepted w , so M must have halted on w . So if MEMPTY ”says yes” to M ′, we must ”say
no” to 〈M,w〉, and vice versa.



Mapping reductions

Definition (Computable functions)

A function f : Σ∗ → Σ∗ is a computable function if some Turing machine M, on every input w ,
halts with just f (w) on its tape.

Definition (Mapping reductions)

Language A is mapping reducible to language B, written A ≤m B, if there exists a computable
function f : Σ∗ → Σ∗, where for every w :
w ∈ A↔ f (w) ∈ B. The function f is called a reduction from A to B.



Mapping reductions

Definition (Computable functions)

A function f : Σ∗ → Σ∗ is a computable function if some Turing machine M, on every input w ,
halts with just f (w) on its tape.

Definition (Mapping reductions)

Language A is mapping reducible to language B, written A ≤m B, if there exists a computable
function f : Σ∗ → Σ∗, where for every w :
w ∈ A↔ f (w) ∈ B. The function f is called a reduction from A to B.



Theorem
If A ≤m B, and B is decidable, then A is decidable.

Theorem
If A ≤m B, and A is undecidable, then B is undecidable.



Theorem
If A ≤m B, and B is decidable, then A is decidable.

Theorem
If A ≤m B, and A is undecidable, then B is undecidable.



References

Michael Sipser. Introduction to the theory of computation. PWS Publishing Company,
1997. isbn: 978-0-534-94728-6.


