Undecidability
Lecture in INF4130

Department of Informatics

October 18th, 2018

Background from Lecture 1

e Formal Languages

e Turing Machines
o General purpose computational models
o Infinite tape

e Accepting, Rejecting and Looping
e Turing machines can simulate other Turing machines (Exercise-set-1, Universal Turing

machine)

e Church Turing Thesis

Terminology

Example (The language PRIMES)
PRIMES = {n | nis a prime number}.

Example (The decision problem PRIMALITY)

INSTANCE: A natural number, n.
QUESTION: Is n a prime number?

Example (Checking membership for PRIMES)
M = “On input n:
(1) if n < 2, reject.
(2) forall2 <i<+/n:
(3) if i divides n, reject.
(4)

4) accept.”

Definition (Turing-recognizable languages)

The set of stings A, that a Turing machine M accept, is called the language of M, or the
language recognized by M. We write A= L(M). A language is called Turing-recognizable if
some Turing machine recognizes it.

A,

Definition (Deciders)

A Turing machine that halts on all inputs, it is called a decider. If M is a decider it will either
accept or reject its input. The language A is said to be decided by M.

Definition (Turing-recognizable languages)

The set of stings A, that a Turing machine M accept, is called the language of M, or the
language recognized by M. We write A = L(M). A language is called Turing-recognizable if
some Turing machine recognizes it.

A,

Definition (Deciders)

A Turing machine that halts on all inputs, it is called a decider. If M is a decider it will either
accept or reject its input. The language A is said to be decided by M.

Definition (Decidable and undecidable languages)

A language is (Turing) decidable if there exists a Turing machine that decides it. If a language
is not decidable, we call it undecidable.

Example (Life on Mars, [1])

Let A be the language {s} where

_J0, if life never will be found on Mars.
~)1, iflife will be found on Mars someday.

Is A a decidable language or not?

Any finite language is decidable. I

Any finite language is decidable. \

If Ais a finite language, a decider Mp for A can be constructed by hard-coding all
yes-instances of A into Mp. On input w, Mp accepts if w is one of the yes-instances of A, and
rejects otherwise. O

e Are any languages undecidable, and if so, how do we prove it?

e Are any languages undecidable, and if so, how do we prove it?
o We will first prove that a particular problem is undecidable.

o After finding such a problem, we can show undecidability of other problems using a
technique called reductions.

Are any languages undecidable, and if so, how do we prove it?
We will first prove that a particular problem is undecidable.

After finding such a problem, we can show undecidability of other problems using a
technique called reductions.

We will meet a very similar situation in later lectures, when we define NP-completeness.

The Halting problem

The Halting problem

Definition (The Halting Problem)

INSTANCE: A Turing machine M with an input w.
QUESTION: Does M halt when run on w?

Definition (HALT)
HALT = {(M,w)|TM M halts on input w}

The Halting problem

Definition (The Halting Problem)

INSTANCE: A Turing machine M with an input w.
QUESTION: Does M halt when run on w?

Definition (HALT)
HALT = {(M,w)|TM M halts on input w}

HALT is an undecidable language. \

Intuition and proof overview

Why can we not just simulate M on w?

Intuition and proof overview

Why can we not just simulate M on w?
U = "On input (M, w):

(1) Simulate M on input w.

(2) If M accepts, accept.

(3) If M rejects, accept.”

The Turing machine U actually recognizes HALT, but it does not decide it. We need to show
that no Turing machine decides HALT .

Intuition and proof overview

Why can we not just simulate M on w?
U = "On input (M, w):
(1) Simulate M on input w.
(2) If M accepts, accept.
(3) If M rejects, accept.”
The Turing machine U actually recognizes HALT, but it does not decide it. We need to show

that no Turing machine decides HALT .
We will assume that Turing machine H decides HALT and from that derive a contradiction.

Proof of undecidability of HALT

Assume that there exists a TM H that decides HALT. H takes (M, w) as input and accepts if

M halts on w. If M loops forever on input w, H rejects.
We now construct the following TM called D:

Proof of undecidability of HALT

Assume that there exists a TM H that decides HALT. H takes (M, w) as input and accepts if
M halts on w. If M loops forever on input w, H rejects.
We now construct the following TM called D:
D = "On input (M):
(1) Simulate H on (My, (My)).
(2) If H accepts, loop forever.
(3) If H rejects, accept.”

Proof of undecidability of HALT

Assume that there exists a TM H that decides HALT. H takes (M, w) as input and accepts if
M halts on w. If M loops forever on input w, H rejects.
We now construct the following TM called D:
D = "On input (M):
(1) Simulate H on (My, (My)).
(2) If H accepts, loop forever.
(3) If H rejects, accept.”

What happens if we now run D on input (D)? Well, (1) D will send (D, (D)) to H which will
check if D halts on input D. If (2) H accepts then D will enter a loop and never halt, but if
(3) H rejects, then D will halt! Either way H will answer the question wrong. Thus we have a
contradiction, so our assumption that there existed a decider for HALT was false. [l

V.

We will now look at an alternative proof*.

Diagonalization proof of undecidability of HALT

*Actually the exact same proof as last slide, but from a different perspective

We will now look at an alternative proof*.

Diagonalization proof of undecidability of HALT

Again, we assume that H exist and create D as before. Remember that D checks if its input,
My, halts on itself by using H as a subroutine. Then D behaves the opposite way from how M;

behaves on itself. Now we create the following table where the entry i,j is the result of running
H on <M,', <Mj>>

*Actually the exact same proof as last slide, but from a different perspective

We will now look at an alternative proof*.

Diagonalization proof of undecidability of HALT

Again, we assume that H exist and create D as before. Remember that D checks if its input,
My, halts on itself by using H as a subroutine. Then D behaves the opposite way from how M;

behaves on itself. Now we create the following table where the entry i,j is the result of running
H on <M,', <Mj>>

(M) (My) (M) (Ma) ... (D)
M, | accept reject accept reject accept
M, | accept accept accept accept accept
Ms | reject reject reject reject ... reject
My | accept accept reject reject accept
D

*Actually the exact same proof as last slide, but from a different perspective

We will now look at an alternative proof*.

Diagonalization proof of undecidability of HALT

Again, we assume that H exist and create D as before. Remember that D checks if its input,
My, halts on itself by using H as a subroutine. Then D behaves the opposite way from how M;

behaves on itself. Now we create the following table where the entry i,j is the result of running
H on <M,', <Mj>>

(M) (My) (M) (Ma) ... (D)
M, | accept reject accept reject accept
M, | accept accept accept accept accept
Ms | reject reject reject reject ... reject
My | accept accept reject reject accept
D reject reject accept accept

*Actually the exact same proof as last slide, but from a different perspective

We will now look at an alternative proof*.

Diagonalization proof of undecidability of HALT

Again, we assume that H exist and create D as before. Remember that D checks if its input,
My, halts on itself by using H as a subroutine. Then D behaves the opposite way from how M;

behaves on itself. Now we create the following table where the entry i,j is the result of running
H on <M,', <Mj>>

(M) (My) (M) (Ma) ... (D)
M, | accept reject accept reject accept
M, | accept accept accept accept accept
Ms | reject reject reject reject ... reject
My | accept accept reject reject accept
D reject reject accept accept ?

*Actually the exact same proof as last slide, but from a different perspective

We will now look at an alternative proof*.

Diagonalization proof of undecidability of HALT

Again, we assume that H exist and create D as before. Remember that D checks if its input,
My, halts on itself by using H as a subroutine. Then D behaves the opposite way from how M;
behaves on itself. Now we create the following table where the entry i,j is the result of running
H on <M,', <Mj>>
(M) (M) (Ms) (Ma) ... (D)

M, | accept reject accept reject accept

M, | accept accept accept accept accept

Ms | reject reject reject reject ... reject

My | accept accept reject reject accept

D reject reject accept accept ?
Since D will accept the opposite of the diagonal, we have our contradiction. [l

*Actually the exact same proof as last slide, but from a different perspective

Reductions

Reductions

e translating one problem into another
e the typical way of showing undecidability, is via reductions

e more on reductions when we come to P and NP

Reductions

e translating one problem into another
e the typical way of showing undecidability, is via reductions

e more on reductions when we come to P and NP

Definition (Turing Reducibility)

Language A is (Turing) reducible to language B, written A <t B, if A is decidable given a
decider to B as a subroutine*.

*Such a decider for B is often called an oracle.

A typical reduction

Example (Dollar-language)
Let Ly = {(M)| TM M eventually writes a $ when started on a blank tape}

A typical reduction

Example (Dollar-language)
Let Ly = {(M)| TM M eventually writes a $ when started on a blank tape}

We will show how to reduce HALT to Lg. Since HALT is undecidable, we will know that Lg is
undecidable.

A typical reduction

Proof: Lg is undecidable
First we assume (for contradiction) that Lg is decidable, that is, Mg exists and decides Lg. We
now want to use Mg to create a decider for HALT (which we know cannot exist) to get our
contradiction.
H = “On input (M, w):
(1) Create TM M’ from (M, w) such that:
M’ = "lIgnore the input:
(1) Simulate M on w. // Note: important that this step doesn’t write $
(2) Write $ on the tape.
(3) Accept.”
(2) Simulate Mg on (M’).
(3) If My accepts, accept. If Mg rejects, reject.”

Comments to the proof that Lg is undecidable

e The reduction is very typical and actually straight forward

e The action "write $" seems very arbitrary

Comments to the proof that Lg is undecidable

e The reduction is very typical and actually straight forward

e The action "write $" seems very arbitrary

Theorem (Rice's theorem)

Let R be a language consisting of Turing machine descriptions, such that R contains some, but
not all Turing machine descriptions. Furthermore, let the membership in R for any Turing
machine My, depend solely on the language of My, that is:

L(My) = L(Mz) = ((M1) € R <> (M) € R). Then R is an undecidable language.

Theorem (Rice's theorem)

Let R be a language consisting of Turing machine descriptions, such that R contains some, but
not all Turing machine descriptions. Furthermore, let the membership in R for any Turing
machine My, depend solely on the language of My, that is:

L(My) = L(Mz) = ((M1) € R <> (M) € R). Then R is an undecidable language.

Weekly exercise. O \

Theorem (Rice's theorem)

Let R be a language consisting of Turing machine descriptions, such that R contains some, but
not all Turing machine descriptions. Furthermore, let the membership in R for any Turing
machine My, depend solely on the language of My, that is:

L(My) = L(Mz) = ((M1) € R <> (M) € R). Then R is an undecidable language.

Weekly exercise. O \

Note that the "Dollar-language” is not captured by Rice's theorem. Writing a $ on the tape is
not a property concerning the language of the Turing machine.

Example (ACCEPT)

Let ACCEPT = {{(M,w)| TM M accepts w}. Show that ACCEPT is an undecidable language
by giving a reduction from HALT .

Example (ACCEPT)

Let ACCEPT = {{(M,w)| TM M accepts w}. Show that ACCEPT is an undecidable language
by giving a reduction from HALT .

Proof

We want to show HALT <7 ACCEPT. ldea: construct (M’, w’) from (M, w) such that M’
accepts w’ iff M halts on w.
M’ = "lIgnore the input:

| A

(1) Simulate M on w.
(2) Accept.”
Now we may send M’ together with some input to Maccepr (the assumed decider for

ACCEPT). If Maccept says that M’ accepted its input, then we know that the simulation of
M on w must have halted. If Maccepr rejects, then we know that M was looping on w.]

v

Example (EMPTY)

Let EMPTY = {{M)|L(M) = ()}. Show that EMPTY is an undecidable language by giving a
reduction from HALT.

Proof

We want to show HALT < EMPTY . |dea: construct {M’) from (M, w) such that L(M’) # ()
iff M halts on w.
M’ ="0On input x:

(1) if (x # w), reject.

(2) Simulate M on w.

(3) Accept "
Now we may send M’ to Meppry (the assumed decider for EMPTY). M’ was constructed to
reject all inputs except w, and to only accept w if M halts on w. If L(M’) # () then M’ must

have accepted w, so M must have halted on w. So if Mgypry "says yes” to M’, we must "say
no” to (M, w), and vice versa. O

4

| A\

Mapping reductions

Definition (Computable functions)

A function f : ¥* — ¥* is a computable function if some Turing machine M, on every input w,
halts with just f(w) on its tape.

Mapping reductions

Definition (Computable functions)

A function f : ¥* — ¥* is a computable function if some Turing machine M, on every input w,
halts with just f(w) on its tape.

v

Definition (Mapping reductions)

Language A is mapping reducible to language B, written A <, B, if there exists a computable
function f : X* — ¥*, where for every w:
w € A < f(w) € B. The function f is called a reduction from A to B.

If A <,, B, and B is decidable, then A is decidable. I

If A<,, B, and B is decidable, then A is decidable.

If A <,, B, and A is undecidable, then B is undecidable. I

References

@ Michael Sipser. Introduction to the theory of computation. PWS Publishing Company,
1997. 1SBN: 978-0-534-94728-6.

