Undecidability Lecture in INF4130

Department of Informatics

October 18th, 2018

Background from Lecture 1

- Formal Languages
- Turing Machines
 - General purpose computational models
 - Infinite tape
 - · Accepting, Rejecting and Looping
 - Turing machines can simulate other Turing machines (Exercise-set-1, Universal Turing machine)
- Church Turing Thesis

Terminology

Example (The language PRIMES)

 $PRIMES = \{n \mid n \text{ is a prime number}\}.$

Example (The decision problem PRIMALITY)

INSTANCE: A natural number, *n*. QUESTION: Is *n* a prime number?

Example (Checking membership for PRIMES)

M = "On input n:

- (1) if n < 2, reject.
- (2) for all $2 \le i \le \sqrt{n}$:
- (3) if i divides n, reject.
- (4) accept."

Definition (Turing-recognizable languages)

The set of stings A, that a Turing machine M accept, is called the language of M, or the language recognized by M. We write A = L(M). A language is called Turing-recognizable if some Turing machine recognizes it.

Definition (Deciders)

A Turing machine that halts on all inputs, it is called a *decider*. If M is a decider it will either accept or reject its input. The language A is said to be *decided* by M.

Definition (Turing-recognizable languages)

The set of stings A, that a Turing machine M accept, is called the language of M, or the language recognized by M. We write A = L(M). A language is called Turing-recognizable if some Turing machine recognizes it.

Definition (Deciders)

A Turing machine that halts on all inputs, it is called a *decider*. If M is a decider it will either accept or reject its input. The language A is said to be *decided* by M.

Definition (Decidable and undecidable languages)

A language is (Turing) decidable if there exists a Turing machine that decides it. If a language is not decidable, we call it undecidable.

Example (Life on Mars, [1])

Let A be the language $\{s\}$ where

$$s = \begin{cases} 0, & \text{if life never will be found on Mars.} \\ 1, & \text{if life will be found on Mars someday.} \end{cases}$$

Is A a decidable language or not?

Theorem

Any finite language is decidable.

Theorem

Any finite language is decidable.

Proof

If A is a finite language, a decider M_D for A can be constructed by hard-coding all yes-instances of A into M_D . On input w, M_D accepts if w is one of the yes-instances of A, and rejects otherwise.

• Are any languages undecidable, and if so, how do we prove it?	

After finding such a problem, we can show undecidability of other problems using a

Are any languages undecidable, and if so, how do we prove it?
We will first prove that a particular problem is undecidable.

technique called reductions.

Are an	v languages	undecidable,	and if so	how do we	prove it?
- Ale all	y laliguages	undecidable,	and it so	, HOW GO WE	prove it:

- We will first prove that a particular problem is undecidable.

- After finding such a problem, we can show undecidability of other problems using a

technique called reductions.

• We will meet a very similar situation in later lectures, when we define NP-completeness.

The Halting problem

Definition (The Halting Problem)

INSTANCE: A Turing machine M with an input w. QUESTION: Does M halt when run on w?

Definition (HALT)

 $HALT = \{\langle M, w \rangle | TM M \text{ halts on input } w\}$

The Halting problem

Definition (The Halting Problem)

INSTANCE: A Turing machine M with an input w.

QUESTION: Does M halt when run on w?

Definition (HALT)

 $HALT = \{\langle M, w \rangle | TM M \text{ halts on input } w\}$

Theorem

HALT is an undecidable language.

Intuition and proof overview

Why can we not just simulate M on w?

Intuition and proof overview

Why can we not just simulate M on w? U = "On input $\langle M, w \rangle$:

- (1) Simulate M on input w.
- (2) If M accepts, accept.
- (3) If M rejects, accept."

The Turing machine U actually recognizes HALT, but it does not decide it. We need to show that no Turing machine decides HALT.

Intuition and proof overview

Why can we not just simulate M on w? U = "On input $\langle M, w \rangle$:

- o.....pac (..., 117).
- (1) Simulate M on input w.
- (2) If M accepts, accept.
- (3) If M rejects, accept."

The Turing machine U actually recognizes HALT, but it does not decide it. We need to show that no Turing machine decides HALT.

We will assume that Turing machine H decides HALT and from that derive a contradiction.

Proof of undecidability of HALT

Assume that there exists a TM H that decides HALT. H takes $\langle M, w \rangle$ as input and accepts if M halts on w. If M loops forever on input w, H rejects.

We now construct the following TM called D:

Proof of undecidability of HALT

Assume that there exists a TM H that decides HALT. H takes $\langle M, w \rangle$ as input and accepts if M halts on w. If M loops forever on input w, H rejects.

We now construct the following TM called D:

We now construct the following TM called
$$L$$
 $D =$ "On input $\langle M_1 \rangle$:

- (1) Simulate H on $\langle M_1, \langle M_1 \rangle \rangle$.
 - (2) If H accepts, loop forever.
 - (3) If H rejects, accept."

Proof of undecidability of HALT

Assume that there exists a TM H that decides HALT. H takes $\langle M, w \rangle$ as input and accepts if M halts on w. If M loops forever on input w, H rejects.

We now construct the following TM called D:

D = "On input $\langle M_1 \rangle$:

- (1) Simulate H on $\langle M_1, \langle M_1 \rangle \rangle$.
- (2) If H accepts, loop forever.
- (3) If H rejects, accept."

What happens if we now run D on input $\langle D \rangle$? Well, (1) D will send $\langle D, \langle D \rangle \rangle$ to H which will check if D halts on input D. If (2) H accepts then D will enter a loop and never halt, but if (3) H rejects, then D will halt! Either way H will answer the question wrong. Thus we have a contradiction, so our assumption that there existed a decider for HALT was false.

Diagonalization proof of undecidability of HALT

^{*}Actually the exact same proof as last slide, but from a different perspective

Diagonalization proof of undecidability of HALT

Again, we assume that H exist and create D as before. Remember that D checks if its input, M_1 , halts on itself by using H as a subroutine. Then D behaves the opposite way from how M_1 behaves on itself. Now we create the following table where the entry i,j is the result of running H on $\langle M_i, \langle M_i \rangle \rangle$:

^{*}Actually the exact same proof as last slide, but from a different perspective

Diagonalization proof of undecidability of HALT

Again, we assume that H exist and create D as before. Remember that D checks if its input, M_1 , halts on itself by using H as a subroutine. Then D behaves the opposite way from how M_1 behaves on itself. Now we create the following table where the entry i,j is the result of running H on $\langle M_i, \langle M_j \rangle \rangle$:

	$\langle \mathcal{M}_1 angle$	$\langle M_2 angle$	$\langle M_3 angle$	$\langle M_4 angle$		$\langle D \rangle$	
M_1	accept	reject	accept	reject		accept	
M_2	accept	accept	accept	accept		accept	
M_3	reject	reject	reject	reject		reject	
M_4	accept	accept	reject	reject		accept	
:			:		٠.		
•			•				
D							

^{*}Actually the exact same proof as last slide, but from a different perspective

Diagonalization proof of undecidability of HALT

Again, we assume that H exist and create D as before. Remember that D checks if its input, M_1 , halts on itself by using H as a subroutine. Then D behaves the opposite way from how M_1 behaves on itself. Now we create the following table where the entry i,j is the result of running H on $\langle M_i, \langle M_j \rangle \rangle$:

	$\langle \mathcal{M}_1 angle$	$\langle M_2 angle$	$\langle M_3 angle$	$\langle M_4 angle$		$\langle D angle$	
M_1	accept	reject	accept	reject		accept	
M_2	accept	accept	accept	accept		accept	
M_3	reject	reject	reject	reject		reject	
M_4	accept	accept	reject	reject		accept	
:			:		• .		
D	reject	reject	accept	accept			

^{*}Actually the exact same proof as last slide, but from a different perspective

Diagonalization proof of undecidability of HALT

Again, we assume that H exist and create D as before. Remember that D checks if its input, M_1 , halts on itself by using H as a subroutine. Then D behaves the opposite way from how M_1 behaves on itself. Now we create the following table where the entry i,j is the result of running H on $\langle M_i, \langle M_j \rangle \rangle$:

	$\langle \mathcal{M}_1 angle$	$\langle M_2 \rangle$	$\langle M_3 angle$	$\langle M_4 \rangle$		$\langle D \rangle$	
M_1	accept	reject	accept	reject		accept	
M_2	accept	accept	accept	accept		accept	
M_3	reject	reject	reject	reject		reject	
M_4	accept	accept	reject	reject		accept	
:			:		٠		
D	reject	reject	accept	accept		<u>?</u>	
:			:				٠

^{*}Actually the exact same proof as last slide, but from a different perspective

Diagonalization proof of undecidability of HALT

Again, we assume that H exist and create D as before. Remember that D checks if its input, M_1 , halts on itself by using H as a subroutine. Then D behaves the opposite way from how M_1 behaves on itself. Now we create the following table where the entry i,j is the result of running H on $\langle M_i, \langle M_i \rangle \rangle$:

	$\langle \mathcal{M}_1 angle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 angle$		$\langle D \rangle$	
M_1	accept	reject	accept	reject		accept	
M_2	accept	accept	accept	accept		accept	
M_3	reject	reject	reject	reject		reject	
M_4	accept	accept	reject	reject		accept	
:			:		٠		
D	reject	reject	accept	accept		<u>?</u>	
:			:				٠.

Since *D* will accept the opposite of the diagonal, we have our contradiction.

^{*}Actually the exact same proof as last slide, but from a different perspective

Reductions

Reductions

- translating one problem into another
- the typical way of showing undecidability, is via reductions
- more on reductions when we come to P and NP

Reductions

- translating one problem into another
- the typical way of showing undecidability, is via reductions
- more on reductions when we come to P and NP

Definition (Turing Reducibility)

Language A is (*Turing*) reducible to language B, written $A \leq_T B$, if A is decidable given a decider to B as a subroutine*.

*Such a decider for B is often called an oracle.

A typical reduction

Example (Dollar-language)

Let $L_\$ = \{\langle M \rangle | \ \mathsf{TM} \ M \ \mathsf{eventually} \ \mathsf{writes} \ \mathsf{a} \ \$ \ \mathsf{when} \ \mathsf{started} \ \mathsf{on} \ \mathsf{a} \ \mathsf{blank} \ \mathsf{tape} \}$

A typical reduction

Example (Dollar-language)

Let $L_{\$} = \{ \langle M \rangle | \text{ TM } M \text{ eventually writes a \$ when started on a blank tape} \}$

We will show how to reduce HALT to $L_{\$}$. Since HALT is undecidable, we will know that $L_{\$}$ is undecidable.

A typical reduction

Proof: $L_{\$}$ is undecidable

First we assume (for contradiction) that $L_{\$}$ is decidable, that is, $M_{\$}$ exists and decides $L_{\$}$. We now want to use $M_{\$}$ to create a decider for HALT (which we know cannot exist) to get our contradiction.

H = "On input $\langle M, w \rangle$:

- (1) Create TM M' from $\langle M, w \rangle$ such that: M' = "Ignore the input:
 - (1) Simulate M on w. // Note: important that this step doesn't write \$
 - (2) Write \$ on the tape.
 - (3) Accept."
- (2) Simulate $M_{\$}$ on $\langle M' \rangle$.
- (3) If $M_{\$}$ accepts, accept. If $M_{\$}$ rejects, reject."

Comments to the proof that $L_{\$}$ is undecidable

- The reduction is very typical and actually straight forward
- The action "write \$" seems very arbitrary

Comments to the proof that $L_{\$}$ is undecidable

- The reduction is very typical and actually straight forward
- The action "write \$" seems very arbitrary

Theorem (Rice's theorem)

Let R be a language consisting of Turing machine descriptions, such that R contains some, but not all Turing machine descriptions. Furthermore, let the membership in R for any Turing

machine
$$M_1$$
, depend solely on the language of M_1 , that is: $L(M_1) = L(M_2) \implies (\langle M_1 \rangle \in R \leftrightarrow \langle M_2 \rangle \in R)$. Then R is an undecidable language.

Theorem (Rice's theorem)

Let R be a language consisting of Turing machine descriptions, such that R contains some, but not all Turing machine descriptions. Furthermore, let the membership in R for any Turing machine M_1 , depend solely on the language of M_1 , that is:

 $L(M_1) = L(M_2) \implies (\langle M_1 \rangle \in R \leftrightarrow \langle M_2 \rangle \in R)$. Then R is an undecidable language.

Proof

Weekly exercise.

Theorem (Rice's theorem)

Let R be a language consisting of Turing machine descriptions, such that R contains some, but not all Turing machine descriptions. Furthermore, let the membership in R for any Turing machine M_1 , depend solely on the language of M_1 , that is:

 $L(M_1) = L(M_2) \implies (\langle M_1 \rangle \in R \leftrightarrow \langle M_2 \rangle \in R)$. Then R is an undecidable language.

Proof

Weekly exercise.

Note that the "Dollar-language" is not captured by Rice's theorem. Writing a \$ on the tape is not a property concerning the language of the Turing machine.

Example (ACCEPT)

Let $ACCEPT = \{ \langle M, w \rangle | \text{ TM } M \text{ accepts } w \}$. Show that ACCEPT is an undecidable language by giving a reduction from HALT.

Example (ACCEPT)

Let $ACCEPT = \{ \langle M, w \rangle | \text{ TM } M \text{ accepts } w \}$. Show that ACCEPT is an undecidable language by giving a reduction from HALT.

Proof

We want to show $HALT \leq_T ACCEPT$. Idea: construct $\langle M', w' \rangle$ from $\langle M, w \rangle$ such that M' accepts w' iff M halts on w.

- M' = "Ignore the input:
 - (1) Simulate M on w.
 - (2) Accept."

Now we may send M' together with some input to M_{ACCEPT} (the assumed decider for ACCEPT). If M_{ACCEPT} says that M' accepted its input, then we know that the simulation of M on w must have halted. If M_{ACCEPT} rejects, then we know that M was looping on w.

Example (EMPTY)

Let $EMPTY = \{\langle M \rangle | L(M) = \emptyset\}$. Show that EMPTY is an undecidable language by giving a reduction from HALT.

Proof

We want to show $HALT \leq_T EMPTY$. Idea: construct $\langle M' \rangle$ from $\langle M, w \rangle$ such that $L(M') \neq \emptyset$ iff M halts on w

- M' = "On input x:
 - (1) if $(x \neq w)$, reject.
 - (2) Simulate M on w.
 - (3) Accept ."

Now we may send M' to M_{EMPTY} (the assumed decider for EMPTY). M' was constructed to reject all inputs except w, and to only accept w if M halts on w. If $L(M') \neq \emptyset$ then M' must have accepted w, so M must have halted on w. So if M_{EMPTY} "says yes" to M', we must "say no" to $\langle M, w \rangle$, and vice versa.

Mapping reductions

Definition (Computable functions)

A function $f: \Sigma^* \to \Sigma^*$ is a *computable function* if some Turing machine M, on every input w, halts with just f(w) on its tape.

Mapping reductions

Definition (Computable functions)

A function $f: \Sigma^* \to \Sigma^*$ is a *computable function* if some Turing machine M, on every input w, halts with just f(w) on its tape.

Definition (Mapping reductions)

Language A is mapping reducible to language B, written $A \leq_m B$, if there exists a computable function $f: \Sigma^* \to \Sigma^*$, where for every w:

 $w \in A \leftrightarrow f(w) \in B$. The function f is called a reduction from A to B.

Theorem

If $A \leq_m B$, and B is decidable, then A is decidable.

Theorem

If $A \leq_m B$, and B is decidable, then A is decidable.

Theorem

If $A \leq_m B$, and A is undecidable, then B is undecidable.

References

Michael Sipser. *Introduction to the theory of computation*. PWS Publishing Company, 1997. ISBN: 978-0-534-94728-6.