
Universitetet i Oslo
Institutt for Informatikk

PMA
Martin Steffen, Violet Ka I Pun

INF 4140: Models of Concurrency
Høst 2013 13. 9. 2013Series 3

Topic: Semaphores

Issued: 13. 9. 2013

Exercise 1 In the critical section protocols in the book, every process executes the same
algorithm; these are symmetric solutions. It is also possible to solve the problem using a
coordinator process. In particular, when a regular process CS[i] wants to enter its critical
section, it tells the coordinator, then waits for the coordinator to grant permission.

Assume there are n processes numbered 1 to n. Develop entry and exit protocols for the
regular processes and code for the coordinator process. Use flags and await-statements
for synchronization. The solution must work if regular processes terminates outside the
critical section.

Exercise 2 Given the following routine:

print() {

process P1 {
write(‘‘line 1’’); write(‘‘line 2’’);

}

process P2 {
write(‘‘line 3’’); write(‘‘line 4’’);

}

process P3 {
write(‘‘line 5’’); write(‘‘line 6’’);

}

}

1. How many different outputs could this program produce? Explain your reasoning.

2. Add semaphores to the program so that the six lines of output are printet in the
order 1,2,3,4,5,6. Declare and initialize any semaphores you need and add P and V
operations to the above processes.

www.uio.no
http://www.ifi.uio.no


Series 3 13. 9. 2013

Exercise 3 Several processes share a resource that has U units. Processes request one
unit at a time, but may release several. The routines request and release are atomic
operations as shown below.

int free = U;

request() : # < await (free > 0) free := free - 1; >

release(int number): # < free := free + number; >

Develop implementations of request and release. Use semaphores for synchroniza-
tion. Be sure to declare and initialize additional variables that you need.

Exercise 4 Consider the following program:

int x = 0, y = 0, z = 0;
sem lock1 = 1, lock2 = 1;

process foo { process bar {
z := z + 2; P(lock2);
P(lock1); y := y + 1;
x := x + 2; P(lock1);
P(lock2); x := x + 1;
V(lock1); V(lock1);
y := y + 2; V(lock2);
V(lock2); z := z + 1;

} }

1. This program might deadlock. How?

2. What are the possible final values of x,y, and z in the deadlock state?

3. What are the possible final values of x,y, and z if the program terminates? (Re-
member that an assignment z = z + 1 consists of two atomic operations on z.)

Exercise 5 Further exercises from the textbook:

4.3, 4.4a, 4,13, 4.29, 4.34a, 4.36

References

[1] G. R. Andrews. Foundations of Multithreaded, Parallel, and Distributed Programming.
Addison-Wesley, 2000.

2


