
Universitetet i Oslo
Institutt for Informatikk

PMA

Martin Steffen, Violet Ka I Pun

INF 4140: Models of Concurrency
Høst 2013 7. 11. 2013Series 9

Topic: Histories

Issued: 7. 11. 2013

Exercise 1 (History functions) Using the techniques on the slides from lecture 10,
define the following functions over histories:

1. a Boolean function endswith : Hist × Set → Bool such that h endswith s is
true if h is nonempty and ends with an event in the set s. For instance, [a, b, c, d]
endswith {b, c} is false, ε endswith {b, c} is false, and [a, b, c, d] endswith {b, d}
is true.

2. a Boolean function beginswith : Hist×Set→ Bool such that h beginswith s is
true if h is nonempty and begins with an event in the set s. For instance, [a, b, c, d]
beginswith {b, c} is false, ε beginswith {b, c} is false, and [a, b, c, d] beginswith
{b, a} is true.

3. a Boolean function testing if one history is a subsequence of another history,
v : Hist ×Hist → Bool. For instance, [b, d, e] v [a, b, c, d, e], but not [b, e, d] v

[a, b, c, d, e].

4. a function \ : Hist×Set→ Hist such that h\s is the subsequence of h consisting
of all events not in the set s. For instance, [a, b, c, b, d, a]\{d, c} is [a, b, b, a].

5. a function pending : Hist→ Hist such that pending(h) is the sequence of all send
messages that not yet have been received. For instance, pending([A ↑ B : m1, A ↑
B : m2, A ↑ B : m1, A ↓ B : m1]) is [A ↑ B : m1, A ↑ B : m2]. (In case there are
several identical send messages, and some but not all of these have been received,
you may choose the order of the remaining ones as you wish. For instance, the
example above could give the result [A ↑ B : m2, A ↑ B : m1].) Hint: here you need
to distinguish between send and receive events in the definition, and you may need
to introduce an additional function.

www.uio.no
http://www.ifi.uio.no


Series 9 7. 11. 2013

Exercise 2 (Coin Machine Users) Consider the coin machine in lecture 10, where the
history invariant for the coin machine C is defined over the global history H by:

IC(H/αC) = 0 ≤ sum(H/ ↓ C)− sum(H/C ↑) < 15

In the lecture, a coin machine agent C was composed with a user agent U with exact
change. We will here consider the composition of C with two different users, U1 and U2.

(a) User U1 inserts only “5 krone” coins, i.e., U1 only sends five messages. The user is
specified by the following invariant:

IU1(H/αU1) = H/{U1 ↑: one} = ε ∧ sum(H/U1 ↑)− sum(H/ ↓ U1) = 0 ∨ 5 ∨ 10

where the formula P = a ∨ b ∨ c is an abbreviation for P = a ∨ P = b ∨ P = c.

Write down the global invariant for the system consisting of C and U1. Is it possible
to use the legal function to simplify this invariant? For instance, may we say some-
thing more precise about the difference sum(H/ ↓ C) − sum(H/C ↑) compared to
what we know from IC?

(b) User U2 sends both five and one messages to the coin machine, but U2 never cares
about collecting the coins returned by the machine. User U2 is specified by the
following invariant:

IU2(H/αU2) = 0 ≤ sum(H/U2 ↑) ∧ sum(H/ ↓ U2) = 0

Write down the global invariant for the system consisting of C and U2. Is it possible
to use the legal function to simplify this global invariant?

2


