
Series 10 12. 11. 2013

Universitetet i Oslo
Institutt for Informatikk

PMA

Martin Steffen, Violet Ka I Pun

INF 4140: Models of Concurrency
Høst 2013 12. 11. 2013Series 10

Topic: Local reasoning

Issued: 12. 11. 2013

Exercise 1 (The Coin Machine Example Revisited) Consider the coin machine ex-
ample from the slides to lecture 11.

(a) Verification conditions for the Hoare analysis
Convince yourself that the verification conditions on slide 17 and 18 are satisfied.

(b) Local history invariant
Consider the history invariant IC(h) for the coin machine (slide 23). Ensure that
this invariant is satisfied after the two receive statements in the coin machine imple-
mentation (on slide 14).

A weakness with the history invariant IC(h) is that it does not express that once the bal-
ance b gets greater than 10, the coin machine will immediately send a ten message. Thus,
even though this property is satisfied by the implementation on page 14, it is not reflected
by the history invariant. (The invariant IC(h) will be satisfied by an implementation that
accepts one messages as long as the balance is less than 15.) In the next exercise we
therefore consider a stronger history invariant.

(c) Strengthened history invariant
Consider the local history invariant IC(h) defined by:

IC(ε) = true
IC(h; (U ↓C : five)) = 0 ≤ diff(h) < 10
IC(h; (U ↓C : one)) = 0 ≤ diff(h) < 10
IC(h; (C ↑U : ten)) = 10 ≤ diff(h) < 15

where diff(h) is defined by sum(h/ ↓) − sum(h/ ↑). The task here is to prove this
local history invariant, reusing the loop invariants from the slides: you must prove
that the local history invariant is satisfied after each send and receive statement.

Hint: If the local condition is not strong enough to prove the local history invariant
after a send/receive statement, you may instead make a new Hoare proof, proving
that the precondition you have in the loop gives you the local invariant at the place
where it should hold. For instance, for the case of receiving one, you may prove that
the inner loop invariant together with the negation of the loop test before the await
one-statement gives the local invariant after.

1

www.uio.no
http://www.ifi.uio.no

Series 10 12. 11. 2013

Exercise 2 (The Mini Bank Example (as far as time allows)) Here we consider the
Mini bank (ATM) example from Lecture 11. To simplify the mini bank, we omit all mes-
sages and information about pin codes. Thus, pin messages between M and C are ignored.
(The bank assumes the the clients are honest.) For instance, CycleM is simplified to:

[C ↓M : card in(n),M ↑C : amount, C ↓M : amount(y),
if y ≤ 0 then ε else
M ↑B : request(n, y), [B ↓M : deny | B ↓M : grant,M ↑C : cash(y)] fi ,
M ↑C : card out some C, n, y]∗

(a) Mini bank implementation
Make an implementation of the simplified mini bank M by means of a ”while true
do ... od” loop. You may use the choice operator [] as explained in Lecture 10 and
11. Program such that h is CycleM is the loop invariant.

Hint: In order to express that M is waiting for either a deny message or a grant
message from B, you may use the programming construct (S[]S′) where S and S′ are
statement lists, and [] denotes choice. In particular, the construct (await msg;S [] await msg′;S′)
will await the first message matching msg or msg′ and select that branch, while skip-
ping the other branch. For instance, the statement

(await B : grant; . . . [] await B : deny; . . .)

will let you wait for either an incoming grant message or a deny message.

(b) Entry condition
Show that the loop invariant holds upon entry of the loop.

(c) Invariance
Verify by the Hoare Logic from Lecture 11, that the loop invariant is maintained by
each iteration of the loop.

(d) Proof of local history invariant
Prove that the local mini bank history invariant h ≤ CycleM is satisfied after each
send and receive statement, by proving

Q⇒ (h ≤ CycleM)

for each postcondition Q of a send/receive statement.
Remark that (h;x ≤ CycleM) implies (h ≤ CycleM) which may simplify the proof.

(e) Improved mini bank
The slides from Lecture 11 presented local history invariants for three kinds of agents:
the client (C), the mini bank (M), and the central bank (B), and a global invariant
was found.

The mini bank could be improved by introducing two new events cash taken from
C to M, and card taken from C to M, representing the removal of cash by the client,
and the removal of card by the client, respectively. Assume as above that pin codes
are ignored.

1. Write a new local invariant for Clients, ensuring that a card out event is followed
by a card taken event, and similarly that a cash out event is followed by a
cash taken event.

2

Series 10 12. 11. 2013

2. Rewrite the invariants for the central bank and the mini bank, adding behavior
for the new events and such that all information and messages about pin-codes
are removed. (You do not need to modify the above implementation of M or
redo the Hoare analysis.)

3. Use the composition rule to find a global invariant for the system with one
client, one mini bank and one central bank.

4. Compare the result with the global invariant from the slides.

3

