UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Examination in: INF4140 — Models of Concurrency
Day of examination: 14. December 2009

Examination hours:  14.30-17.30

This problem set consists of 5 pages.

Appendices: None

Permitted aids: All written and printed

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

Some general advises and remarks:

e This problem set consists of two independent parts. It is wise to make

good use of your time.

e You should read the whole problem set before you start solving the

problems.

e You can score a total of 100 points on this exam. The number of points

stated on each part indicates the weight of that part.

e You can make your own clarifications if you find the examination text
ambiguous or imprecise. Such clarifications must be written clearly in

the delivered answer.

e Make short and clear explanations!

Good luck!

(Continued on page 2.)



Examination in INF4140, 14. December 2009 Page 2

Problem 1 Chatting (weight 50)

We here consider the following description of a synchronization problem:

A number of clients are interested in communicating with other
clients by finding a chat-partner. It does not matter which other
client a client communicates with, but if client A has client B as a
partner then client B should have client A as a partner. Identities
must be exchanged in order to communicate.

Note that clients know their own id and the task is to find the
partner’s id.

la Semaphore Solution (weight 20)

Provide an implementation of the synchronization part of the clients by filling
in code for the dots in the sketch below. Use semaphores for synchronization.
Remember to declare and initialize the semaphores.

e # global variables
process Chat_Client[i = 1 to M]{
int partner_id;

[chatting]
by

1b  Monitor Solution (weight 20)

The synchronization will now be moved from the clients to a chat server
that handles requests from the clients. When a client wants to establish
a communication link, it invokes a findPartner call on a chat server.
Whenever two clients have invoked findPartner, the chat server provides
the clients with their partner’s id.

Provide a monitor implementation of the chat server by filling in code for
the dots in the sketch below. Specify which signalling discipline you use.

monitor Chat_Server{
procedure findPartner(int id, int &partner_id){

}

(Continued on page 3.)



Examination in INF4140, 14. December 2009 Page 3

lc Fairness (weight 5)

Under what conditions is the following statement true for your solution to
Problem 1b?

A call to findParter will always terminate.

1d Symmetry (weight 5)

Does your solution to Problem 1b fulfill the following property?

If client A has client B as a partner then client B has client A as
a partner.

Explain briefly!

(Continued on page 4.)



Examination in INF4140, 14. December 2009 Page 4

Problem 2 Asynchronous Communication:
Chat Server (weight 50)

Reconsider the chat problem:

A number of clients are interested in communicating with other
clients by finding chat partners. When a client wants to establish
a communication link, it sends a request message to a chat server.
When the chat server has received two request messages, it sends
open messages to the two clients providing their partner’s identity
as a parameter.

Below you are asked to make a solution to certain parts of the chatting
problem, based on asynchronous message passing using the language with
send and await statements.’

2a  Implementing the Chat Server (weight 15)

Program the chat server as explained above so that any number of clients
can ask for partners. A client wishing to get a partner could be programmed
according to the following sketch:

send S:request; await S:open(X);

where “...” indicates communication (i.e., chatting) with X. The open message
acts as an answer to the request message, giving the client a partner (i.e.,
X).

Your task is to program the chat server S. The program should have the form
of a loop (since it should be able to handle any number of requests) with a
loop invariant expressing that all requests seen so far have been answered.
You will later be asked to write the loop invariant.

!The statement send X : m(par) sends the message m with parameters par to agent
X, and the statement await X : m(y) waits (actively) for a message m from agent X and
receives the parameters in variable y, and the statement await X ?m(y) waits (actively)
for a message m from any agent X and receives the parameters in variable y and stores
the identity of the sending agent in variable X.

(Continued on page 5.)



Examination in INF4140, 14. December 2009 Page 5

2b Events (weight 3)

What are the events of the chat server S (i.e. ag)?

2c  Functions over the history (weight 7)

Define a function waiting over the local history of S to calculate the set of
clients waiting to get a partner.

2d Loop Invariant (weight 15)

Formulate a loop invariant of S over its local history h. The invariant should
express the informal property explained above (i.e., “all requests seen so far
have been answered”). Hint: You may use the waiting function from the
previous question (even if you have not defined it).

Verify that this loop invariant is satisfied by your implementation, by means
of Hoare Logic (with the extension to send and await statements).

2e History Invariant (weight 5)

Formulate an invariant of S over its local history h, which always holds,
and show that this invariant holds after each interaction point (informal
argumentation suffices here).

2f Comparison with chatting in Creol (weight 5)

Assume now that the clients may send open messages to each other: For
instance if a client receives two open messages from S, say with A and B as
parameters, it may notify A of B (by executing send A : open(B)) so that
also A and B may chat.

A client may therefore want to accept such open calls at any time, and at
the same time chat with its partners, and possibly ask S for more partners.

Discuss briefly if such a client is easy to program in the send /await language
with || for non-deterministic choice, and discuss if it is easier to program such
a client in the Creol language.



