
INF4140 - Models of concurrency

Høsten 2013

Institutt for informatikk, Universitetet i Oslo

August 27, 2013

INF4140 - Models of concurrency

Høsten 2013

Institutt for informatikk, Universitetet i Oslo

August 27, 2013

1 Intro
Warming up
The await language
Semantics and properties

Intro

INF4140 - Models of concurrency
Intro, lecture 1

Høsten 2013

26. 08. 2013

Today’s agenda

Introduction
overview
motivation: why is this course important
simple examples and considerations

Start
a bit about

concurrent programming with critical sections and waiting,
read also Chap 1 for a little background
interference
the await language

What this course is about

Fundamental issues related to cooperating parallel processes
How to think about developing parallel processes
Various language mechanisms, design patterns, and paradigms
Deeper understanding of parallel processes:

(informal and somewhat formal) analysis,
properties

Parallel processes

Sequential program: one control flow thread
Parallel program: several control flow threads

Parallel processes need to exchange information.
We will study two different ways to organize communication
between processes:

Reading from and writing to shared variables (part I of the
course)
Communication with messages between processes (part II of
the course)

shared memory

thread0 thread1

course overview – part I: Shared variables

atomic operations
interference
deadlock, livelock, liveness, fairness
parallel programs with locks, critical sections and (active)
waiting
semaphores and passive waiting
monitors
formal analysis (Hoare logic), invariants
Java: threads and synchronization

Course overview – part II: Communication

asynchronous and synchronous message passing
Basic mechanisms: RPC (remote procedure call), rendezvous,
client/server setting, channels
Java’s mechanisms
analysis using histories
asynchronous systems

Part I: shared variables

Why shared (global) variables?

reflected in HW in conventional architectures
Here’s the situation: There may be several CPUs inside one
machine.
natural interaction for tightly coupled systems
used in many important languages, e.g., Java’s multithreading
model.
do as if one has many processes, in order to get a natural
partitioning
potentially greater efficiency if several things happen/appear
to happen “at the same time”

e.g.: several active windows at the same time

Simple example

Global variables: x , y , and z . Consider the following program:

x := x + z ; y := y + z ;

Pre/post-condition
executing a program (fragment) ⇒ state-change
the conditions describe the state of the global variables before
and after a program statement
These conditions are meant to give an understanding of the
program, and are not part of the executed code.

Can we use parallelism here?
If operations can be performed independently of one another, then
concurrency may increase performance

Simple example

Global variables: x , y , and z . Consider the following program:

pre post

{x is a and y is b} x := x + z ; y := y + z ; {x is a+z and y is b+z}

Pre/post-condition
executing a program (fragment) ⇒ state-change
the conditions describe the state of the global variables before
and after a program statement
These conditions are meant to give an understanding of the
program, and are not part of the executed code.

Can we use parallelism here?
If operations can be performed independently of one another, then
concurrency may increase performance

Parallel operator ‖

Extend the language with a construction for parallel composition:

co S1 ‖ S2 ‖ . . . ‖ Sn oc

Execution of a parallel composition happens via the concurrent
execution of the component processes S1, . . . , Sn and terminates
normally if all component processes terminate normally.
Example Thus we can write an example as follows:

Example

{ x is a, y is b } x := z ; y := y + x ; { x is a + z , y is b + z }

Parallel operator ‖

Extend the language with a construction for parallel composition:

co S1 ‖ S2 ‖ . . . ‖ Sn oc

Execution of a parallel composition happens via the concurrent
execution of the component processes S1, . . . , Sn and terminates
normally if all component processes terminate normally.
Example Thus we can write an example as follows:

Example

{ x is a, y is b } co x := z ‖ y := y+x ; oc { x is a + z , y is b + z }

Interaction between processes

Processes can interact with each other in two different ways:
cooperation to obtain a result
competition for common resources

The organization of this interaction is what we will call
synchronization.

increasing “atomicity” and Mutual exclusion (Mutex). : We
introduce critical sections of which cannot be executed
concurrently
Condition synchronization. A process must wait for a specific
condition to be satisfied before execution can continue.

Concurrent processes: Atomic operations

Definition (Atomic)

An operation is atomic if it cannot be subdivided into smaller
components.

Note
A statement with at most one atomic operation, in addition to
operations on local variables, can be considered atomic!
We can do as if atomic operations do not happen concurrently!

What is atomic depends on the language/setting: fine-grained
and coarse-grained atomicity.
e.g.: Reading and writing of a global variable is usually atomic.
Some (high-level) languages: assignments x := e atomic
operation, others not (reading of the variables in the expression
e, computation of the value e, followed by writing to x .)

Atomic operations on global variables

fundamental for (shared var) concurrency
also: process communication may be represented by variables:
communication channel corresponds to a variable of type
vector.
associated to global variables: a set of atomic operations
typically: read + write,
in HW, e.g. LOAD/STORE
channels as gobal data: send and receive
x-operations: atomic operations on a variable x

Mutual exclusion
Atomic operations on a variable cannot happen simultaneously.

Example

P1 P2
{ x = 0 } co x := x + 1 ‖ x := x − 1 oc; {?}

final state? (i.e., post-condition)

Assume:
each process is executed on its own processor
and/or: the processes run on a multi-tasking OS

and that x is part of a shared state space, i.e. a shared var
Arithmetic operations in the two processes can be executed
simultaneously, but read and write operations on x must be
performed sequentially/atomically.
order of these operations: dependent on relative processor
speed and/or scheduling
outcome of such programs: difficult to predict!

Atomic read and write operations

P1 P2
{ x = 0 } co x := x + 1 ‖ x := x − 1 oc; {?}

read x ;
i n c ;
w r i t e x ;

4 atomic x-operations:
P1 reads (R1) value of x
P1 writes (W1) a value into x ,
P2 reads (R2) value of x , and
P2 writes (W2) a value into x .

Interleaving & possible execution sequences

“program order”:1

R1 must happen before W1 and
R2 before W2

inc and dec (“-1”) work process-local2

⇒ remember (e.g.) inc ; write x behaves “as if” atomic
(alternatively read x; inc)

operations can be sequenced in 6 ways (“interleaving”)

R1 R1 R1 R2 R2 R2
W1 R2 R2 R1 R1 W2
R2 W1 W2 W1 W2 R1
W2 W2 W1 W2 W1 W1
0 -1 1 -1 1 0

1A word aside: as natural as this seems: in a number of modern
architecture/modern languages & their compilers, this is not guaranteed!. cf.
Java’s memory model

2e.g.: in an arithmetic register, or a local variable (not mentioned in the
code).

Non-determinism

final states of the program (in x): {0, 1,−1}
Non-determinism: result can vary depending on factors outside
the program code

timing of the execution
scheduler

as (post)-condition:3 x=−1 ∨ x=0 ∨ x=1

{ } x := 0; co x := x + 1 ‖ x := x − 1 oc; { x=−1 ∨ x=0 ∨ x=1 }

3Of course, things like x ∈ {−1, 0, 1} or −1 ≤ x ≤ 1 are equally adequate
formulations of the postcondition.

State-space explosion

Assume 3 processes, each with the same number of atomic
operations
consider executions of P1 ‖ P2 ‖ P3

nr. of atomic op’s nr. of executions
2 90
3 1680
4 34 650
5 756 756

different executions can lead to different final states.
even for simple systems: impossible to consider every possible
execution

For n processes with m atomic statements each:

number of exec’s =
(n ∗m)!

m!n

The “at-most-once” property

fine grained atomicity
only very most basic operations (R/W) atomic “by nature”

however: some non-atomic interactions appear to be atomic.
note: expressions do only read-access (6= statements)
critical reference (in an e): a variable changed by another
process
e without critical reference ⇒ evaluation of e as if atomic

Definition (At-most-once property)
x := e satisfies the “amo”-property if
1. e contains no crit. reference
2. e with at most one crit. reference & x not referenceda by

other proc’s
aor just read

assigments with at-most-once property can be considered atomic

The “at-most-once” property

fine grained atomicity
only very most basic operations (R/W) atomic “by nature”

however: some non-atomic interactions appear to be atomic.
note: expressions do only read-access (6= statements)
critical reference (in an e): a variable changed by another
process
e without critical reference ⇒ evaluation of e as if atomic

Definition (At-most-once property)
x := e satisfies the “amo”-property if
1. e contains no crit. reference
2. e with at most one crit. reference & x not referenceda by

other proc’s
aor just read

assigments with at-most-once property can be considered atomic

At most once examples

In all examples: initially x = y = 0. And r , r ′ etc: local var’s
(registers)
co and oc around . . . ‖ . . . omitted

x := x + 1 ‖ y := x + 1
x := y + 1 ‖ y := x + 1 { (x , y) ∈ {(1, 1), (1, 2), (2, 1)} }
x := y + 1 ‖ x := y + 3 ‖ y := 1 {y =1 ∧ x= 1, 2, 3, 4}
r := y + 1 ‖ r ′ := y − 1 ‖ y := 5
r := x − x ‖ . . . {is r now 0?}
x := x ‖ . . . {same as skip?}
if y > 0 then y := y − 1 fi ‖ if y > 0 then y := y − 1 fi

The course’s first programming language: the
await-language

the usual sequential, imperative constructions such as
assignment, if-, for- and while-statements
cobegin-construction for parallel activity
processes
critical sections
await-statements for (active) waiting and conditional critical
sections

Syntax

We use the following syntax for non-parallel control-flow4

Declarations Assignments
int i = 3; x := e;
int a[1:n]; a[i] := e;
int a[n];5 a[n]++;
int a[1:n] = ([n] 1); sum +:= i;

Seq. composition statement; statement
Compound statement {statements}
Conditional if statement
While-loop while (condition) statement
For-loop for [i = 0 to n − 1]statement

4The book uses more C/Java kind of conventions, like = for assignment
and == for logical equality.

5corresponds to: int a[0:n-1]

Parallel statements

co S1 ‖ S2 ‖ . . . ‖ Sn oc

The statement(s) of each arm Si are executed in parallel with
thos of the other arms.
Termination: when all “arms” Si have terminated (“join”
synchronization)

Parallel processes

process f oo {
i n t sum := 0 ;
fo r [i=1 to 10]

sum +:= 1 ;
x := sum ;

}

Processes evaluated in arbitrary order.
Processes are declared (as methods/functions)
side remark: the convention “declaration = start process” is
not used in practice.6

6one typically separates declaration/definition from “activation” (with good
reasons). Note: even instantiation of a runnable interface in Java starts a
process. Initialization (filling in initial data into a process) is tricky business.

Example

process bar1 {
for [i = 1 to n]
write(i); }

Starts one process.

The numbers are printed in
increasing order.

process bar2[i=1 to n] {
write(i);
}

Starts n processes.

The numbers are printed in
arbitrary order because the
execution order of the processes
is non-deterministic.

Read- and write-variables

V : statement −→ variable set: set of global variables in a
statement (also for expressions)
W : statement −→ variable set set of write–variables

V(x := e) = V(e) ∪ {x}
V(S1; S2) = V(S1) ∪ V(S2)

V(if b then S) = V(b) ∪ V(S)
V(while (b)S) = V(b) ∪ V(S)

W analogously, except the most important difference:

W(x := e) = {x}

note: expressions side-effect free

Disjoint processes

Parallel processes without common (=shared) global variables:
without interference

V(S1) ∩ V(S2) = ∅

read-only variables: no interference.
The following interference criterion is thus sufficient:

V(S1) ∩W(S2) =W(S1) ∩ V(S2) = ∅

cf. notion of race (or race condition)
remember also: critical references/amo-property
programming practice: final variables in Java

Semantic concepts

A state in a parallel program consists of the values of the
global variables at a given moment in the execution.
Each process executes independently of the others by
modifying global variables using atomic operations.
An execution of a parallel program can be modelled using a
history, i.e. a sequence of operations on global variables, or as
a sequence of states.
For non-trivial parallel programs there are very many possible
histories.
synchronization: conceptually used to limit the possible
histories/interleavings.

Properties

property = predicate over programs, resp. their histories
A (true) property of a program7 is a predicate which is true for
all possible histories of the program.
Two types:

safety property: program will not reach an undesirable state
liveness property: program will reach a desirable state.

partial correctness: If the program terminates, it is in a desired
final state (safety property).
termination: all histories are finite.8

total correctness: The program terminates and is partially
correct.

7the program “has” that property, the program satisfies the property . . .
8that’s also called strong termination. Remember: non-determinism.

Properties: Invariants

invariant (adj): constant, unchanging
cf. also “loop invariant”

Definition (Invariant)
an invariant = state property, which holds for holds for all
reachable states.

safety property
appropriate for also non-terminating systems (does not talk
about a final state)
global invariant talks about the state of many processes at
once, preferably the entire system
local invariant talks about the state of one process

proof principle: induction
one can show that an invariant is correct by

1. showing that it holds initially,

2. and that each atomic statement maintains it.

Note: we avoid looking at all possible executions!

How to check properties of programs?

Testing or debugging increases confidence in a program, but
gives no guarantee of correctness.
Operational reasoning considers all histories of a program.
Formal analysis: Method for reasoning about the properties of
a program without considering the histories one by one.

Dijkstra’s diktum:
A test can only show errors, but “never” prove correctness!

Critical sections

Mutual exclusion: combines sequences of operations in a critical
section which then behave like atomic operations.

When the non-interference requirement parallel processes does
not hold, we use synchronization to restrict the possible
histories.
Synchronization gives coarse-grained atomic operations.
The notation 〈S〉 means that S is performed atomically.9

Atomic operations:
Internal states are not visible to other processes.
Variables cannot be changed underway by other processes.

Example The example from before can now be written as:

int x = 0; co〈x := x + 1〉 ‖ 〈x := x − 1〉 oc{ x = 0 }

9In programming languages, one could find it as atomic{S} or similar.

Conditional critical sections

Await statement

〈await(b) S〉

boolean condition b: await condition
body S : executed atomically (conditionally on b) (indicated
by)
Example

〈await(y > 0) y := y − 1〉

synchronization: decrement delayed until (if ever) y > 0 holds

Conditional critical sections (2)

two “special cases”
mutex/unconditional critical section

〈x := 1; y := y + 1〉
Condition synchronization:10

〈await(counter > 0) 〉

i n t coun t e r = 1 ;
< awa i t (coun t e r > 0)

coun t e r := counte r −1; > // s t a r t CS
critical statements ;
c oun t e r := coun t e r+1 // end CS

“critical statements” not enclosed in 〈angle brackets〉. Why?
invariant: 0 ≤ counter ≤ 1 (= counter acts as “binary lock”)
very bad style would be: touch counter inside “crit.
statements” or elsewhere (e.g. access it not following the
“await-inc-CR-dec” pattern)
in practice: beware(!) of exceptions in the critical statements

10one may also see sometimes just await(b): however, eval. of b better be
atomic and under no circumstances must b have side-effects (never, ever).

Example: (silly version of) producer/consumer
synchronization

strong coupling
buf as shared variable (“one element buffer”)
synchronization

coordinating the “speed” of the two procs (rather stricly here)
to avoid, reading data which is not yet produced
(related:) avoid w/r conflict on shared memory

i n t buf , p := 0 ; c := 0 ;

p roce s s Producer { p roce s s Consumer {
i n t a [N] ; . . . i n t b [N] ; . . .
wh i l e (p < N) { wh i l e (c < N) {
< awa i t (p = c) ; > < awa i t (p > c) ; >
buf := a [p] ; b [c] := buf ;

p := p+1; c := c+1;
} }

} }

Example (continued)

a:

buf: p: c: n:

b:

An invariant holds in all states in all histories
(traces/executions) of the program.
Global Invariant : c ≤ p ≤ c+1

Local Invariant (Producer) : 0 ≤ p ≤ n

[1] G. R. Andrews.
Foundations of Multithreaded, Parallel, and Distributed
Programming.
Addison-Wesley, 2000.

[2] E. W. Dijkstra.
Solution of a problem in concurrent programming control.
Communications of the ACM, 8(9):569, 1965.

	Intro
	Warming up
	The await language
	Semantics and properties

