o

3

«F

o>

Locks & barriers (week 2)

2/58

INF4140 - Models of concurrency

Locks & barriers, lecture 2

Hgsten 2013

2. 9. 2013

3/58

Mandatory assignment 1 (“oblig"
@ Deadline: Friday September 27 at 18.00
@ Possible to work in pairs

@ Online delivery (Devilry): https://devilry.ifi.uio.no

4/58

@ Central to the course are general mechanisms and issues
related to parallel programs

@ Previous class: await language and a simple version of the
producer/consumer example

Today
@ Entry- and exit protocols to the critical section
e Protect reading and writing to shared variables
e Barriers

o lterative algorithms:
Processes must synchronize between each iteration
o Coordination using flags

5/58

int buf, p:= 0; ¢ := 0;

process Producer { process Consumer {
int a[N];... int b[N];...
while (p < N) { while (c < N) {
< await (p=c¢) ; > < await (p > ¢c) ; >
buf := a[p]; b[{c] := buf;
p = p+1; c = c+1;
¥ ¥
} }
Invariants
o global: c<p<c+1

@ local (in the producer): 0 < p <n

An invariant holds in all states in all histories of the program.

6/58

@ fundamental for concurrency
@ immensely intensively researched, many solution

@ crit. sec.: one part of a program that is/needs to be
“protected” agains interference by other processes

@ execution under mutal exclusion
o related to “atomicity”

Main question here

How can we implement critical sections / conditional critical
sections?

@ various solutions and properties/guarantees

@ using locks and low-level operations

@ SW-only solutions? HW or OS support?

@ active waiting (later semaphores and passive waiting)

7/58

Several processes compete for access to a shared resource
Only one process can have access at a time: “mutual
exclusion” (mutex)
Possible examples:

o Execution of bank transactions

o Access to a printer
A solution of the CS problem can be used to implement
await-statements

8/58

Operations on shared variables happen inside the CS.

Access to the CS must then be protected to prevent interference.

Listing 1: General pattern for CS

process p[i=1 to n] {
while (true) {
CSentry # entry protocol to CS
Cs
CSexit # exit protocol from CS
non—CS
¥
}

@ Assumption: A process which enters the CS will eventually
leave it.

= programming advice: be aware of exceptions inside CS!

9/58

int in =1 # possible values in {1,2}

process pl { process p2 {
while (true) { while (true) {
while (in=2) {skip}; while (in=1) {skip};
CS; CS;
in = 2; in ;=1
non—CS non—CS
¥

@ entry-protocol: active/busy waiting

@ exit protocol: atomic assignment

Good solution? A solution at all? What's good, what's less so?

10/58

int in =1 # possible values in {1,2}

process pl { process p2 {
while (true) { while (true) {
while (in=2) {skip}; while (in=1) {skip};
Cs; cs;
in == 2; in =1
non—CS non—CS
by

@ entry-protocol: active/busy waiting
@ exit protocol: atomic assignment

Good solution? A solution at all? What's good, what's less so?
@ More than 2 processes?

o Different execution times?

11/58

Mutual exclusion (Mutex): At any time, at most one process is
inside CS.

Absence of deadlock: If all processes are trying to enter CS, at
least one will succeed.

Absence of unnecessary delay: If some processes are trying to enter
CS, while the other processes are in their non-critical
sections, at least one will succeed.

Eventual entry: A process attempting to enter CS will eventually
succeed.

NB: The three first are safety properties,! the last a liveness
property. (SAFETY: no bad state — LIVENESS: something good
will happen.)

1point 2 and 3 are slightly up-to discussion/standpoint!

12/58

A safety property expresses that a program does not reach a “bad”
state. In order to prove this, we can show that the program will
never leave a “good” state:

@ Show that the property holds in all initial states

@ Show that the program statements preserve the property

Such a (good) property is usually called a global invariant.

13/58

Used for synchronization of processes

o General form:
< await(B) S; >

e B: Synchronization condition
o Executed atomically when B is true

e Unconditional critical section (B is true):
<8 >

S executed atomically

o Conditional synchronization:?

< await(B); >

2We also use then just await(B) or maybe awaitB. But also in this case

we assume that B is evaluated atomically.
14/58

bool lock = false;

process [i=1 to n] {
while (true) {

< await (- lock) lock = true >;
CS;
lock := false:
non CS;
}
¥
Safety properties:
o Mutex

@ Absence of deadlock
@ Absence of unnecessary waiting

What about taking away the angle brackets <...>7

15/58

Test & Set is a method/pattern for implementing conditional
atomic action:

TS(lock) {
< bool initial := lock;
lock := true >;
return initial

}

o effect of TS(1lock)
o side effect: The variable Lock will always have value true
after TS(lock),
o returned value: true or false, depending on the original state
of lock
e exists as an atomic HW instruction on many machines.

16 /58

bool lock := false;

process p [i=1 to n] {
while (true) {

while (TS(lock)) {skip}; # entry protocol
Cs

lock := false; # exit protocol
non—CS

}
}

NB: Safety: Mutex, absence of deadlock and of unnecessary delay.
strong fairness needed

17/58

better safe than sorry?

What about double-checking in the entry protocol whether it is
really, really safe to enter?

bool lock := false;
process p[i = i to n] {
while (true) {
while (lock) {skip}; # additional spin—lock check
while (TS(lock)) {skip};
CS;
lock := false;
non—CS
¥
}

18 /58

better safe than sorry?

What about double-checking in the entry protocol whether it is
really, really safe to enter?

bool lock := false;
process p[i = i to n] {
while (true) {
while (lock) {skip}; # additional spin lock check

while (TS(lock)) {
while (lock) {skip}}; # + more inside the TAS loop
CS;
lock := false;
non—CS

}
}

Does that make sense?

19 /58

time

TASLock

TTASLock

ideal lock

N
7

number of threads

20/58

l threadg ' l thread; '

shared memory

21/58

CPUgq |CPU1| |CPU2| |CPU3| [CPUD] [CPU1‘ [CPUz] [CPU3
v,
SN | e Y e A | Y e)
]]]]]]]]
S| Y | | S | |

shared memory

shared memory

22/58

@ test-and-set operation:

o (powerful) HW instruction for synchronization
e accesses main memory (and involves “cache synchronization”)
o much slower than cache access

@ spin-loops: faster than TAS loops

@ “double-checked locking™: important design
pattern/programming idiom for efficient CS (under certain
architectures)3

3depends on the HW architecture/memory model. In some architectures:
does not guarantee mutex! in which case it's an anti-pattern: .. .

23/58

Let CSentry and CSexit implement entry- and exit-protocols to
the critical section.
Then the statement < S;> can be implemented by

CSentry; S; CSexit;
Implementation of conditional critical section < await (B) S;>:
CSentry;
while (!B) {CSexit ; CSentry};

S;
CSexit;

The implementation can be optimized with Delay between the exit
and entry in the body of the while statement.

24 /58

So far: no(!) solution for “Eventual Entry”-property, except the
very first (which did not satisfy “Absence of Unnecessary Delay”).

25 /58

@ Liveness: Something good will happen

@ Typical example for sequential programs: (esp. in our context)
Program termination®

@ Typical example for parallel programs:
A given process will eventually enter the critical section

for parallel processes: liveness is affected by the scheduling
strategies.

4In the first version of the slides of lecture 1, termination was defined

misleadingly.
26/58

@ enabled command in a state = statement can in principle be
executed next

@ concurrent programs: often more than 1 statement enabled.

Scheduling: resolving non-determinism

strategy such that for all points in an execution: if there is more
than one statement enabled, pick one of them.

Fairness

Informally: enabled statements should not systematically be
neglected by the scheduling strategy.

bool x := true;

co while (x){}; || x := false co

27 /58

e fairness: how to pick among enabled actions without being
“passed over” indefinitely

@ which are the potentially non-enabled actions in our language®
@ note: possible status changes:
o disabled — enabled (of course),
e but also enabled — disabled
° fDifferently “powerful” forms of fairness: guarantee of progress
or

1. for actions that are always, out of principle, enabled
2. for those that stay enabled
3. for those whose enabledness show “on-off” behavior

Sprovided the control-flow/program pointer stands in front of them.
28 /58

A scheduling strategy is unconditionally fair if each unconditional
atomic action which can be chosen will eventually be chosen.
Example:

bool x := true;

co while (x){}; || x := false co

29/58

A scheduling strategy is unconditionally fair if each unconditional
atomic action which can be chosen will eventually be chosen.
Example:

bool x := true;
co while (x){}; || x := false co
@ x := false is unconditional

= will eventually be chosen
@ This guarantees termination
@ Example: “Round robin” execution

@ note: if-then-else, while (b) ; are not conditional atomic
statements!

30/58

Weak fairness
A scheduling strategy is weakly fair if
@ it is unconditionally fair

@ every conditional atomic action will eventually be chosen,
assuming that the condition becomes true and thereafter
remains true until the action is executed. |

Example:
bool x = true, int y = 0;

co while (x) y =y + 1; || < await y >= 10; > x = false; 0

31/58

Weak fairness
A scheduling strategy is weakly fair if
@ it is unconditionally fair

@ every conditional atomic action will eventually be chosen,
assuming that the condition becomes true and thereafter
remains true until the action is executed.)

Example:
bool x = true, int y = O;

co while (x) y =y + 1; || < await y >= 10; > x = false; 0
@ When y >= 10 becomes true, this condition remains true

@ This ensures termination of the program

@ Example: Round robin execution

32/58

Strong fairness

Example

bool =

true; y = false;
co

while (x) y:=true; y:=false}

< await(y) y:=false >
oc

DA
33/58

Strong fairness

Example
bool := true; y := false;

co

|l
< await(y) y:=false >
oc

while (x) y:=true; y:=false}

Definition (Strongly fair scheduling strategy)
@ unconditionally fair and

@ each conditional atomic action will eventually be chosen, if the
condition is true infinitely often.

34/58

Example
bool := true; y := false;

co

|l
< await(y) y:=false >
oc

while (x) y:=true; y:=false}

Definition (Strongly fair scheduling strategy)
@ unconditionally fair and

@ each conditional atomic action will eventually be chosen, if the
condition is true infinitely often.

v

for the example:
@ under strong fairness: y true co-often = termination
@ under weak fairness: non-termination possible

35/58

The CS solutions shown need to assume strong fairness to
guarantee liveness, i.e., access for a given process (i):

@ Steady inflow of processes which want the lock

@ value of lock alternates (infinitely long) between true and
false

@ Weak fairness: Process i can read lock only when the value is
false

@ Strong fairness: Guarantees that /i eventually sees that lock is
true

Difficult: to make a scheduling strategy that is both practical and

strongly fair.
We look at CS solutions where access is guaranteed for weakly fair

strategies:

36 /58

Fair solutions to the CS problem

o Tie-Breaker

o Ticket

@ The book also describes the bakery algorithm

37/58

Requires no special machine instruction (like TS)
We will look at the solution for two processes
Each process has a private lock

Each process sets its lock in the entry protocol

The private lock is read, but is not changed by the other
process

38/58

int in =1 # possible values in {1,2}

process pl { process p2 {
while (true) { while (true) {
while (in=2) {skip}; while (in=1) {skip};
CS; CS;
in = 2; in ;=1
non—CS non—CS
¥

@ entry-protocol: active/busy waiting

@ exit protocol: atomic assignment

Good solution? A solution at all? What's good, what's less so?

39/58

inl := false, in2 := false;

process pl {
while (true){
while (in2) {skip};

inl := true;
CS
inl := false;
non—CS
}
b

process p2 {
while (true) {
while (inl) {skip};

in2 := true;
cs

in2 := false;
non—CS

40 /58

inl := false, in2 := false;

process pl {
while (true){
while (in2) {skip};

inl := true;
CS
inl := false;
non—CS
}
}
No mutex

process p2 {
while (true) {
while (inl) {skip};

in2 := true;
cs ;

in2 := false;
non—CS

41/58

@ problem seems entry protocol

@ reverse the order: first “set”, then “test”

inl := false, in2 := false;

process pl {

process p2 {
while (true){

while (true) {

inl := true; in2 := true;
while (in2) {skip}; while (inl) {skip};
CS cs
inl := false; in2 := false;
non—CS non—CS
} }
b }

42 /58

@ problem seems entry protocol

@ reverse the order: first “set”, then “test”

inl := false, in2 := false;

process pl {

process p2 {
while (true){

while (true) {

inl := true; in2 := true;

while (in2) {skip}; while (inl) {skip};
CS cs

inl := false; in2 := false;
non—CS non—CS

} }
} ¥
Deadlock® :-(

®Technically, it's more of a live-lock, since the processes still are doing
“something”, namely spinning endlessly in the empty while-loops, never leaving

the entry-protocol to do real work. The situation though is analogous to a
“deadlock” conceptually.

43 /58

problem: both half flagged their wish to enter = deadlock
avoid deadlock: “tie-break”

be fair: not always give priority to one specific process
which tells which process last started the entry protocol.
add variable last

44 /58

@ problem: both half flagged their wish to enter = deadlock
@ avoid deadlock: “tie-break”
@ be fair: not always give priority to one specific process
@ which tells which process last started the entry protocol.
@ add variable last
inl := false, in2 := false; int last
process pl { process p2 {
while (true){ while (true){
inl := true; in2 := true;
last = 1; last = 2;
< await ((not in2) or < await ((not inl) or
last = 2);> last = 1);>
(&) CS
inl := false; in2 := false;
non—CS non—CS
b ¥
} ¥

45 /58

Even if the variables in1, in2 and last can change the value
while a wait condition evaluates to true,
the wait condition will remain true.
pl sees that the wait condition is true:
@ in2 == false
e in2 can eventually become true, but then p2 must also set
last to 2
o Then the await condition to p1 still holds

@ last ==
o Then last == 2 will hold until p1 has executed

Thus we can replace the await-statement with a while-loop.

46 /58

process pl {
while (true){

inl := true;

last = 1;

while (in2 and last = 2){skip}
CS

inl := false;

non—CS

}
}

generalizable to many processes (see book)

47 /58

If the Tie-Breaker algorithm is scaled up to n processes, we get a
loop with n — 1 2-process Tie-Breaker algorithms.

The ticket algorithm provides a simpler solution to the CS problem
for n processes.

@ Works like the “take a number” queue at the post office (with
one loop)

@ A customer (process) which comes in takes a number which is
higher than the number of all others who are waiting

@ The customer is served when a ticket window is available and
the customer has the lowest ticket number.

48 /58

int number := 1; next := 1; turn[l:n] := ([n] 0);

process [i = 1 to n] {
while (true) {
< turn[i] := number; number := number +1 >;
< await (turn[i] = next)>;
Cs
<next = next + 1>;
non—CS
¥
}

@ The first line in the loop must be performed atomically!
@ await-statement: can be implemented as while-loop

@ Some machines have an instruction

Fetch-and-add

FA(var, incr):<int tmp := var; var := var + incr; return tmp;>

49 /58

int number := 1; next := 1; turn[l:n] := ([n] 0);

process [i =1 to n] {
while (true) {
turn[i] := FA(number, 1);
while (turn [i] != next) {skip};
Cs
next := next + 1;
non—CS
¥
}

FA(var, incr):<int tmp = var; var = var + incr; return tmp
Without this instruction, we use an extra CS:’

CSentry; turn[i]=number; number = number + 1; CSexit;

Problem with fairness for CS. Solved with the bakery algorithm
(see book).

7?1 isn't that a bit strange?
50 /58

Ticket algorithm: Invariant

Invariants
o global invariant

0 < next < number

@ For proc. i:

e turn[i] < number
o if p[i] is in the CS then turn[i] == next.

e for pairs of processes i # j:
if turn[i] > O then turn[j] # turnl[i]

This holds initially, and is preserved by all atomic statements.

51/58

e Computation of disjoint parts in parallel (e.g. array elements).

@ Processes go into a loop where each iteration is dependent on
the results of the previous.

process Worker[i=1 to n] {
while (true) {
task i;
wait until all n tasks are done # barrier

}
}

All processes must reach the barrier (“join") before any can
continue.

52 /58

A number of processes will synchronize the end of their tasks.
Synchronization can be implemented with a shared counter:
int count := 0;}
process Worker[i=1 to n] {
while (true) {
task i;
< count := count+1>;
< await(count=n)>;
}
¥

Can be implemented using the FA instruction.
Disadvantages:

@ count must be reset between each iteration.
@ Must be updated using atomic operations.

@ Inefficient: Many processes read and write count concurrently.

53 /58

Goal: Avoid too much read- and write-operations on one variable.

Divides shared counter into several local variables.
Worker[i]:

arrive[i] = 1;
< await (continue[i] == 1);>
Coordinator:
for [i=1 to n] < await (arrivel[i]==1);>
for [i=1 to n] continuel[i] = 1;
In a loop, the flags must be cleared before the next iteration.
Flag synchronization principles:
1. The process which waits for a flag is the one which will reset
the flag

2. A flag will not be set before it is reset

54 /58

both arrays initialized to 0.

process Worker [i = 1 to n] {
while (true) {
code to implement task i,

process Coordinator {
while (true) {

for [i =1 to n] {
arrive[i] = 1; <await (arrived[i] = 1)>;
< await (continue[i] = 1>; arrived[i] := 0
continue := O0; ;
} for [i =1 to n] {
} continue[i] = 1

55 /58

@ The roles of the Worker and Coordinator processes can be
combined.

@ In a combining tree barrier the processes are organized in a
tree structure. The processes signal arrive upwards in the tree
and continue downwards in the tree.

56 /58

bool lock = false;

Entry: <await (!lock) lock = true>
Critical section

Exit: <lock = false;>

Spin lock implementation of entry: while (TS(lock)) skip

Drawbacks:

@ Busy waiting protocols are often complicated
o Inefficient if there are fever processors than processes
e Should not waste time executing a skip loop

@ No clear distinction between variables used for synchronization
and computation

Desirable to have a special tools for synchronization protocols:
semaphores (next lecture)

57 /58

[1] G. R. Andrews.

Foundations of Multithreaded, Parallel, and Distributed
Programming.

Addison-Wesley, 2000.

[2] E. W. Dijkstra.
Solution of a problem in concurrent programming control.
Communications of the ACM, 8(9):569, 1965.

58 /58

	Locks & barriers (week 2)
	Critical sections
	Liveness and fairness
	Barriers

