o

3

«F

o>

Semaphores (week 3)

2/47

INF4140 - Models of concurrency

Semaphores, lecture 3

Hgsten 2013

3/47

@ Last lecture: Locks and Barriers (complex techniques)
o No clear difference between variables for synchronization
and variables for compute results.
o Busy waiting.

@ This lecture: Semaphores (synchronization tool)
e Used easely for mutual exclusion and condition

synchronization.
e A way to implement signaling and (scheduling).
e Can be implemented in many ways.

4/47

@ Semaphores: Syntax and semantics

@ Synchronization examples:

Mutual exclusion (Critical Section).

Barriers (signaling events).

Producers and consumers (split binary semaphores).
Bounded buffer (resource counting).

Dining philosophers (mutual exclusion - deadlock).

Reads and writers (condition synchronization - passing the
baton).

5/47

@ Introduced by Dijkstra in 1968
@ “inspired” by railroad traffic synchronization

@ railroad semaphore indicates whether the track ahead is clear
or occupied by another train

Clear Occupied

6 /47

Semaphores in concurrent programs work in a similar way
Used to implement mutex and condition synchronization
Included in most standard libraries for concurrent programming

also: system calls in e.g., Linux kernel, similar in Windows etc.

7/47

@ semaphore: special kind of shared program variable (with
built-in sync. power)

@ value of a semaphore: a non-negative integer

@ can only be manipulated by the following two atomic
operations:!
o P: (Passeren) Wait for signal - want to pass

o effect: wait until the value is greater than zero, and decrease
the value by one

o V: (Vrijgeven) Signal an event - release
o effect: increase the value by one

@ nowadays, for libraries or sys-calls: other names are preferred
(up/down, wait/signal, ...)

different “flavors” of semaphores (binary vs. counting)

@ a mutex: basically used as synonym for binary semaphore

There are different stories about what Dijkstra actually wanted V and P
stand for.

8/47

@ declaration of semaphores:
e sem s; default initial value is zero
e sems =1;
e sem s[4] = ([4] 1);

e semantics? (via “implementation”):

(await(s > 0) s:=s—1)

P-operation P(s) V-operation V(s)
J (s:=s+1) J

Important: No direct access to the value of a semaphore.
E.g. a test like

if (s =1)then ... else

is not allowed!

2meaning
9/47

@ Kinds of semaphores

General semaphore: possible values — all non-negative
integers
Binary semaphore: possible values — 0 and 1

Fairness
e as for await-statements.

o In most languages: FIFO (“waiting queue”): processes delayed while
executing P-operations are awaken in the order they where delayed

10/ 47

Mutex3 implemented by a binary semaphore

sem mutex = 1;
process CS[i =1 to n] {
while (true) {
P(mutex) ;
criticalsection
V(mutex) ;

noncriticalsection ;

Note:
@ The semaphore is initially 1
@ Always P before V — (used as) binary semaphore

3As mentioned: “mutex” is also used to refer to a data-structure, basically

the same as binary semaphore itself.
11/ 47

Semaphores may be used for signaling events

sem arrivel = 0, arrive2 = 0;
process Workerl {

V(arrivel); reach the barrier
P(arrive2); wait for other processes
}
process Worker2 {
V(arrive2); reach the barrier
P(arrivel); wait for other processes
}
Note:

@ signalling semaphores: usually initialized to 0 and
@ signal with a V and then wait with a P

12 /47

split binary semaphore J

A set of semaphores, whose sum <1

mutex by split binary semaphores

e initialization: one of the semaphores =1, all others =0
@ discipline: all processes call P on a semaphore, before calling V
on (another) semaphore
= code between the P and the V

o all semaphores = 0
e code executed in mutex

13 /47

T buf; # one element buffer, some type T
sem empty = 1;
sem full := 0;
process Producer { process Consumer {
while (true) { while (true) {
P(empty); P(full);
buff := data; buff := data;
V(full); V(empty);
} }

Note:
e remember also P/C with await + exercise 1

@ empty and full are both binary semaphores, together they
form a split binary semaphore.

@ solution works with several producers/consumers

14 /47

@ previous example: strong coupling, the producer must wait for
the consumer to empty the buffer before it can produce a new
entry.

@ easy to generalize to a buffer of size n.

@ loose coupling/asynchronous communcation = “buffering”

e ring-buffer, typically represented

o by an array
@ + two integers rear and front.

e semaphores to keep track of the number of free slots

[T TT] Daa [[[]

front rear

15/ 47

@ previous example: strong coupling, the producer must wait for
the consumer to empty the buffer before it can produce a new
entry.

@ easy to generalize to a buffer of size n.

@ loose coupling/asynchronous communcation = “buffering”

e ring-buffer, typically represented

o by an array
@ + two integers rear and front.

e semaphores to keep track of the number of free slots =-general
semaphore

[T TT] Data [[[]

front rear

16 / 47

T buf[n]

array, elements of type T
int front = 0, rear := 0; # '‘pointers '’
sem empty = n,
sem full = 0;
process Producer { process Consumer {
while (true) { while (true) {
P(empty); P(full);
buff[rear] := data; result := buff[front];
rear := (rear + 1) % n; front := (front + 1) % n
V(full); V(empty);
} }
¥ }

17 /47

T buf[n] # array, elements of type T

int front = 0, rear := 0; # '‘pointers '’
sem empty = n,
sem full = 0;

process Producer { process Consumer {

while (true) { while (true) {
P(empty); P(full);
buff[rear] := data; result := buff[front];
rear := (rear + 1) % n; front := (front + 1) % n
V(full); V(empty);
¥
} }

several producers or consumers?

18 /47

@ several producers and consumers.

@ New synchronization problems:
o Avoid that two producers deposits to buf [rear] before rear

is updated
e Avoid that two consumers fetches from buf [front] before
front is updated.
@ Solution: 2 binary semaphores for protection
e mutexDeposit to deny two producers to deposit to the buffer

at the same time.
e mutexFetch to deny two consumers to fetch from the buffer

at the same time.

19 /47

T buf[n] # array, elem’'s of type T

int front = 0, rear := 0; # '‘pointers '’
sem empty = n,
sem full = 0;
sem mutexDeposit, mutexFetch := 1; # protect the data stuct.
process Producer { process Consumer {
while (true) { while (true) {
P(empty); P(full);
P(mutexDeposit); P(mutexFetch);
buff[rear] := data; result := buff[front];
rear := (rear + 1) % n; front := (front + 1) % n
V(mutexDeposit); V(mutexFetch);
V(full); V(empty);
} }

20/ 47

Problem: Dining philosophers introduction

E
0 s

4

image from wikipedia.org

Qe
21/47

Problem: Dining philosophers introduction

famous sync. problem (Dijkstra)

Five philosophers sit around a circular table.

one fork placed between each pair of philosophers
philosophers alternates between thinking and eating

philosopher needs two forks to eat (and none for thinking)

“*image from wikipedia.org
22/47

process Philosopher [i = 0 to 4] {
while true {
think:
acquire forks;
eat ;
release forks:

}

now: program the actions acquire forks and release forks

23/47

@ forks as semaphores

@ let the philosophers pick up the left
fork first

process Philosopher [i = 0 to 4] {
while true {
think;
acquire forks;
eat;
release forks;

24 /47

@ forks as semaphores
@ let the philosophers pick up the left
fork first

sem fork[5] := ([5] 1);
process Philosopher [i = 0 to 4] {
while true {
think;
P(fork[i];
P(fork [(i+4+1)%5]);
eat ;
V(fork[il];
V(fork [(i+1)%5]);

ok solution?

25 /47

breaking the symmetry
To avoid deadlock, let 1 philospher (say 4) grab the right fork first J

process Philosopher [i = 0 to 3] { process Philosopher4 {
while true { while true {
think; think ;
P(fork[i]; P(fork [4];
P(fork [(i+1)%5]); P(fork [0]);
eat; eat;
V(fork[i]; V(fork [4];
V(fork [(i+41)%5]); V(fork [0]);
} ¥
b

26 /47

breaking the symmetry
To avoid deadlock, let 1 philospher (say 4) grab the right fork first J

process Philosopher [i = 0 to 3] { process Philosopher4 {
while true { while true {
think; think;
P(fork[i]; P(fork [0]);
P(fork [(i+1)%5]); P(fork[4];
eat; eat;
V(fork[i]; V(fork [4];
V(fork [(i+41)%5]); V(fork [0]);
} ¥
b

27 /47

@ important illustration of problems with concurrency:

o deadlock
e but also other aspects: liveness and fairness etc.

@ resource access

@ connection to mutex/critical sections

28 /47

o Classical synchronization problem
@ Reader and writer processes, sharing access to a database

e readers: read-only from the database
o writers: update (and read from) the database

29 /47

@ Classical synchronization problem
@ Reader and writer processes, sharing access to a database

o readers: read-only from the database
o writers: update (and read from) the database

@ R/R access unproblematic, W/W or W/R: interference

o writers need mutually exclusive access
e When no writers have access, many readers may access the

database

30/47

@ Dining philosophers: Pair of processes compete for access to
“forks"

@ Readers/writers: Different classes of processes competes for
access to the database

e Readers compete with writers
o Writers compete both with readers and other writers

@ General synchronization problem:

o readers: must wait until no writers are active in DB
e writers: must wait until no readers or writers are active in DB

@ here: two different approaches

1. Mutex: easy to implement, but unfair
2. Condition synchronization:

e Using a split binary semaphore
o Easy to adapt to different scheduling strategies

31/47

sem rw =1

process Reader [i=1 to M] { process Writer [i=1 to N] {
while (true) { while (true) {
P(rw); P(rw);
read from DB write to DB
V(rw); V(rw);
} }
¥ ¥

32/47

sem rw =1

process Reader [i=1 to M] { process Writer [i=1 to N] {
while (true) { while (true) {
P(rw) F’(rw)
read from DB write to DB
V(rw); V(rw);
} }
¥ }
o safety ok

@ but: unnessessarily cautious

@ We want more than one reader simultaneously.

33/47

Initially:

int nr := 0; # nunber of active readers
sem rw = 1 # lock for reader/writer mutex
process Reader [i=1 to M] { process Writer [i=1 to N] {
while (true) { while (true) {
< nr = nr + 1;
if (n=1) P(rw) > ; P(rw);
read from DB write to DB
< nr := nr — 1;
if (n=0) V(rw) > ; V(rw);
} ¥
} }

34 /47

Initially:

int nr := 0; # nunber of active readers
sem rw = 1 # lock for reader/writer mutex
process Reader [i=1 to M] { process Writer [i=1 to N] {
while (true) { while (true) {
< nr = nr + 1;
f (n=1) P(rw) > ; P(rw);
read from DB write to DB
< nr = nr — 1;
f (n=0) V(rw) > ; V(rw);
} ¥
3 }

Semaphore inside await statement?

35/47

int nr = 0; # number of active readers
sem rw = 1; # lock for reader/writer exclusion
sem mutexR = 1; # mutex for readers
process Reader [i=1 to M] {

while (true) {

P(mutexR)

nr := nr 4+ 1;

if (n=1) P(rw);
V(mutexR)

read from DB

P(mutexR)

nr := nr — 1;

if (n=0) V(rw);
V(mutexR)

36 /47

0; # number of active readers
1; # lock for reader/writer exclusion
1; # mutex for readers

int nr
sem rw
sem mutexR

process Reader [i=1 to M] {
while (true) {

P (mutexR)

nr := nr + 1;

if (n=1) P(rw);
V(mutexR)

read from DB

P (mutexR)

nr := nr — 1;

if (n=0) V(rw);
V(mutexR)

}

“Fairness”
What happens if we have a constant stream of readers?

37 /47

Readers/writers with condition synchronization: overview

@ mutex solution solved two separate synchronization problems
o Reader vs. writer for access to the database
o Reader vs. reader for access to the counter

@ Now: a solution based on condition synchronization

38 /47

Invariant

reasonable invariant?

#2nd point: not technically an invariant.
@ When a writer access the DB, no one else can

@ When no writers access the DB, one or more readers may

@ introduce two counters:

e nr: number of active readers
e nw: number of active writers

The invariant may be:
RW: (nr=0o0rnw=0)and nw <1 J

39/ 47

Reader:

<nr :=nr + 1; >
read from DB

<nr :=nr - 1; >

Writer:

@ maintain invariant = add sync-code

@ decrease counters: not dangerous

@ before increasing though:

o before increasing nr: nw
o before increasing nw: nr

<nw :=nw + 1; >
write to DB
<nw :=nw - 1; >
0
0 and nw = 0O

40 / 47

Initially:

int nr := 0; # nunber of active readers
int nw := 0; # number of active writers
sem rw = 1 # lock for reader/writer mutex

Invariant RW: (nr = 0 or nw = 0) and nw <= 1

process Reader [i=1 to M]{ process Writer [i=1 to N]{
while (true) { while (true) {
< await (nw=0) < await (nr = 0 or nw = 0)
nr := nr+1>; nw = nw+1>;
read from DB; write to DB;
< nr = nr — 1> < nw = nw — 1>
} }

¥ }

41/47

implementation of awaits: may be done by split binary semaphores

@ May be used to implement different synchronization problems
with different guards By, Bs...

@ entry semaphore (e) initialized to 1

@ For each guard B;:

e associate 1 counter and
o 1 delay-semaphore

both initialized to 0

e semaphore: delay the processes waiting for B;
e counter: count the number of processes waiting for B;

= for readers/writers problem: 3 semaphores and 2 counters:

sem e = 1;
sem r = 0; int dr = 0; # condition reader: nw ==
sem w = 0; int dw = 0; # condition writer: nr == 0 and nw ==

42 /47

e, r and w form a split binary semaphore.

All execution paths starts with a P-operation and ends with a
V-operation — Mutex

We need a signal mechanism SIGNAL to pick which semaphore
to signal.

SIGNAL must make sure the invariant holds

B; holds when a process enters CR because either:

o the process checks
e the process is only signaled if B; holds

Avoid deadlock by checking the counters before the delay
semaphores are signaled.

o r is not signalled (V(x)) unless there is a delayed reader
o w is not signalled (V(w)) unless there is a delayed writer

43 /47

int nr := 0, nw = 0; # condition variables

sem e = 1; # delay semaphore

int dr := 0; sem r := 0; # delay counter + sem

int dw := 0; sem w := 0; # delay counter + sem
invariant RW: (nr =0V nw =0) A nw < 1

(as before)

for reader
for writer

process Reader [i=1 to M]{ # entry condition: nw = 0

while (true) {

P(e);
if (nw> 0) { dr := dr + 1; # < await (nw=0)
V(e); # nr:=nr+1 >
P(r)}:

nr:=nr+1; SIGNAL;
read from DB;

P(e); nr:=nr —1; SIGNAL; # < nr:=nr—1 >

44 / a7

process Writer [i=1 to N]{ # entry condition: nw = 0 and nr = 0
while (true) {

P(e); # < await (nr=0 A nw=0)
if (nr >0 or nw> 0) { # nw:=nw+1 >

dw = dw + 1;

V(e);

P(w) };
nw:=nw-+1; SIGNAL;

write to DB

P(e);lnw:=nw —1; SIGNAL # < nw:=nw—I1>

45 /47

With condition

synchronization: Signalling

e SIGNAL

if (nw =0 and

¥

dr =

dr

elseif (nr =0

¥

else

dw =

V(e);

dw

dr > 0) {
—1; V(r); # awaken reader
and nw = 0 and dw > 0) {

—1; V(w); # awaken writer

release entry lock

46 / 47

[1] G. R. Andrews.

Foundations of Multithreaded, Parallel, and Distributed
Programming.

Addison-Wesley, 2000.

[2] E. W. Dijkstra.
Solution of a problem in concurrent programming control.
Communications of the ACM, 8(9):569, 1965.

47 /47

	Semaphores (week 3)
	Semaphore as sync. construct
	Producer/consumer
	Dining philosophers
	Readers/writers

