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Overview

Last lecture: Locks and Barriers (complex techniques)
No clear difference between variables for synchronization
and variables for compute results.
Busy waiting.

This lecture: Semaphores (synchronization tool)
Used easely for mutual exclusion and condition
synchronization.
A way to implement signaling and (scheduling).
Can be implemented in many ways.
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Outline

Semaphores: Syntax and semantics

Synchronization examples:
Mutual exclusion (Critical Section).
Barriers (signaling events).
Producers and consumers (split binary semaphores).
Bounded buffer (resource counting).
Dining philosophers (mutual exclusion - deadlock).
Reads and writers (condition synchronization - passing the
baton).
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Semaphores

Introduced by Dijkstra in 1968
“inspired” by railroad traffic synchronization
railroad semaphore indicates whether the track ahead is clear
or occupied by another train

Clear Occupied
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Properties

Semaphores in concurrent programs work in a similar way
Used to implement mutex and condition synchronization
Included in most standard libraries for concurrent programming
also: system calls in e.g., Linux kernel, similar in Windows etc.
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Concept

semaphore: special kind of shared program variable (with
built-in sync. power)
value of a semaphore: a non-negative integer

can only be manipulated by the following two atomic
operations:1

P: (Passeren) Wait for signal - want to pass
effect: wait until the value is greater than zero, and decrease
the value by one

V: (Vrijgeven) Signal an event - release
effect: increase the value by one

nowadays, for libraries or sys-calls: other names are preferred
(up/down, wait/signal, . . . )
different “flavors” of semaphores (binary vs. counting)
a mutex: basically used as synonym for binary semaphore

1There are different stories about what Dijkstra actually wanted V and P
stand for.
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Syntax and semantics

declaration of semaphores:
sem s; default initial value is zero
sem s = 1;
sem s[4] = ([4] 1);

semantics2 (via “implementation”):

P-operation P(s)
〈await(s > 0) s := s − 1〉

V-operation V(s)
〈s := s + 1〉

Important: No direct access to the value of a semaphore.
E.g. a test like

if (s = 1) then .... else

is not allowed!

2meaning
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Kinds of semaphores

Kinds of semaphores
General semaphore: possible values — all non-negative

integers
Binary semaphore: possible values — 0 and 1

Fairness
as for await-statements.

In most languages: FIFO (“waiting queue”): processes delayed while
executing P-operations are awaken in the order they where delayed
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Example: Mutual exclusion (critical section)

Mutex3 implemented by a binary semaphore

sem mutex := 1 ;
process CS [ i = 1 to n ] {

while ( true ) {
P(mutex ) ;

criticalsection ;
V(mutex ) ;
noncriticalsection ;

}

Note:
The semaphore is initially 1
Always P before V → (used as) binary semaphore

3As mentioned: “mutex” is also used to refer to a data-structure, basically
the same as binary semaphore itself.
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Example: Barrier synchronization

Semaphores may be used for signaling events
sem arrive1 = 0, arrive2 = 0;
process Worker1 {

. . .
V(arrive1); reach the barrier
P(arrive2); wait for other processes

. . .
}
process Worker2 {

. . .
V(arrive2); reach the barrier
P(arrive1); wait for other processes

. . .
}

Note:

signalling semaphores: usually initialized to 0 and

signal with a V and then wait with a P
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Split binary semaphores

split binary semaphore
A set of semaphores, whose sum ≤ 1

mutex by split binary semaphores

initialization: one of the semaphores =1, all others = 0
discipline: all processes call P on a semaphore, before calling V
on (another) semaphore

⇒ code between the P and the V
all semaphores = 0
code executed in mutex
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Example: Producer/consumer with split binary semaphores

T buf ; # one e lement bu f f e r , some type T
sem empty := 1 ;
sem f u l l := 0 ;

process Producer {
whi le ( t rue ) {

P( empty ) ;
b u f f := data ;
V( f u l l ) ;

}
}

process Consumer {
whi le ( t rue ) {

P( f u l l ) ;
b u f f := data ;
V( empty ) ;

}
}

Note:
remember also P/C with await + exercise 1
empty and full are both binary semaphores, together they
form a split binary semaphore.
solution works with several producers/consumers
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Increasing buffer capacity

previous example: strong coupling, the producer must wait for
the consumer to empty the buffer before it can produce a new
entry.
easy to generalize to a buffer of size n.
loose coupling/asynchronous communcation ⇒ “buffering”

ring-buffer, typically represented
by an array
+ two integers rear and front.

semaphores to keep track of the number of free slots

front rear

Data
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Increasing buffer capacity

previous example: strong coupling, the producer must wait for
the consumer to empty the buffer before it can produce a new
entry.
easy to generalize to a buffer of size n.
loose coupling/asynchronous communcation ⇒ “buffering”

ring-buffer, typically represented
by an array
+ two integers rear and front.

semaphores to keep track of the number of free slots ⇒general
semaphore

front rear

Data
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Producer/consumer: increased buffer capacity

T buf [ n ] # ar ray , e l ement s o f type T
i n t f r o n t = 0 , r e a r := 0 ; # ‘ ‘ p o i n t e r s ’ ’
sem empty := n ,
sem f u l l = 0 ;

process Producer {
whi le ( t rue ) {

P( empty ) ;
b u f f [ r e a r ] := data ;
r e a r := ( r e a r + 1) % n ;
V( f u l l ) ;

}
}

process Consumer {
whi le ( t rue ) {

P( f u l l ) ;
r e s u l t := bu f f [ f r o n t ] ;
f r o n t := ( f r o n t + 1) % n
V( empty ) ;

}
}
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Producer/consumer: increased buffer capacity

T buf [ n ] # ar ray , e l ement s o f type T
i n t f r o n t = 0 , r e a r := 0 ; # ‘ ‘ p o i n t e r s ’ ’
sem empty := n ,
sem f u l l = 0 ;

process Producer {
whi le ( t rue ) {

P( empty ) ;
b u f f [ r e a r ] := data ;
r e a r := ( r e a r + 1) % n ;
V( f u l l ) ;

}
}

process Consumer {
whi le ( t rue ) {

P( f u l l ) ;
r e s u l t := bu f f [ f r o n t ] ;
f r o n t := ( f r o n t + 1) % n
V( empty ) ;

}
}

several producers or consumers?
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Increasing the number of processes

several producers and consumers.
New synchronization problems:

Avoid that two producers deposits to buf[rear] before rear
is updated
Avoid that two consumers fetches from buf[front] before
front is updated.

Solution: 2 binary semaphores for protection
mutexDeposit to deny two producers to deposit to the buffer
at the same time.
mutexFetch to deny two consumers to fetch from the buffer
at the same time.
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Example: Producer/consumer with several processes

T buf [ n ] # ar ray , elem ’ s o f type T
i n t f r o n t = 0 , r e a r := 0 ; # ‘ ‘ p o i n t e r s ’ ’
sem empty := n ,
sem f u l l = 0 ;
sem mutexDepos it , mutexFetch := 1 ; # p r o t e c t the data s t u c t .

process Producer {
whi le ( t rue ) {

P( empty ) ;
P( mutexDepos i t ) ;
b u f f [ r e a r ] := data ;
r e a r := ( r e a r + 1) % n ;
V( mutexDepos i t ) ;
V( f u l l ) ;

}
}

process Consumer {
whi le ( t rue ) {

P( f u l l ) ;
P( mutexFetch ) ;
r e s u l t := bu f f [ f r o n t ] ;
f r o n t := ( f r o n t + 1) % n
V( mutexFetch ) ;
V( empty ) ;

}
}
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Problem: Dining philosophers introduction

4image from wikipedia.org
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Problem: Dining philosophers introduction

famous sync. problem (Dijkstra)
Five philosophers sit around a circular table.
one fork placed between each pair of philosophers
philosophers alternates between thinking and eating
philosopher needs two forks to eat (and none for thinking)

4image from wikipedia.org
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Dining philosophers: sketch

process Ph i l o s o ph e r [ i = 0 to 4 ] {
while true {

t h i n k ;
a c q u i r e f o r k s ;
ea t ;
r e l e a s e f o r k s ;

}
}

now: program the actions acquire forks and release forks
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Dining philosophers: 1st attempt

forks as semaphores
let the philosophers pick up the left
fork first

process Ph i l o s o ph e r [ i = 0 to 4 ] {
whi le t rue {

t h i n k ;
a c q u i r e f o r k s ;
ea t ;
r e l e a s e f o r k s ;

}
}

P0

P1

P2

P3

P4

F0

F1

F2

F3

F4
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Dining philosophers: 1st attempt

forks as semaphores
let the philosophers pick up the left
fork first

sem f o r k [ 5 ] := ( [ 5 ] 1 ) ;
process Ph i l o s o ph e r [ i = 0 to 4 ] {

whi le t rue {
t h i n k ;
P( f o r k [ i ] ;
P( f o r k [ ( i +1)%5]);
ea t ;
V( f o r k [ i ] ;
V( f o r k [ ( i +1)%5]);

}
}

P0

P1

P2

P3

P4

F0

F1

F2

F3

F4

ok solution?
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Example: Dining philosophers 2nd attempt

breaking the symmetry
To avoid deadlock, let 1 philospher (say 4) grab the right fork first

process Ph i l o s o ph e r [ i = 0 to 3 ] {
whi le t rue {

t h i n k ;
P( f o r k [ i ] ;
P( f o r k [ ( i +1)%5]);
ea t ;
V( f o r k [ i ] ;
V( f o r k [ ( i +1)%5]);

}
}

process Ph i l o s oph e r 4 {
whi le t rue {

t h i n k ;
P( f o r k [ 4 ] ;
P( f o r k [ 0 ] ) ;
ea t ;
V( f o r k [ 4 ] ;
V( f o r k [ 0 ] ) ;

}
}
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Example: Dining philosophers 2nd attempt

breaking the symmetry
To avoid deadlock, let 1 philospher (say 4) grab the right fork first

process Ph i l o s o ph e r [ i = 0 to 3 ] {
whi le t rue {

t h i n k ;
P( f o r k [ i ] ;
P( f o r k [ ( i +1)%5]);
ea t ;
V( f o r k [ i ] ;
V( f o r k [ ( i +1)%5]);

}
}

process Ph i l o s oph e r 4 {
whi le t rue {

t h i n k ;
P( f o r k [ 0 ] ) ;
P( f o r k [ 4 ] ;
ea t ;
V( f o r k [ 4 ] ;
V( f o r k [ 0 ] ) ;

}
}
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Dining philosphers

important illustration of problems with concurrency:
deadlock
but also other aspects: liveness and fairness etc.

resource access
connection to mutex/critical sections
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Example: Readers/Writers overview

Classical synchronization problem
Reader and writer processes, sharing access to a database

readers: read-only from the database
writers: update (and read from) the database
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Example: Readers/Writers overview

Classical synchronization problem
Reader and writer processes, sharing access to a database

readers: read-only from the database
writers: update (and read from) the database

R/R access unproblematic, W/W or W/R: interference
writers need mutually exclusive access
When no writers have access, many readers may access the
database
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Readers/Writers approaches

Dining philosophers: Pair of processes compete for access to
“forks”
Readers/writers: Different classes of processes competes for
access to the database

Readers compete with writers
Writers compete both with readers and other writers

General synchronization problem:
readers: must wait until no writers are active in DB
writers: must wait until no readers or writers are active in DB

here: two different approaches
1. Mutex: easy to implement, but unfair
2. Condition synchronization:

Using a split binary semaphore
Easy to adapt to different scheduling strategies
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Readers/writers with mutex (1)

sem rw := 1

process Reader [ i=1 to M] {
whi le ( t rue ) {

. . .
P( rw ) ;

read from DB

V( rw ) ;
}

}

process Wr i t e r [ i=1 to N] {
whi le ( t rue ) {

. . .
P( rw ) ;

write to DB

V( rw ) ;
}

}
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Readers/writers with mutex (1)

sem rw := 1

process Reader [ i=1 to M] {
whi le ( t rue ) {

. . .
P( rw ) ;

read from DB

V( rw ) ;
}

}

process Wr i t e r [ i=1 to N] {
whi le ( t rue ) {

. . .
P( rw ) ;

write to DB

V( rw ) ;
}

}

safety ok
but: unnessessarily cautious
We want more than one reader simultaneously.

33 / 47



Readers/writers with mutex (2)

Initially:
i n t nr := 0 ; # nunber o f a c t i v e r e a d e r s
sem rw := 1 # lo c k f o r r e a d e r / w r i t e r mutex

process Reader [ i=1 to M] {
whi le ( t rue ) {

. . .
< nr := nr + 1 ;

i f ( n=1) P( rw ) > ;

read from DB

< nr := nr − 1 ;
i f ( n=0) V( rw ) > ;

}

}

process Wr i t e r [ i=1 to N] {
whi le ( t rue ) {

. . .

P( rw ) ;

write to DB

V( rw ) ;
}

}
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Readers/writers with mutex (2)

Initially:
i n t nr := 0 ; # nunber o f a c t i v e r e a d e r s
sem rw := 1 # lo c k f o r r e a d e r / w r i t e r mutex

process Reader [ i=1 to M] {
whi le ( t rue ) {

. . .
< nr := nr + 1 ;

i f ( n=1) P( rw ) > ;

read from DB

< nr := nr − 1 ;
i f ( n=0) V( rw ) > ;

}

}

process Wr i t e r [ i=1 to N] {
whi le ( t rue ) {

. . .

P( rw ) ;

write to DB

V( rw ) ;
}

}

Semaphore inside await statement?
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Readers/writers with mutex (3)

i n t nr = 0 ; # number o f a c t i v e r e a d e r s
sem rw = 1 ; # lo ck f o r r e a d e r / w r i t e r e x c l u s i o n
sem mutexR = 1 ; # mutex f o r r e a d e r s

process Reader [ i=1 to M] {
whi le ( t rue ) {

. . .
P(mutexR )
nr := nr + 1 ;
i f ( n=1) P( rw ) ;
V(mutexR )

read from DB

P(mutexR )
nr := nr − 1 ;
i f ( n=0) V( rw ) ;
V(mutexR )

}
}

36 / 47



Readers/writers with mutex (3)

i n t nr = 0 ; # number o f a c t i v e r e a d e r s
sem rw = 1 ; # lo ck f o r r e a d e r / w r i t e r e x c l u s i o n
sem mutexR = 1 ; # mutex f o r r e a d e r s

process Reader [ i=1 to M] {
whi le ( t rue ) {

. . .
P(mutexR )
nr := nr + 1 ;
i f ( n=1) P( rw ) ;
V(mutexR )

read from DB

P(mutexR )
nr := nr − 1 ;
i f ( n=0) V( rw ) ;
V(mutexR )

}
}

“Fairness”
What happens if we have a constant stream of readers?
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Readers/writers with condition synchronization: overview

mutex solution solved two separate synchronization problems
Reader vs. writer for access to the database
Reader vs. reader for access to the counter

Now: a solution based on condition synchronization
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Invariant

reasonable invarianta
a2nd point: not technically an invariant.

When a writer access the DB, no one else can
When no writers access the DB, one or more readers may

introduce two counters:
nr: number of active readers
nw: number of active writers

The invariant may be:
RW: (nr = 0 or nw = 0) and nw ≤ 1
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Code for “counting” readers and writers

Reader: Writer:
< nr := nr + 1; > < nw := nw + 1; >
read from DB write to DB
< nr := nr - 1; > < nw := nw - 1; >

maintain invariant ⇒ add sync-code
decrease counters: not dangerous
before increasing though:

before increasing nr: nw = 0
before increasing nw: nr = 0 and nw = 0
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condition synchronization/without semaphores

Initially:
i n t nr := 0 ; # nunber o f a c t i v e r e a d e r s
i n t nw := 0 ; # number o f a c t i v e w r i t e r s
sem rw := 1 # lo c k f o r r e a d e r / w r i t e r mutex

## I n v a r i a n t RW: ( nr = 0 or nw = 0) and nw <= 1

process Reader [ i=1 to M]{
whi le ( t rue ) {

. . .
< await (nw=0)

nr := nr+1>;
read from DB ;
< nr := nr − 1>

}
}

process Wr i t e r [ i=1 to N]{
whi le ( t rue ) {

. . .
< await ( nr = 0 or nw = 0)

nw := nw+1>;
write to DB ;
< nw := nw − 1>

}
}
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condition synchr.: converting to split binary semaphores

implementation of awaits: may be done by split binary semaphores
May be used to implement different synchronization problems
with different guards B1, B2...

entry semaphore (e) initialized to 1

For each guard Bi :
associate 1 counter and
1 delay-semaphore

both initialized to 0
semaphore: delay the processes waiting for Bi
counter: count the number of processes waiting for Bi

⇒ for readers/writers problem: 3 semaphores and 2 counters:
sem e = 1;
sem r = 0; int dr = 0; # condition reader: nw == 0
sem w = 0; int dw = 0; # condition writer: nr == 0 and nw == 0
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Condition synchr.: converting to split binary semaphores (2)

e, r and w form a split binary semaphore.

All execution paths starts with a P-operation and ends with a
V-operation → Mutex

We need a signal mechanism SIGNAL to pick which semaphore
to signal.

SIGNAL must make sure the invariant holds

Bi holds when a process enters CR because either:
the process checks
the process is only signaled if Bi holds

Avoid deadlock by checking the counters before the delay
semaphores are signaled.

r is not signalled (V(r)) unless there is a delayed reader
w is not signalled (V(w)) unless there is a delayed writer
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Condition synchr.: Reader

i n t nr := 0 , nw = 0 ; # cond i t i o n v a r i a b l e s ( as b e f o r e )
sem e := 1 ; # de l a y semaphore
i n t dr := 0 ; sem r := 0 ; # de l a y coun t e r + sem f o r r e a d e r
i n t dw := 0 ; sem w := 0 ; # de l a y coun t e r + sem f o r w r i t e r

# i n v a r i a n t RW: ( nr = 0 ∨ nw = 0 ) ∧ nw ≤ 1

process Reader [ i=1 to M]{ # en t r y c o n d i t i o n : nw = 0
whi le ( t rue ) {

. . .
P( e ) ;
i f (nw > 0) { dr := dr + 1 ; # < awa i t (nw=0)

V( e ) ; # nr :=nr+1 >
P( r ) } ;

nr := nr +1; SIGNAL ;

read from DB ;

P( e ) ; nr := nr −1; SIGNAL ; # < nr :=nr−1 >
}

}
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With condition synchronization: Writer

process Wr i t e r [ i=1 to N]{ # en t r y c o n d i t i o n : nw = 0 and nr = 0
whi le ( t rue ) {

. . .
P( e ) ; # < awa i t ( nr=0 ∧ nw=0)
i f ( nr > 0 or nw > 0) { # nw:=nw+1 >

dw := dw + 1 ;
V( e ) ;
P(w) } ;

nw:=nw+1; SIGNAL ;

write to DB ;

P( e ) ; 1 nw:=nw −1; SIGNAL # < nw:=nw−1>
}

}
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With condition synchronization: Signalling

SIGNAL

i f (nw = 0 and dr > 0) {
dr := dr −1; V( r ) ; # awaken r e a d e r

}
e l s e i f ( nr = 0 and nw = 0 and dw > 0) {

dw := dw −1; V(w) ; # awaken w r i t e r
}

e l s e
V( e ) ; # r e l e a s e e n t r y l o c k
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